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Abstract

This article presents a study on the world’s first unmanned machine designed for autonomous
forestry operations. In response to the challenges associated with traditional forestry oper-
ations, we developed a platform equipped with essential hardware components necessary for
performing autonomous forwarding tasks. Through the use of computer vision, autonomous
navigation, and manipulator control algorithms, the machine is able to pick up logs from
the ground and manoeuvre through a range of forest terrains without the need for human
intervention. Our initial results demonstrate the potential for safe and efficient autonomous
extraction of logs in the cut-to-length harvesting process. We achieved a high level of ac-
curacy in our computer vision system, and our autonomous navigation system proved to be
highly efficient. This research represents a significant milestone in the field of autonomous
outdoor robotics, with far-reaching implications for the future of forestry operations. By
reducing the need for human labour, autonomous machines have the potential to increase
productivity and reduce labour costs, while also minimizing the environmental impact of
timber harvesting. The success of our study highlights the potential for further development
and optimization of autonomous machines in the forestry industry.

1 Introduction

This article presents results of using an unmanned electro-hydraulically actuated machine, which has been
prototyped to carry on with fully-autonomous forestry logging operations (Lideskog et al., 2015). This
machine has been developed since 2014 by the Swedish Arctic Off-Road Robotics Lab (AORO), resulting
in a platform for research and development in the area of forestry machine automation (AORO: Arctic Off-
Road Robotics Lab, 2021). The article’s topic involves the very first results of performing a fully-autonomous
forwarding task, i.e. the task of collecting and transporting logs out of the forest after tree-harvesting. To
this end, the machine is able to perform autonomous navigation, object recognition and manipulation, as
well as robot motion control, combination of which are essential to successfully carry on with the forwarding



operation.

1.1 Background

Forestry has come a long way from the earliest machine made from a recycled tractor to the use of sophisti-
cated hydraulic machinery (Nordfjell et al., 2019). Among the core examples are the harvester and forwarder
machines, which are the main cutting-edge industrial tools for tree harvesting in Scandinavia. Among these
machines, the harvesters cut trees to small logs within the harvest area, while forwarders collect and trans-
port them out to the roadside for further relocation. This form of operation is known as the fully mechanized
cut-to-length system (CTL), a highly productive tree harvesting system, making Sweden the third largest
exporter of pulp and sawn timber (Lundbäck et al., 2021; Eriksson and Lindroos, 2014).

Operating forestry machines is a demanding and difficult job (Purfürst, 2010). Yet, standard machines
come equipped with old-fashioned open-loop control systems, where every degree-of-freedom (DOF) and
function is individually controlled through joysticks and buttons. Therefore, the ability to demonstrate a
good working performance depends on the multitasking skills of each individual operator, resulting in large
productivity variation (Pagnussat et al., 2020). Apart of this, machine operators need to take thousands of
multiple forest management decisions every day, while they control the machine’s functions simultaneously.
Over time, this cognitive load and the rough machine vibrations have a negative impact on the operators
well-being, affecting also the work performance and productivity. Therefore, the interest of working as an
operator has been declining in Scandinavia, making it difficult for forestry companies to recruit new qualified
operators in recent years.

Research studies show that automation of forestry machines is challenging, due to the complexity of the forest
environment and machine dynamics. Nevertheless, partial automation, which relieves some control of the
machine from the operator’s hands, has shown to be a promising technology to facilitate the work (Morales
et al., 2014; Nurminen et al., 2006; Visser and Obi, 2021; Lindroos et al., 2017; Oliveira et al., 2021). As
a result, machine manufacturers have recently shown an increasing interest in adopting basic automation
technology, as one incremental step to boost work productivity and efficiency by making the control of
machines more intuitive for operators. Examples of this adoption features the Intelligent Boom Control
from John Deere, the Smart Flow and Smart Crane from Komatsu Forest, and the so-called intelligent
hydraulic valves, which have given rise to the innovation of these new products (Lindroos et al., 2019;
Gingras and Charette, 2017; Reitz et al., 2019; Manner et al., 2019; Technion, 2017; Komatsu Forest AB,
2017; EATON, 2019).

Due to the financial impact of forestry in the Scandinavian economy, the interest of moving towards un-
manned machines for large-scale forestry operations began decades ago, at least in Sweden (Halme and
Vainio, 1998; Lindroos et al., 2019). Early examples consist of radio controlled machines, such as BESTEN
(eng. The Beast) (The death of the forest Beast, 2006) and the eBeaver (The radio-controlled bio-energy
harvester forest ebeaver, 2011). However, machines of this kind did not meet industry’s expectations, because
they were difficult to remotely operate using standard open-loop control commands. Therefore, production
of such machines did not reach adoption in the market. Nevertheless, unmanned machines with different
levels of automation can address some of the challenges facing forestry today, including reduced soil damage,
pollution, costly manufacturing, and lack of skilled machine operators (Lindroos et al., 2017; Lindroos et al.,
2019). Thus, research to move from manual control to full-automation with such machines has continued
since.



1.2 Literature review

1.2.1 General review about unmanned forestry machines

Automation involving unmanned forestry machines performing real forestry operations is quite rare, and very
few projects exists openly available in literature. To the best of our knowledge, most relevant research projects
utilize standard commercial machines from well-known brands equipped externally with portable hardware to
perform tests. These developments are typically supported by machine manufacturers or forestry companies,
since purchasing or owning forestry machines is too expensive for academic research. A relevant example
is the excavator presented in (Jelavic et al., 2021), which uses a Menzi Muck M545 multi-purpose machine
equipped with portable hardware to show some of the first autonomous abilities of a heavy-duty machine able
to autonomously navigate, recognize objects and use its manipulator to do meaningful tasks. Despite not
being an unmanned machine, the work of (Jelavic et al., 2021) successfully demonstrates functionalities that
are required to carry on with fully-autonomous forestry operations, motivating the interest of using robotics
in forestry. Although, no specific test case related to an actual logging operation has been demonstrated yet,
complex tasks for construction work have been reported in (Johns et al., 2020).

Another related example is the research program Forestry 4.0 from the Canadian FPInnovations office
(Automated harvesting with robots in the forest, 2020), where the aim is to automate forestry operations
using robots. However, apart of small to medium size laboratory test benches, no example of a real forestry
robot machine has been demonstrated so far. Similarly, the company Rakkatec produces a commercial
version of an unmanned ground vehicle based on a machine once known as the RCM Harveri, an unmanned
harvester machine developed in Finland (Unmanned ground vehicles for the most demanding conditions,
2021). Although the company claims that their ground vehicle can be used for autonomous operations, no
demonstration of such case has ever been done.

The last example is the Ground Carriage Pully developed by the company Konrad (Visser and Obi, 2021).
This was a prototype featuring a semi-autonomous/remotely operated ground unmanned forwarder to trans-
port logs. The vehicle navigated autonomously by following the tension of a winch cable attached to it, after
receiving initial commands from an operator. No complex navigation capabilities were given to this system,
more than forward and backward motions in the direction of the winch cable, but it could operate in most
terrains. Nevertheless, this system is not part of the company’s products, and information about further
development of this system is not available.

All these examples show a clear interest of the industry for machines able to perform autonomous forestry
operation. However, due to the challenges related to automation of outdoor machines using robotics, real
world demonstrations have not been shown so far, at least publicly.

1.2.2 Literature review about autonomous navigation in forestry

Autonomous navigation relies heavily on precise positioning information from sensors. However, obtaining
this information can be challenging in harsh, unstructured, and partially occluded environments such as
forest terrains.

In environments with limited GNSS signals, alternative positioning methods are often used for autonomous
navigation. In forest environments, research often focuses on path planning and navigation control utilizing
sensor fusion and Simultaneous Localization and Mapping (SLAM). One review study investigated posi-
tioning methods in forest environments using GNSS, Radio telemetry, Inertial navigation systems, SLAM,
Bluetooth, RFID, Acoustic Positioning, bar and QR codes, and relative positioning methods (Keefe et al.,
2019). In another research work, obstacle free paths were generated based on forest image data (Wu et al.,
2009). In a study on GNSS denied environments, a UGV-SLAM solution was proposed based on SLAM
and Shooting and Bellman methods for path planning and tracking (Fethi et al., 2018). In a recent study
for unknown environments, an aerial-ground collaborative approach was considered (Zoto et al., 2020). For



a similar research problem, navigation of unmanned vehicles using a drone to identify obstacles and exe-
cute a global path planner based on rapidly evolving random trees (RRT) using dubin curves was studied
(Daniel Tenezaca et al., 2020). A recent research study further proposed a path planning algorithm for
partially observed environments based on Task And Motion Planning (TAMP) by using Rapidly exploring
Random Graphs (RRGs) and belief space graph methods (Phiquepal et al., 2022). However, the algorithm
was evaluated for an indoor partial observable environment only.

1.2.3 Literature review about computer vision in forestry

Computer vision has the potential to assist in forestry operations by enabling forest machines to perceive
their surrounding environment. Although there is still no mature and widely used solution that utilizes
computer vision in forestry, relevant research and experimental attempts are continuously emerging.

Specific computer vision systems have been designed for particular tasks in forestry operations, such as
harvesting, forwarding, and seedling planting. For instance, conventional color cameras and machine learning
algorithms have been used to detect and estimate the distance of trees near forest machines during navigation
(Ali et al., 2008). Similar techniques have been implemented using LiDAR and point cloud processing (Sihvo
et al., 2018).

To aid in automatic grasping of objects, researchers have used image segmentation and shape reconstruction
with structured light camera data to estimate the position of logs (Park et al., 2011). Additionally, a
study has explored the use of a vision system comprising a conventional color camera and machine learning
algorithm for the automatic detection of spruce seedlings during planting operations (Hyyti et al., 2013).

In recent years, deep learning algorithms have undergone great performance improvements, making consid-
erable progress in applications that include tree trunk detection (da Silva et al., 2022; Wells and Chung,
2023), tree crown detection (Roslan et al., 2020), tree separation/classification (Roslan et al., 2020; Liu et al.,
2021), and tree health detection (Yarak et al., 2021; Nguyen et al., 2021). Deep learning is enabling the
deployment of computer vision systems on forest machines to achieve real-time complex forestry operations.
For instance, to estimate the posture of stacked logs one study used conventional color cameras and image
segmentation based on deep learning (Fortin et al., 2022).

While there is currently no mature industrial application of on-site computer vision systems in forestry,
research is increasingly focused on developing such systems. These systems use imaging sensors to acquire
data, and corresponding algorithms are built to achieve specific functions across various operational tasks.
As real-time computer vision systems become more powerful, they will likely accelerate the development of
forest machine automation.

1.2.4 Literature review about crane motion control

Compared to automated manipulators, forestry cranes lack motion sensors, as they are seldom designed with
having autonomous operations in mind. As a result, the necessary hardware for automation is often not
readily available, making implementation of automation challenging. Therefore, forestry cranes are typically
operated using joysticks that provide open-loop control commands. The operator sits in a cabin and manually
controls the crane joint-by-joint, which can be unintuitive and requires strong multitasking skills for efficient
operation (Purfürst, 2010; Morales et al., 2014).

Most research found on the topic of automating forestry cranes focuses on upgrading the control method
from joint-by-joint to Cartesian end-effector control. This approach is more user-intuitive, as it allows the
operator to control the crane’s end-effector directly instead of manipulating each individual link separately.
To achieve this, the crane needs to be equipped with motion sensors to implement a feedback control system
for motion planning and tracking. According to literature, the most common motion planning approach
used for this case is inverse kinematics (Spong et al., 2006). The work of (Münzer, 2004; Westerberg, 2014;



Hansson and Servin, 2010). showcases this solution with experimental hardware. Recent industrial examples
applying this technology include the Intelligent Boom Control from John Deere (IBC), the Smart Crane from
Komatsu Forest, and there are many other examples sold by consultancy firms around Scandinavia (Manner
et al., 2019; Technion, 2017).

Fully-autonomous manipulation of logs is still a challenging task within the field of robotics, which is why
literature on unmanned control of forestry cranes is rare. Nonetheless, two examples report experimental re-
sults of methods that could lead to fully-autonomous crane operations. The first is the work of (Ortiz Morales
et al., 2014), where the authors present a motion control system for the crane of a Komatsu 830 forwarder
machine. The main goal of their development was to showcase the ability to plan and control motions that
resemble those of human operators. In addition, they aimed to demonstrate that autonomous control could
achieve faster results compared to human operators. However, their development did not feature real world
demonstrations in the forest. The second is the work of (Jelavic et al., 2021), where the authors use a Menzi
Muck M545 multi-purpose machine. To control the manipulator, the authors use an adaptation of their
former work introduced in (Bellicoso et al., 2016), which was later adapted for a task of piling stones in
(Johns et al., 2020). However, work involving real forest operation tasks has not yet been demonstrated.
Outside of academic research, there are no commercial industrial examples reported in literature, featuring
any form of unmanned crane control. Nevertheless, industrial prototype machines involving this method are
currently undergoing development in Scandinavia (CINTOC, 2020).

1.3 Problem Formulation

Clear-cutting of productive forests with the two-machine system has been the dominant silvicultural practice
in Sweden since the 1950s (Lundmark et al., 2017). There are two particular characteristics that provide the
potential for automation of forwarder machines in clear-cut operations:

1. Once the harvester machine completes clear-cutting, the paths used for to traverse the forest de-
fine the machine-trails (Hosseini et al., 2019). These routes, with minimal obstacles relative to the
machine size, are sometimes pre-planned for the harvesting operation and reused by forwarder ma-
chines. The necessary digital path information is available from both the harvester data and the
operation pre-plans.

2. Logs cut by harvesters are systematically piled to the sides of the machine-trails or network of
machine-trails. This practice is convenient and helps minimize the time required for the forwarder
to collect logs while moving through the harvesting area, given its more bulky construction compared
to the harvester.

Thus, in a clear-cut scenario, the forwarder machine benefits from nearly obstacle-free paths for navigation
and simplified visual recognition because logs are piled up on the ground. These characteristics have led to
the hypothesis that forwarder machines could transition to full automation faster than harvester machines
in forestry. To break down the overall forwarding process, the combined tasks of the operator and machine
can be summarized in the following steps:

1. Navigation through defined machine-trail paths, where the information about the paths are given in
digital form from harvester data or through detailed plan maps.

2. Visual log recognition along the machine-trails, done by the machine operator.

3. Decision on how to drive and stop the machine at an angle and proximity appropriate to grab logs
with the crane. In most cases, an operator will place the machine in a position that allows grabbing
multiple piles of logs without moving the machine.



4. Crane motion from the bunk towards the logs on the ground, coordinated through joysticks by the
operator. Subsequently, the grapple is used to grab logs once the crane has reached a nearby location.
Given the fact that standard grapples have a big holding area, multiple logs can be collected in one
go.

5. Crane motion to carry the logs from the ground towards the bunk. Subsequently, machine operators
sort the logs according to assortments, e.g. tree species and diameters, within the bunk. The sorting
might not be needed, if only one assortment is collected during the given round-trip.

6. Once the bunk is fully loaded, the machine returns through the machine-trail to the unloading area,
where logs are piled up for further transport.

These steps usually happen sequentially, and they are repeated until there are no more logs to collect.

Based on these observations, this article is dedicated to present our first results having the following func-
tionalities to approach fully-autonomous forwarding tasks:

1. Autonomous navigation capabilities through via points, where the locations of these points are
manually given as GPS data.

2. Log recognition using a 3D stereo camera, where the processing happens simultaneously as the
machine is driving.

3. A task manager that provides the information of how to position the machine to collect logs after
the visual system has identified them.

4. The crane motion control system able to autonomously collect logs from the ground to the bunk.

2 Experimental Platform

Since 2014, the AORO platform has been under development as part of different projects, including mas-
ter/doctoral theses, and other research projects at Lule̊a University (see e.g. (R̊anman, 2015) and (Lideskog
et al., 2015)). The mechanical design was planned to incorporate many off-the-shelf components for hy-
draulics and electronic hardware, in order to reduce construction time and simplify the transition to industry.
An overview of relevant hardware is given in figure 1 and described below.

WiFi

JETSON
(ROS + 
python)

Monitoring

Emergency stop

Router

UEISIM
RTW target

Stereo       
camera

Analogue and 
digital I/O

GNSS

Figure 1: Hardware components.



2.1 Computing hardware

Two different computing systems are used on the AORO platform:

1. A Jetson AGX Xavier (henceforth called Jetson), with Linux as operating system, is used for the more
computationally intensive tasks. This is mainly used for perception and robot loacalization due to its high
GPU capabilities with respect to its size and low power usage. This uses libraries, tools and framework
from the Robot Operating System (ROS) (ROS - Robot Operating System, 2021) as well as some Python
programs. It also has two exteroceptive sensors directly connected via USB, which we will present later.

2. A UEISIM from United Electronics (Rack mountable Simulink/RTW target, ideal for HIL applications,
2021) is used to run most of the machine’s internal control systems and to read sensors. It has a light-weight
Linux OS and has several I/O cards installed for sensor inputs and control outputs. This is programmed
using the built in toolboxes from MATLAB/Simulink (The Mathworks, 1990). Using Simulink Coder, models
are created in Simulink and run in real-time on the UEISIM target.

These computers are interconnected via ethernet and communicates mainly via UDP messages.

2.2 Exteroceptive sensors

Exteroceptive sensors help measure the machine’s relation to its environment and external objects. There
exists two of these sensors in our machine:

1. The machine’s position relative to the world is described by a dual-antenna GNSS connected to a
national network of fixed reference stations. It is called Swepos Network-RTK and it is the Swedish
mapping, cadastral and land registration authority’s (Lantmäteriet’s) satellite positioning support
system. Having good satellite communication enables positioning of the antennas in sub-decimetre
accuracy in Cartesian world coordinates. When the machine travels in dense forest terrain, other
than clear-cuts, the satellite communication rapidly deteriorates to sub-metres, or worse.

2. A stereo camera, called Stereolabs Zed2, is installed at the front of the machine, pointing downwards
to map the ground in front of the machine. The Zed2 stereo camera produces a plethora of sensor
data, such as IMU, barometer and magnetometer data. However, so far the data we use comprise a
2D RGB image and a 2D depth map, as well as intrinsic camera data parameters.

2.3 Vehicle and Actively articulated suspension system via swing arms

The AORO platform has a front frame structure to carry the main part of the powertrain and a rear frame
structure to mount auxiliary equipment. It also has a fully sensorised crane mounted on a customized
subframe. The platforms are equipped with four swing arms where one end is connected to the frame and
the other end to a hydraulic motor and a wheel. The swing arms thereby enable individual height control
of each wheel in relation to the frame. The powertrain consists of a diesel engine as power supply with two
hydraulic pumps mounted in series. One of the hydraulic pumps (variable displacement) is used to provide
flow and pressure to the four hydraulic motors mounted at the end of each swing arm. This drive system is
also equipped with an ”anti spin” system actuated via flow valves. The other pump (variable displacement
and load sensing) provides flow and pressure to the auxiliary equipment (crane in this case), swing arm
cylinders, parking brake, and articulated steering cylinders, etc.



Figure 2: Forwarder crane: hydraulic manipulator with four degrees-of-freedom, specified in this graph as
the slewing q1, inner boom q2, outer boom q3, and telescope q4. It holds an end-effector attached at the
boom-tip, serving as a tool to grab logs. It is known as the grapple, having two active degrees-of-freedom,
specified as q5 for rotation, and q6 for its opening. All sensors measure positive in counter-clockwise direction.

2.4 Hydraulic crane

The AORO platform uses a model FC8 crane from the company CRANAB (CRANAB FC8, 2021). This is a
four degrees-of-freedom hydraulically actuated manipulator that follows a RRRP1 configuration, according
to robotics nomenclature (Spong et al., 2006). The end-effector for grabbing logs is attached at the boom-
tip, model CR250 grapple, having two active degrees-of-freedom for orientation and grabbing. However, the
grapple is an underactuated system, as it has no actuation at the attachment joint marked as the boom-tip
in figure 2.

This crane belongs to a new line of products from CRANAB supporting the development of smart crane
functions. The special feature is to have analogue encoders as joint position sensors built-in within the
design. In addition, we equipped the electro-hydraulic valve with pressure sensors to measure pressure
at each cylinder’s chamber. Referring to figure 3, all sensors are connected to the 18-bit DAC from the
main UEISIM unit. As mentioned earlier, the UEISIM is the main processor where all algorithms for
motion control are implemented. Therefore, the UEISIM unit is in charge of providing the control signals to
transform desired motion commands into mechanical motion by activating the hydraulic system.

3 System’s functionality and methodology

As described in section 1.3, the AORO machine performs a sequential set of steps, result of which resembles
tasks made with a human operated forwarder machine. The purpose of this section is to describe the
system’s functionality step-by-step, and consequently give a description of the methods and algorithms that
are implemented on the machine to achieve the expected results.

1R = revolute, P = prismatic.



Figure 3: Hardware architecture used as part of the crane’s control system.

3.1 Functionality and limitations

Currently, the AORO platform follows a sequence of steps that repeat in a loop. Referring to figure 4, these
steps and the procedure to use the AORO machine are as follows:

Figure 4: Sequence of steps that the AORO machine follows.



1. Planning the mission. Referring to figure 4a, at this stage, the human supervisor provides the
route for the mission by defining GPS via points. These are set through a user interface that
communicates wirelessly with the main Jetson computer. The logs to be collected lay on the ground
around this route in the crane’s reach.

2. Lifting the vehicle height for navigation. The pendulum arms for the wheels are initially on
their lowest position. To initialize navigation, they are lifted up to a drivability height, in order to
easily traverse the forest over medium size rocks and stumps.

3. Autonomous navigation. Referring to figure 4b, the machine starts traversing the forest at a
constant speed of 2.3 Km/h, using GPS information, according to the plan specified initially. As
the terrain refers to clear-cut, nearly no obstacles exists on these paths, apart of stumps and rocks
that the vehicle can drive over.

4. Scanning for logs. Referring to figure 4c, the system constantly scans for logs on the ground
during vehicle navigation, using the stereo camera placed in front of the machine.

5. Stopping the vehicle when logs have been found. Once a log or groups of logs have been
found, the machine shortly stops at a distance of 4 meters to get a better visual recognition and
positioning of the logs. This information is then translated to the machine’s coordinate system,
which is used to provide coordinates to the crane’s motion control unit.

6. Placing the load bunk for collection. At this stage, the vehicle travels an average distance of
5 meters passed the logs, and stops at a distance where the logs lay almost next to the load bunk.
This facilitates the crane’s tasks, by minimizing the crane’s distance of travel. When several logs
are found, the system stops at a distance where the crane will be able to reach all logs in a nearby
area without the necessity to move the vehicle.

7. Lowering the vehicle. At this stage, the vehicle height is lowered to its minimum range to have
a lower center of gravity and better stability when the crane is moving and carrying logs.

8. Collecting logs. Referring to figure 4d, at this stage, the crane’s motion control system plans the
necessary trajectories to reach the logs and load them into the load bunk. From this point, the
sequence starts all over again from step 2 and ends when the last via point is reached or by manual
means.

As this project is undergoing development, there are certain limitations in the system’s current functionality
that are worth mentioning:

• The plan for the operation needs to be inserted by a human supervisor using GPS via points.
Communication between a harvester machine and our machine is work in progress.

• When the machine stops to collect logs, there is currently no camera on the crane to observe the logs
on the ground. Therefore, the accuracy of the crane’s work currently depends on the correctness of
the log position estimation using the camera mounted at the front of the machine.

• The sequence of steps is repeated until the last via point is reached or by a human operator that
stops the system. Currently, the system does not have a method to estimate when the load bunk is
full.

• Currently, the system is only capable of loading the load bunk, but not the reverse task, as this is
still challenging not having a camera dedicated to the crane.



3.2 Methods and algorithms

The algorithms required to perform the tasks described above have been divided into actions that are
supervised and commanded through a task manager. The activity manager provides the required flags to
switch between each action, such that two actions cannot happen simultaneously.

The main functions implemented on the AORO platform are the following:

• Autonomous navigation, in which the machine is able to navigate by specifying via points.

• Autonomous log recognition, in which the machine is able to use its vision capabilities to observe
logs laying on the ground, and defining their location according to the machine’s reference frame.

• Autonomous crane motion control, in which the machine is able to use its crane to collect the
logs that have been recognized by the vision system.

The overview of the algorithms and the description of the task manager that sequentially switches among
them is given below.

3.2.1 Navigation Control

The machine navigates between an initial and a final destination by following a trajectory that connects GPS
waypoints. In this study, we adopted a straightforward approach based on the direction of the machine’s front
end. The algorithm calculates the difference between the bearing of the current waypoint and the heading
of the machine’s front end, and feeds this information into a P controller that determines the desired rate
of steering angle. The controller then sends this information to a hydraulic valve that controls the cylinders
that adjust the articulation angle. When the machine approaches a certain distance from the via point
(based on the machine’s steering radius), it switches to the next.

3.2.1.1 Robot Localization

The robot localization node utilises built-in functions and packages from ROS to create a real-time kinematics
model of the machine using kinematic equations (see figure 12). First, an XML file is composed where basic
geometry, all links and joints are described. Then, feeding sensor data as input to the localization node,
rigid transformations define the position of each degree-of-freedom at each time step.

3.2.2 Vision System

At the moment, the objective of visual perception is to enable fast-enough log detection, so that position
coordinate outputs can be used in subsequent crane control. The visual perception runs in ROS and contains
two nodes. The first is called DNN and comprises a deep neural network used for real-time object recognition.
The second is referred to as Vision, comprising the data evaluation of detected objects where logs are
extracted and positioned in absolute terms.

For the DNN node we use a modified version of the Legged Robotics ROS package called darknet ros
(YOLO ROS: Real-Time Object Detection for ROS, 2021), which comprises a real-time object detector
named YOLOv3 built within a neural network framework named darknet (Darknet: Open Source Neural
Networks in C, 2021). Darknet-53 performs well for our purpose, at the time of testing working twice as
fast with the same classification accuracy for comparable nets (Lawal, 2021). This is an important property
given the necessity of real-time execution. At the time for full testing, YOLOv3 had shown substantial



Figure 5: AORO robot joint and link definitions graphically depicted in Rviz (3D visualization tool for ROS
applications).

improvement compared with earlier versions (Farhadi and Redmon, 2018) and had ROS integration. The
detector was previously tested in forestry applications (Li and Lideskog, 2021).

3.2.2.1 DNN node: Data collection, labelling and augmentation

To train the neural network in the DNN node, RGB data was collected at the forest area to be used for
forwarding demonstrations and experimental validation.

Image data was collected using the stereo camera Zed2 with a resolution of 1280x720 pixels. To this end,
we manually moved the camera by hand in an area of 75x75 metres where logs had been strategically
dispersed to represent different placements and orientations. The weather was sunny with a slight overcast,
producing shaded parts on the grounds. No rain had fell for days and the grounds were dry. That enabled
the opportunity to ensure data was collected both having the sun at the back and front facing the camera.
Logs were also dispersed in both shaded and sunlit areas, as well as areas with and without vegetation. The
logs consisted of birch trees with a mean diameter of 25 cm and a length of 2 m. Images were captured so
that distance and angle to logs were differed to ensure images spanned the entire range of possible encounters
for a machine in that area (see figure 12). Only birch logs were used in all images, ensuring no confusion
with other tree species (apart from standing trees). In total, 1700 images containing over 3500 annotated
logs were captured and used as a training and validation data set.

A common step to increase the robustness of an object detector working on RGB imagery is to augment
the training dataset by adding copies of already existing data, but having them slightly modified in terms of
e.g. brightness and contrast. That alleviates over-fitting when training the detector and acts as a regularizer
(Shorten and Khoshgoftaar, 2019). The original dataset was augmented with modifications in image rotation,
saturation, exposure, blur and noise, increasing the total dataset size to 6300 images of which a major part
of 95% was used for training and the rest for validation.



Figure 6: Examples of labelled images from test site where data was recorded, and subsequent demonstration
and experiments were performed.

3.2.2.2 DNN node: Preparing the dataset for training

The dataset was resized to 608x608 pixels, where black edges over and under the image ensured the correct
ratio. This image size is specifically tailored to suit the training process for our choice of neural network.

The ROS package darknet ros was also used for training, with a neural network having 53 convolution layers,
named Darknet-53. Within Darknet-53 the encapsulated YOLOv3 has a training process that reflects the
original YOLOv3 algorithm. By feeding the training set into Yolo-ROS, we can get a so-called weights file
trained on the prepared data. A weights file is a binary file containing the parameters for the 53-layered
neural network. With transfer learning, we utilized a pre-trained model that was previously trained on logs
as objects, building on a source data set of approximately 1000 images. Our final weights file achieved a
mean average precision (mAP) of 80.51%, which is an evaluation metric (Salton and McGill, 1983) commonly
used in the PASCAL Visual Object Class (VOC) challenge (Everingham et al., 2010). The input image size
to the network were 608x608 pixels, momentum was set to 0.9 and initial learning rate to 0.001. Decay was
set to 0.0005 and the training steps to 3200 and 3600.

3.2.3 Vision node

The vision package encompasses the log positioning algorithm, which uses input from the stereo camera depth
map and input from the DNN as bounding box positions to calculate and publish log positions relative to
the camera coordinate system.

Positioning detected objects in relation to the camera (and thus the machine itself) is conducted as follows.
After target objects are recognized by the DNN node, the corresponding depth map of the area and corre-
sponding bounding box 2D image coordinates are fed into the vision node. The depth information within
the bounding box is used to calculate the actual position of the object. We use the mean value of depth data
in an area of 8x8 pixels within the bounding box center to calculate the object depth, which significantly
increases calculation robustness, but may add a few milliseconds to the calculation time. Furthermore, this
is a viable method since the camera is directed downwards and to a great extent depicts terrain areas and
not areas that otherwise would rapidly change.

Using the model of a pinhole camera (Forsyth and Ponce, 2003), the relationship between the coordinate of
a 3D space point [X, Y, Z] and the pixel coordinate of its image projection in 2D [u, v] is given by:
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where R and t denotes rotation and translation, which relate the world coordinate system to the camera



coordinate system, fx and fy are the camera’s focal length in X- and Y-axis, and cx and cy are the center
of the camera’s aperture. Equation (1) gives that[

X
Y

]
= Z ·

[
(u− cx)/fx
(v − cy)/fy

]
(2)

If the pixel coordinate (u, v) and the depth information of the pixel Z is known, the actual spatial position
represented by the corresponding pixel can be calculated according to the camera parameters fx, fy, cx, and
cy, which are usually provided by the camera manufacturer.

3.2.4 Active suspension height control

To set the vehicle height, a reference height is sent from the activity manager to the swing arm control
system. This reference value is then used to control each swing arm hydraulic cylinder individually. To this
end, a proportional controller is used to generate the control signals for the hydraulic valve of the swing
arms’ cylinders.

To improve the machine’s navigation, the vehicle is equipped with passive suspension through float control
valves. These valves can be activated on either the front or rear axle, but never on both simultaneously to
prevent the vehicle from tipping over. When activated, the swing arm cylinders on the left and right sides
are cross connected, i.e. the inlet port on one cylinder is connected to the outlet port on the other, and
vice versa. This causes the cylinders to move simultaneously in opposite directions, thus keeping the ground
pressure equal on both sides, similar to a beam axle on a car. The float configuration is activated just before
the machine moves for drivability and deactivated during the log loading operation for stability.

3.2.5 Crane’s motion control system

Controlling heavy-duty hydraulic manipulators is challenging. Some of the main reasons are the unpre-
dictable loads and nonlinear dynamics, which include large amounts of residual vibrations resulting from oil
compressibility and mechanical flexibility (Manring, 2005).

Our research group has been involved in the development of automation technology for forestry cranes for
nearly two decades. Therefore, the motion control algorithms applied in the AORO platform are modifica-
tions of former work, some of which is presented in (La Hera and Morales, 2014; La Hera and Ort́ız Morales,
2015; La Hera et al., 2021) and references therein. In short, the reference tracking feedback controller is a
nonlinear controller using sliding mode control, giving robustness to unmodeled dynamics and disturbance
rejection. In addition, this control strategy allows to attenuate residual vibrations, a common problem from
the crane’s dynamics behaviour. The validation of the performance of this type of control system has been
presented in (La Hera and Ort́ız Morales, 2015).

To plan motions, we use Dynamic Movement Primitives (DMP), following the machine learning algorithm
detailed in (La Hera et al., 2021). This approach is based on the concept of learning by demonstration,
in which we manually demonstrate point-to-point motions to the crane, following quasi-parabolic paths, as
those used by professional machine operators. This is done using joysticks. Consequently, the crane is able
to use these demonstrations to dynamically plan any point-to-point motions from an initial to a desired
position, mimicking the characteristics of the demonstrated motions.

The algorithm to control crane motions is sequentially executed once the activity manager has sent a trigger
command. This trigger command results from successfully recognizing a log on the ground and getting its
Cartesian location, as well as stopping the machine at a preplanned distance to collect the log. The input to
the algorithm is the position of the logs in Cartesian Coordinates, according to the crane’s reference frame.
Consequently, the algorithm plans crane trajectories from the bunk to the side of the vehicle where the logs



are located. The grapple opens during this motion. Once the target position is reached, the grapple closes
and holds the logs. The reverse of this sequence is executed to load logs into the bunk. A pseudocode giving
an idea of how the algorithm works is presented in algorithm 1.

Algorithm 1 Motion planning based on DMP

Input: Location of logs given in Cartesian World Coordinates [X,Y,X] and rotation φ
Output: Joint reference trajectories qiref (t) where i = [1, 2, 3, 4, 5, 6]

1: procedure MotionPlanning
2: From bunk towards log :
3: if trigger signal = 1 then
4: [q1ref , q2ref , q3ref , q4ref ] = DMP Algorithm(Xtarget, Ytarget, Ztarget)
5: [q5ref , q6ref ] = OpenGrapple(φtarget)

6: From the sides towards bunk :
7: if (target reached = 1) & (grapple closed = 1) then
8: [q1ref , q2ref , q3ref , q4ref ] = DMP Algorithm(Xbunk, Ybunk, Zbunk)
9: [q5ref , q6ref ] = OpenGrapple(φ(0))

10: finished sequence = 1.

3.2.6 Activity Manager

To control different activities and monitor progression towards achieving the mission, an activity manager was
developed using Simulink Stateflow and integrated in the main Simulink software structure (The Mathworks,
1990). The structure of the activity manager is presented in Figure 7 and it is divided into the two main
states “Idle” and “Auto” where the default transition Td1 is set to “Idle”. The transition between “Idle”
and “Auto” is controlled with a switch. This enable start and stop of the automation process manually via
a remote control and also from the path tracking system when the mission has been completed, i.e. when
the final via point has been reached, or when an operator has manually stopped the mission.

Idle

Transport 

Height Setting
Log Search

Target Position 

Refinement

Log Collection 

Positioning

Collection 

Height Setting

Log Collection

Td2

T1

T4

T2

T3

Auto

T7

T6

T5

T0

Td1

Figure 7: Structure of the Activity Manager.

The autonomous forwarding mission is divided into six states with transitions in-between (see Figure 7).
When entering the Auto-state, a default transition Td2 is set into a state with the objective to set the
vehicle height to a suitable transport level (the “Transport Height Setting” state). The activity manager
sends a set-height to the pendulum arm control system (outside the activity manager see Figure 8), which
then independently adjusts the pendulum arms until the set-height is reached. This triggers the transition
into the “Log Search”-state T1. In “Log Search”, the drive control system is activated and the vehicle starts
following the predefined path. As previously stated, note that it is assumed that the path follows a strip-road
from the harvester track and that all logs to be picked up can be reached from this path.

During navigation, stereo camera information of the surrounding is gathered via the perception system and
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used to continuously store floating mean values of the identified log positions. In addition, based on the
GNSS-position of the vehicle given by the localization system, the distance between the crane reference frame
and the closest log is calculated. When this distance is below a threshold δ > ε > 0, the closest log is set
as the target log and the transition into “Target Position Refinement”-state T2 is triggered. To improve the
positioning accuracy, the tracking system is deactivated, i.e. the vehicle is stopped and then the detected
log positions are updated. After a predefined hold-time, transition T3 is triggered where the “Log Collection
Positioning”-state is entered. For collecting the logs, the crane’s reference frame should be positioned at a
certain range and ahead of the target log. This is achieved by using a circle with origin at the target position
and a predefined radius. The tracking system is activated and the position of the crane foot in relation to
the target log is then monitored to ensure that the crane foot first enters the circle. Then, as the crane foot
exit this circle, the tracking system is deactivated and thus, the vehicle stops.

At this stage, a validity check is performed by evaluating that the target log position is realistic in the local
crane coordinate system (used for the log collection). If not, the transformation T4 back to “Log Search”
-stage is triggered. Otherwise, the system transit into the “Collection Height Setting”-state T5. At this
stage, to improve the load capability and machine stability, a low set-height is sent to the pendulum arm
control system, which independently adjusts the pendulum arms until the set-height is reached and then
trigger the transition into the “Log Collection”-state T6. Now the target log position relative the crane foot
is sent to the crane control system, which generates local crane trajectories (including the grapple). These
trajectories are used to control the actual crane movements. When the collection procedure is finished, a
command is sent to the activity manager that transits back to the initial “Transport Height Setting”-state.
This state-transition behaviour loops until the mission has been completed.



4 Testing scenario

The tests to present our results were planned in two stages. In the first stage, the intention is to evaluate
the performance of each individual component involving autonomous navigation, log recognition, and crane
motion control. In the second stage, the intention is to evaluate whether the task manager is capable to
combine these methods to perform a fully autonomous forwarding task.

4.1 Tests for the individual system’s functionality components

4.1.1 Testing the autonomous navigation control system’s performance

Tests were performed to verify the machine’s ability to autonomously navigate by defining via points in GPS
format. These tests consisted on defining a rectangular path given by four via points (see figure 11), and
letting the machine traverse this route for four consecutive laps. To test the robustness and converge to the
desired path from different initial conditions, the machine’s initial position was changed for each new test
sequence.

4.1.2 Testing the crane’s motion control system’s accuracy

Tests were performed to verify the performance of the crane’s motion control system and to calculate an esti-
mation of its accuracy. These tests consisted on performing automatic motions from an initial configuration
towards different desired goal locations in the world coordinate system (Cartesian coordinates), in order to
calculate the deviation at the final position. The initial configuration was the center of the trail where logs
are piled up (see figure 9). The goal location referred to the desired Cartesian coordinate target where the
crane’s tip was meant to reach. Referring to figure 9, four desired test locations were selected to cover the
four quadrants in the x-y axis, having the coordinate system at the base of the crane.

Figure 9: Crane’s desired motions from it initial configuration at the center of the trail, towards four desired
locations in the Cartesian Space.

To calculate an estimation of the positioning accuracy, the deviation of the crane’s tip position to the desired
target was calculated by Euclidean distance. To calculate the tip position, we used the forward kinematics



presented in (La Hera et al., 2021). To get a reliable estimation, several repetitions of the same motion to
each target location were performed. Consequently, the mean value for all the deviation errors of the four
target locations was used to get a final estimation of the crane’s positioning accuracy.

4.1.3 Testing the logs’ location algorithm accuracy

Tests were performed to calculate the accuracy of the log recognition algorithm. These tests consisted in
estimating the location of logs that were manually placed on the ground at specified known locations. To
this end, the test consisted on placing two logs, five meters apart from each other, according to the reference
frame presented in figure 10. The logs were placed according to the following characteristics:

1. In the first instance, the logs where placed at zero degrees, specified by the reference system observed
in figure 10. In this position the machine has the highest visibility to the whole log, as the direction
of travel is perpendicular to the logs.

2. In the second instance, the logs were placed at 45 degrees of rotation. In this position the machine
observes the logs at an angle.

3. In the third case, the logs were placed at 90 degrees of rotation. In this position the machine has
the least observation of the logs, as the direction of travel is parallel to the logs.

For each of these cases, the machine started autonomously driving from a distance of 40 meters away from
the first log (see figure 10 for reference).

Figure 10: The setup to test the log recognition accuracy. Two logs are placed on the ground, five meters
apart. The machine starts autonomously driving from 40 meters, giving estimations for both logs as it goes.

The log recognition software provides 15 estimations per second according to the machine’s main reference
system. Consequently, this data is transformed into different reference systems to, for example, provide logs’
location coordinates to the crane control system, or to navigate the vehicle to better position itself when
collecting logs. In these particular tests, the data was transformed into the world coordinate observed in
figure 10.

The purpose of the estimation is to give the coordinates of the center of the logs, as this is the value that
is transferred to the crane’s motion control system. To get a reliable estimation, several repetitions were
performed to obtain an averaged value of the recognition software accuracy. Consequently, we measure the
deviation of the estimation to the values measured by hand using Euclidean distance. The deviation from
true values gives us an estimation of the recognition software accuracy.



4.2 Testing the complete forwarding task

The experimental scenario refers to the location where the AORO machine was unveiled to the public, which
is also the place where we performed experimental tests (The world’s first self-propelled forestry machine,
2021). It is a region in the northern county of Sweden belonging to one of our industry partner, with the
closes city being Hörnefors. The specific coordinates of the site in the WGS84 decimal (lat, lon) system is
63.657853, 19.895562. Referring to the left side of figure 11, the testing area had a length of 40 meters and
width of 30 meters.

Figure 11: Left: Forest site where the experiments were carried out. The square points to the particular
area for the experiment. Right: The mission planned for testing the machine’s ability to carry on with fully
autonomous forwarding.

The experimental testing was designed according to the following mission:

• Referring to the area marked in yellow in the left side of figure 11, four GPS via points sufficed
to define the mission path (see right side of figure 11). These points were inserted manually and
communicated to the main machine’s computer wirelessly.

• As shown in the right side of figure 11, logs were placed manually on the longer sides of the routes,
either to the right or to the left of the main path. As explained in section 3.2.2, only birch logs
were used in these tests, because this is a common species for commercial harvesting in Sweden and
possibly easy to recognize.

• Each time the machine passed through the longest sides and collected the logs, they were immediately
replaced by other logs for the next time the machine would pass through.

• Referring to figure 9, a trailer was attached to emulate a forwarder machine. The dimensions of
the trailer were added to the recognition software, in order to have the coordinates required for the
crane to release the logs it picked up from the ground.

4.2.1 Precision measurement

To assess the entire system’s precision with an external measuring tool, we used a mobile two-camera setup.
For each position a log was recognized and targeted by the system, two images were taken. We chose to
program a short pause in the crane’s movement towards the log, stopping for a second on top of the log just
before activating the grapple and grabbing the log. That enabled the cameras to record an image frame each



in the machine rear end’s longitudinal and transversal direction. With knowing the grapple true size, each
image was given a measurement scale and thus a measure from the grapple’s ideal grabbing point and the
log’s centre point was determined. No rounding of measures has been done in the resulting values; however
at least a ± 2 cm error is to be expected.

5 Experimental results

5.1 Results for the individual system’s functionality components

5.1.1 Navigation Control

Referring to the mission plan presented in figure 11, the initial experiment verifies the machine’s ability to
navigate by defining via points. To this end, the machine was started from different initial conditions, in
order to validate the convergence of the motion towards the shortest path needed to traverse the terrain by
directly connecting the four via points, i.e. in a rectangular path.
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Figure 12: Examples of running the navigation control system from three different initial conditions. The
square markers point at the initial conditions, while the circular marker point at to the final position. The
four via points are plotted with back diamond shaped markers. The units in these graphs are in meters.

Figure 12 shows three of the results from these tests, having the square and circular markers pointing at
the initial and final locations of the machine respectively. In all these cases, we let the machine run for two
laps to verify that the motion converges towards the desired track. In figure 13, we show the results of six
test cases superimposed on the same image, which clearly shows that the machine’s autonomous navigation
control system is able to converge towards the desired route, despite starting at different initial conditions.

5.1.2 Logs’ recognition

Referring to the tests described in section 4.1.3, figure 14 shows results from the log recognition algorithm.
From left to right, the three plots in figure 14 refer to the cases where the logs are placed a) straight to the
camera, having the highest visibility of the log, b) at 45 degrees angle, where the camera observes the log at
an angle, and c) at 90 degrees angle, where the camera would have the least visibility of the log.

As the system is able to provide 30 estimations per second, our software uses the averaged value to give a
final estimated result. Figure 15 shows results using a histogram for the log marked as two in figure 10.
From left to right, the histograms in figure 15 represent the cases a), b) and c) described above. The bars on
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Figure 13: Results of the navigation control system for six different test cases. The square markers point at
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Figure 14: Results of the log recognition software. The grey dots are the estimated logs’ locations using our
algorithm. The black circle represents the logs’ centres. The rectangular shapes represent the position of
how the logs were placed for the tests. The units in these graphs are in meters.

this histogram represent the Euclidean distance for every observation in respect to the origin. In addition,
the dark grey bar shows the Euclidean distance where the log was actually placed.

According to manual measurements and calculations from GNSS, the log was placed at an approximate
distance of 5.2 meters from the origin (see figure 14). It is noticeable that the observations for cases a) and
b) follow a normal distribution having a maximum peak around the vicinity of 5.2 meters. For the first
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Figure 15: Results of the log recognition software using a histogram for log 2. The light grey bars represent
the estimations, which clearly show a normal distribution in the vicinity of 5.2 meters. The dark grey bar
represents the position where the log is actually placed.

case, measurements have an error of 3 cm, while for the second case there is an error of approximately 10
cm. However, for the case where logs are placed at a 90 degree angle, the error increases to near 30 cm.
Nevertheless, due to the size of the crane’s grapple, the machine will still be able to grab these logs.

Similar results for the log marked as one in figure 10 can be observed in figure 16. The location of this log
represents the origin for our calculations in this particular test case. For this test, we see that for cases a)
and b) the error is also within a decimetre range, while it increases to 30 cm for case c). Our results conclude
that the log recognition algorithm is able to provide estimations within 10 cm of error for the cases where
the camera has good visibility of the logs. The error increases to 30 cm for the worst case where camera has
the minimum visibility of logs.
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Figure 16: Results of the log recognition software using a histogram for log 1. The light grey bars represent
the estimations, which clearly show a normal distribution in the vicinity of the origin. The dark grey bar
represents the position where the log is actually placed.

5.1.3 Crane motion control

Referring to the tests described in section 4.1.2, figure 9 shows an example of the crane paths that our
motion planning algorithm defines to move the crane towards the desired goals. For this particular test case
the Cartesian coordinates for the goal positions were defined as follows: Point 1 = [4.27, 1.86, 1], Point 2 =
[4.27,−1.86, 1], Point 3 = [6, 1.86, 1], Point 4 = [6,−1.86, 1].



The motions were performed multiple times to get an estimate of the crane’s motion control system’s accuracy.
These were performed both with the grapple empty and with a load of 200 Kg. As an example, figure 17
shows data of the Cartesian coordinates of the crane tip’s location for 20 tests at each testing point, i.e. 80
data points in total. The tip location was calculated by the equations of forward kinematics having values
for each joint given by sensor measurements. On the left of figure 17, we show a 3D representation of the
results of all tests, while the right side shows a zoomed out view of each individual point for the X-Y axis.
In all the cases, the data with a square represent the motion with an empty grapple, while the data points
marked with an x represent the grapple with a load of 200 Kg.

Figure 17: Example of results for each testing points. The square data points represent the grapple without
load, while the x marks data points with a loaded grapple. The units for the axis in these graphs are in
meters.

To show the accuracy of the crane’s motion control system, we use the Euclidean distance of a data point
to its desired location as a measurement of error, because this value tells how much the crane deviates from
the goal location. Figure 18 presents a histogram showing these values for all data points, i.e. the data for
all four desired locations are piled up into a single histogram plot. The left plot is the Euclidean distance
calculated in 3D, i.e. using the data in the [x, y, z] axis. The middle plot is the Euclidean distance calculated
in 2D, i.e. using the data in the [x, y] axis. The right plot is the error in height, i.e. z axis.

Results show that the Cartesian coordinate positioning error in 3D follows a normal distribution, having an
average value of 8 cm, i.e. the crane reaches the vicinity of the desired location with an average error of 8
cm. However, we see that the error in the [x, y] axis is smaller in average, i.e. 4 cm. This implies that the
highest error in the crane positioning is the height of the tip, which deviates by an average of 6 cm in respect
to the desired height. This phenomena can be observed in the left of figure 17, which shows that the longer
the crane needs to reach the higher the deviation in the z-axis.

5.2 Testing the complete forwarding task

According to the layout presented in Figure 11, a total of 24 logs were laid out within the reach of the crane
along the machine’s path. Overall, 23 out of 24 logs were detected correctly. In two attempts, the detected
positions had poor quality and the crane was not able to grab the logs at the optimal centre point. Table 1
shows the results from all the runs.

The effectiveness of log grasping is determined by the positioning of the log when the grapple is closed. If
logs are placed beyond the maximum reach of the grapple, the attempt to grasp them will fail. However, due
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Figure 18: Cartesian positioning error for the crane’s motion control system. From left to right, the his-
tograms represent the error measured by the Euclidean distance to the desired location for 3D ([x,y,z] axis),
2D ([x,y] axis) and height (z axis), respectively.

to the large size of the grapple compared to the width of the logs, there is typically a 50 cm margin of error
allowed. In the study presented in Table 1, successful attempts were defined as logs that were successfully
loaded onto the trailer. In all instances where the log was successfully grasped, it was properly positioned
on the loading bunk during testing.

6 Discussion

Forest industry plays an important role in the global economy and has significant influences in our lives and
the environment that we live in. Therefore, considering improvements in technologies for forest harvesting
is vital to secure wood supply with environmentally sound methods.

With the rapid advancements of technologies related to digitalization, automation and robotics, a transition
towards more resourceful forest operations is slowly coming to fruition. Early industry adoptions of these
technologies have been well received, as they provide improvements in various aspects of the work and drive
the need for further advancements.

Within forestry, Scandinavian countries are well known for their high performance machinery and the research
to automate them. However, despite years of developments, projects featuring full scale demonstrations with
unmanned machines are rare to find in scientific literature. This makes the development shown in this article
one of a kind, because it shows the practical application of combining different research areas to successfully
perform fully autonomous forestry work in real world conditions. To the best of our knowledge, this is the
first time that such demonstrations have taken place in the public domain, and the success on the preliminary
results motivates the vision that one day fully unmanned forestry machines will be able to part take the
work in forestry, as envisioned by this industry. However, there is much work to be done to achieve this goal.

The development presented in this article has centred around the introduction of an unmanned forestry ma-
chine that has been purposely built as a research platform to test advanced automation for forest operations’
work. Apart of the construction of the machine, that underwent five years, we showed successful applica-
tion of three key areas, i.e. autonomous navigation, log recognition via computer vision, and autonomous
crane manipulation. Each of these subjects possesses its own challenge, but the initial results combining
these technologies show that the accuracy of our current development is reliable enough to perform basic
forwarding tasks.



Table 1: Error measured in the X and Y directions in mm (Y = machine rear longitudinal direction)
Log no. X Error Y Error Z Error Euclidian Distance Error Successful attempt Reason for failure

1 33,7 146,6 55,2 160,3 YES
2 -175,9 215,8 -132,3 308,2 YES
3 -710,8 -120,4 181,1 743,3 NO Inaccurate estimation
4 -646,0 -23,6 -224,6 684,3 NO Inaccurate estimation
5 -295,6 -19,9 -82,2 307,5 YES
6 -370,2 226,7 -0,4 434,1 YES
7 -202,7 -82,8 -9,3 219,1 YES
8 -268,2 56,6 -79,2 285,3 YES
9 -306,5 -181,6 -28,0 357,4 YES
10 -292,6 222,7 -69,5 374,2 YES
11 -100,9 88,6 70,1 151,5 YES
12 -308,0 174,0 -42,2 356,3 YES
13 45,8 40,1 -43,3 74,7 YES
14 -363,6 190,5 -72,8 416,9 YES
15 33,2 -10,9 -7,7 35,7 YES
16 -271,3 298,0 -122,6 421,2 YES
17 - - - - NO CV did not detect a log
18 -120,4 70,9 -84,8 163,4 YES
19 -191,1 -101,1 54,2 222,9 YES
20 74,1 -8,1 -94,6 120,4 YES
21 -402,1 -244,0 -69,0 475,4 YES
22 -125,0 19,2 -198,4 235,3 YES
23 -196,1 97,9 -36,3 222,1 YES
24 -47,8 73,3 -150,3 173,9 YES

Mean error 232,6 113,0 79,5 289,3

6.1 Discussion about results

To perform autonomous navigation, we have currently proposed using GPS via points, as this has shown
to be reliable in related industries, e.g. agriculture and mining. Our main reasoning comes from the fact
that forest harvesting operations are preplanned before hand in Scandinavia. Therefore, having information
about the routes for forwarding tasks is preliminary known and confirmed while the harvester is working in
the forest. This allows our algorithms to have the information needed to plan GPS via points.

Using our algorithm for navigation control, we were able to demonstrate performance properties, such as
exponential stability and repeatability, as the machine was able to exponentially converge towards the same
path in multiple rounds, despite starting at different initial conditions and weather conditions. Although it
is difficult to show the weather influence in an article, our machine has been able to perform similarly in
different weather conditions and terrains. The results in this article have been from a time where the terrain
was muddy due to the rain, making it difficult to drive without sliding.

A major concern in this project was the subject of computer vision, and in particular the effectiveness of the
log recognition software. As this information is needed for subsequent log manipulation via crane motion
control, the accuracy on the estimation of the logs’ pose and location is highly important. Results show that
our system is currently able to estimate logs with an averaged deviation error between 3 to 10 cm, when
the camera has good visibility of the logs. This error worsens if the logs ahead of the machine are placed
nearly parallel to the machine’s direction of travel, because this does not let the camera observe the logs’
shape properly. This result is quantitatively sufficient for our development, because logs that have been
cut-to-length are much bigger in magnitude in relation to the estimation error.

Unlike industrial robot manipulators, highly accurate control of forestry cranes is challenging, due to size,
weight, and hydraulic manipulator dynamics. In heavy duty hydraulic applications, we often need to make a
compromise between dynamic performance and control accuracy. In these regards, our crane motion control
system provides the ability to perform smooth motions with reliable accuracy. According to results, the



expected deviation from the target goal shows to be within a decimetre. However, 50% of the deviation
comes from inaccurate height control(z-axis), and it is attributed to the difficulty to control height due to
the length and weight of the crane, as explained in former work. Nevertheless, for forestry cranes of this
magnitude (9 meters reach), the deviation error is almost negligible, and in fact it works in our advantage,
because it increases the certainty that the grapple will grab logs. Therefore, considering the size of the
grapple, and the size of the logs that these cranes collect, our control system does not need higher accuracy.

Our current results have several strengths. First, we were able to demonstrate autonomous navigation in a
terrain that is common in forestry. Second, our results show that object recognition using machine learning
can provide logs’ location estimation with high accuracy for subsequent manipulation through the machine’s
crane. Third, our results demonstrate the feasibility of collecting logs autonomously using the crane, relying
only on estimations done with the help of the camera installed in front of the machine. Four, we obtained
successful results performing a fully autonomous forwarding task in an scenario that is common in clear-cut.
Therefore, our system setup with minimum sensing equipment already presents the ability to carry on with
forwarding tasks, because of the accuracy of algorithms developed during this project.

Despite the positive results, some limitations to our current development should be addressed. First, although
we attempt to show results in real forestry conditions, our experimental environment is still idealized. So far,
we have concentrated on collecting single logs, mainly to test our algorithms. Disparately, most forwarding
tasks involve more complex manipulation and decision making than the ones we are using at the moment.
Second, one of our objectives was to demonstrate autonomous navigation in a clear-cut terrain. To achieve
this goal, our system uses DGNSS, which is available in Sweden, covering the whole nation. However, other
countries might not count with similar coverage, making the AORO platform currently restricted to areas
having access to DGNSS reception. In addition, a clear-cut terrain tends to have obstacles that are easy
to drive over without complex obstacle avoidance methods. However, higher complexity on terrains does
exist in many parts of Scandinavia and the world, and should be properly tackled with obstacle avoidance
algorithms. Third, the crane’s motion control currently relies on good log location and pose estimation, and
it is reliable as long as deviation errors are compensated by the size of the grapple. However, to increase
accuracy, the crane needs a dedicated camera which is currently not available. This would allow to further
advance towards more complex manipulation, such as unloading and grabbing multiple logs.

6.2 General discussion

Automating the work of machines represents a paradigm shift in forestry. Machines in the market are already
starting to exhibit automation features to facilitate the work for the operator. Upcoming developments are
promising to relieved some of the work from the machines’ operators hands. With the advancements in the
area of robotics and automation, it is clear that this trend will continue towards removing the necessity of
on-board operators. At that point, the human operator will remotely supervise the work, as it is currently
done in other industries. However, there is much to be done to build an infrastructure in forestry that
can meet the requirements for automation, before this vision in forestry can become a reality. In addition,
development of automation technology for forestry machine is recently starting to take place.

Although we are at the early stages of making the AORO platform a system that can autonomously perform
forwarding tasks, our current development demonstrates that we are reaching a point in which algorithms
currently existing in robotics are robust enough to handle real world applications. Our initial results demon-
strate the beginning of an unmanned machine with the ability of handling simplified work already, despite
being still an ideal testing scenario.

Some of the added benefits of our development include the ability to separate the key areas of our develop-
ments in computer vision, autonomous navigation, and autonomous crane motion control. Individually, they
are the essence for market products featuring semi-autonomous functions that can relief some work from
machine operators’ hands in the near future. However, we refrain from discussing such topic further, as this
has been explained in some of our former work.



In conclusion, this article has provided an initial view of results from the AORO platform aiming at perform-
ing fully autonomous forwarding tasks. Results show that our algorithms in the key areas of computer vision,
autonomous navigation, and crane motion control, meet our expected requirements in terms of accuracy and
reliability. Consequently, our activity manager software is able to combine these functions to successfully
perform idealized forwarding tasks in real world conditions. These results highlight the possibility that in
the future, further advancements will be able to tackle forwarding tasks with comparable performance to
human operators.
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