References
1. Lambrou AS, Shirk P, Steele MK, et al. Genomic surveillance for SARS-CoV-2 variants: predominance of the Delta (B.1.617.2) and Omicron (B.1.1.529) variants - United States, June 2021-January 2022. MMWR Morb Mortal Wkly Rep . 2022;71(6):206-211. doi:10.15585/mmwr.mm7106a4.
2. Harvey WT, Carabelli AM, Jackson B, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol . 2021;19(7):409-424. doi:10.1038/s41579-021-00573-0.
3. Pepin KM, Lass S, Pulliam JR, Read AF, Lloyd-Smith JO. Identifying genetic markers of adaptation for surveillance of viral host jumps.Nat Rev Microbiol . 2010;8(11):802-813. doi:10.1038/nrmicro2440.
4. WHO. Tracking SARS-CoV-2 variants. 2023. Accessed January 18, 2023 at https://www.who.int/activities/tracking-SARS-CoV-2-variants.
5. Li Q, Wu J, Nie J, et al. The impact of mutations in SARS-CoV-2 Spike on viral infectivity and antigenicity. Cell . 2020;182(5):1284-1294 e1289. doi:10.1016/j.cell.2020.07.012.
6. Dhama K, Nainu F, Frediansyah A, et al. Global emerging Omicron variant of SARS-CoV-2: Impacts, challenges and strategies. J Infect Public Health . 2023;16(1):4-14. doi:10.1016/j.jiph.2022.11.024.
7. Viana R, Moyo S, Amoako DG, et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature . 2022;603(7902):679-686. doi:10.1038/s41586-022-04411-y.
8. Cao Y, Jian F, Wang J, et al. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature . 2022. doi:10.1038/s41586-022-05644-7.
9. Cao Y, Yisimayi A, Jian F, et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature . 2022;608(7923):593-602. doi:10.1038/s41586-022-04980-y.
10. Wang Q, Iketani S, Li Z, et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell . 2022. doi:10.1016/j.cell.2022.12.018.
11. Uraki R, Ito M, Furusawa Y, et al. Humoral immune evasion of the omicron subvariants BQ.1.1 and XBB. Lancet Infect Dis . 2023;23(1):30-32. doi:10.1016/S1473-3099(22)00816-7.
12. Lacek KA, Rambo-Martin BL, Batra D, et al. SARS-CoV-2 Delta-Omicron recombinant viruses, United States. Emerg Infect Dis . 2022;28(7):1442-1445. doi:10.3201/eid2807.220526.
13. Peacock TP, Penrice-Randal R, Hiscox JA, Barclay WS. SARS-CoV-2 one year on: evidence for ongoing viral adaptation. J Gen Virol . 2021;102(4):00158. doi:10.1099/jgv.0.001584.
14. Wu A, Peng Y, Huang B, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe . 2020;27(3):325-328. doi:10.1016/j.chom.2020.02.001.
15. Peng Q, Peng R, Yuan B, et al. Structural and biochemical characterization of the nsp12-nsp7-nsp8 core polymerase complex from SARS-CoV-2. Cell Rep . 2020;31(11):107774. doi:10.1016/j.celrep.2020.107774.
16. Dwivedy A, Mariadasse R, Ahmad M, et al. Characterization of the NiRAN domain from RNA-dependent RNA polymerase provides insights into a potential therapeutic target against SARS-CoV-2. PLoS Comput Biol . 2021;17(9):e1009384. doi:10.1371/journal.pcbi.1009384.
17. Baloch Z, Ikram A, Hakim MS, Awan FM. The impact of mutations on the pathogenic and antigenic activity of SARS-CoV-2 during the first wave of the COVID-19 pandemic: a comprehensive immunoinformatics analysis.Vaccines (Basel) . 2021;9(12):1410. doi:10.3390/vaccines9121410.
18. Eskier D, Karakulah G, Suner A, Oktay Y. RdRp mutations are associated with SARS-CoV-2 genome evolution. PeerJ . 2020;8(e9587. doi:10.7717/peerj.9587.
19. Mari A, Roloff T, Stange M, et al. Global genomic analysis of SARS-CoV-2 RNA dependent RNA polymerase evolution and antiviral drug resistance. Microorganisms . 2021;9(5):1094. doi:10.3390/microorganisms9051094.
20. Kochan N, Eskier D, Suner A, Karakulah G, Oktay Y. Different selection dynamics of S and RdRp between SARS-CoV-2 genomes with and without the dominant mutations. Infect Genet Evol . 2021;91(104796. doi:10.1016/j.meegid.2021.104796.
21. Snijder EJ, Decroly E, Ziebuhr J. The nonstructural proteins directing coronavirus RNA synthesis and processing. Adv Virus Res . 2016;96(59-126. doi:10.1016/bs.aivir.2016.08.008.
22. Moustaqil M, Ollivier E, Chiu HP, et al. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species.Emerg Microbes Infect . 2021;10(1):178-195. doi:10.1080/22221751.2020.1870414.
23. Cheng L, Zhang X, Chen Y, et al. Dynamic landscape mapping of humoral immunity to SARS-CoV-2 identifies non-structural protein antibodies associated with the survival of critical COVID-19 patients.Signal Transduct Target Ther . 2021;6(1):304. doi:10.1038/s41392-021-00718-w.
24. Lv Z, Cano KE, Jia L, Drag M, Huang TT, Olsen SK. Targeting SARS-CoV-2 proteases for COVID-19 antiviral development. Front Chem . 2021;9:819165. doi:10.3389/fchem.2021.819165.
25. Flynn JM, Samant N, Schneider-Nachum G, et al. Comprehensive fitness landscape of SARS-CoV-2 M(pro) reveals insights into viral resistance mechanisms. Elife . 2022;11(e77433. doi:10.7554/eLife.77433.
26. Iketani S, Hong SJ, Sheng J, et al. Functional map of SARS-CoV-2 3CL protease reveals tolerant and immutable sites. Cell Host Microbe . 2022;30(10):1354-1362.e1356. doi:10.1016/j.chom.2022.08.003.
27. Owen DR, Allerton CMN, Anderson AS, et al. An oral SARS-CoV-2 M(pro) inhibitor clinical candidate for the treatment of COVID-19.Science . 2021;374(6575):1586-1593. doi:10.1126/science.abl4784.
28. Arbel R, Wolff Sagy Y, Hoshen M, et al. Nirmatrelvir use and severe Covid-19 outcomes during the Omicron surge. N Engl J Med . 2022;387(9):790-798. doi:10.1056/NEJMoa2204919.
29. Yuan F, Wang L, Fang Y, Wang L. Global SNP analysis of 11,183 SARS-CoV-2 strains reveals high genetic diversity. Transbound Emerg Dis . 2021;68(6):3288-3304. doi:10.1111/tbed.13931.
30. Gunadi, Wibawa H, Hakim MS, et al. Molecular epidemiology of SARS-CoV-2 isolated from COVID-19 family clusters. BMC Med Genomics . 2021;14(1):144. doi:10.1186/s12920-021-00990-3.
31. Gunadi, Wibawa H, Marcellus, et al. Full-length genome characterization and phylogenetic analysis of SARS-CoV-2 virus strains from Yogyakarta and Central Java, Indonesia. PeerJ . 2020;8(e10575. doi:10.7717/peerj.10575.
32. Gunadi, Hakim MS, Wibawa H, et al. Is the infection of the SARS-CoV-2 Delta variant associated with the outcomes of COVID-19 patients? Front Med (Lausanne) . 2021;8(780611. doi:10.3389/fmed.2021.780611.
33. Gunadi, Hakim MS, Wibawa H, et al. Association between prognostic factors and the outcomes of patients infected with SARS-CoV-2 harboring multiple spike protein mutations. Sci Rep . 2021;11(1):21352. doi:10.1038/s41598-021-00459-4.
34. Ulfah M, Helianti I. Bioinformatic analysis of the whole genome sequences of SARS-CoV-2 from Indonesia. Iran J Microbiol . 2021;13(2):145-155. doi:10.18502/ijm.v13i2.5973.
35. Fibriani A, Stephanie R, Alfiantie AA, et al. Analysis of SARS-CoV-2 genomes from West Java, Indonesia. Viruses . 2021;13(10):2097. doi:10.3390/v13102097.
36. Gunadi, Hakim MS, Wibawa H, et al. Comparative analysis of the outcomes of COVID-19 between patients infected with SARS-CoV-2 Omicron and Delta variants: a retrospective cohort study. medRxiv . 2022:2022.2004.2030.22274532. doi:10.1101/2022.04.30.22274532.
37. Prasetyoputri A, Dharmayanthi AB, Iryanto SB, et al. The dynamics of circulating SARS-CoV-2 lineages in Bogor and surrounding areas reflect variant shifting during the first and second waves of COVID-19 in Indonesia. PeerJ . 2022;10(e13132. doi:10.7717/peerj.13132.
38. Massi MN, Abidin RS, Farouk AE, et al. Full-genome sequencing and mutation analysis of SARS-CoV-2 isolated from Makassar, South Sulawesi, Indonesia. PeerJ . 2022;10(e13522. doi:10.7717/peerj.13522.
39. Massi MN, Sjahril R, Halik H, et al. Sequence analysis of SARS-CoV-2 Delta variant isolated from Makassar, South Sulawesi, Indonesia.Heliyon . 2023;9(2):e13382. doi:10.1016/j.heliyon.2023.e13382.
40. Rantam FA, Prakoeswa CRS, Tinduh D, et al. Characterization of SARS-CoV-2 East Java isolate, Indonesia. F1000Res . 2021;10(480. doi:10.12688/f1000research.53137.1.
41. Edler D, Klein J, Antonelli A, Silvestro D. raxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. .Methods Ecol Evol 2021;12(373-377. doi:10.1111/2041-210X.13512.
42. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol . 2021;38(7):3022-3027. doi:10.1093/molbev/msab120.
43. Rodrigues CH, Pires DE, Ascher DB. DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability.Nucleic Acids Res . 2018;46(W1):W350-W355. doi:10.1093/nar/gky300.
44. Alouane T, Laamarti M, Essabbar A, et al. Genomic diversity and hotspot mutations in 30,983 SARS-CoV-2 genomes: Moving toward a universal vaccine for the ”confined virus”? Pathogens . 2020;9(10):829. doi:10.3390/pathogens9100829.
45. Chen B, Zhao Y, Jin Z, He D, Li H. Twice evasions of Omicron variants explain the temporal patterns in six Asian and Oceanic countries. BMC Infect Dis . 2023;23(1):25. doi:10.1186/s12879-023-07984-9.
46. Ou J, Lan W, Wu X, et al. Tracking SARS-CoV-2 Omicron diverse spike gene mutations identifies multiple inter-variant recombination events.Signal Transduct Target Ther . 2022;7(1):138. doi:10.1038/s41392-022-00992-2.
47. Yerukala Sathipati S, Shukla SK, Ho SY. Tracking the amino acid changes of spike proteins across diverse host species of severe acute respiratory syndrome coronavirus 2. iScience . 2022;25(1):103560. doi:10.1016/j.isci.2021.103560.
48. Korber B, Fischer WM, Gnanakaran S, et al. Tracking changes in SARS-CoV-2 Spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell . 2020;182(4):812-827 e819. doi:10.1016/j.cell.2020.06.043.
49. Mondeali M, Etemadi A, Barkhordari K, et al. The role of S477N mutation in the molecular behavior of SARS-CoV-2 spike protein: An in-silico perspective. J Cell Biochem . 2023. doi:10.1002/jcb.30367.
50. Anwar MZ, Lodhi MS, Khan MT, Khan MI, Sharif S. Coronavirus genomes and unique mutations in structural and non-structural proteins in Pakistani SARS-CoV-2 Delta variants during the fourth wave of the pandemic. Genes (Basel) . 2022;13(3):552. doi:10.3390/genes13030552.
51. Showers WM, Leach SM, Kechris K, Strong M. Longitudinal analysis of SARS-CoV-2 spike and RNA-dependent RNA polymerase protein sequences reveals the emergence and geographic distribution of diverse mutations.Infect Genet Evol . 2022;97(105153. doi:10.1016/j.meegid.2021.105153.
52. Biswas SK, Mudi SR. Spike protein D614G and RdRp P323L: the SARS-CoV-2 mutations associated with severity of COVID-19.Genomics Inform . 2020;18(4):e44. doi:10.5808/GI.2020.18.4.e44.
53. Mohammad A, Al-Mulla F, Wei DQ, Abubaker J. Remdesivir MD simulations suggest a more favourable binding to SARS-CoV-2 RNA dependent RNA polymerase mutant P323L than wild-type.Biomolecules . 2021;11(7):919. doi:10.3390/biom11070919.
54. Ilmjarv S, Abdul F, Acosta-Gutierrez S, et al. Concurrent mutations in RNA-dependent RNA polymerase and spike protein emerged as the epidemiologically most successful SARS-CoV-2 variant. Sci Rep . 2021;11(1):13705. doi:10.1038/s41598-021-91662-w.
55. Ullrich S, Ekanayake KB, Otting G, Nitsche C. Main protease mutants of SARS-CoV-2 variants remain susceptible to nirmatrelvir. Bioorg Med Chem Lett . 2022;62(128629. doi:10.1016/j.bmcl.2022.128629.
56. Heilmann E, Costacurta F, Moghadasi SA, et al. SARS-CoV-2 3CL(pro) mutations selected in a VSV-based system confer resistance to nirmatrelvir, ensitrelvir, and GC376. Sci Transl Med . 2022:eabq7360. doi:10.1126/scitranslmed.abq7360.
57. Abe K, Kabe Y, Uchiyama S, et al. Pro108Ser mutation of SARS-CoV-2 3CL(pro) reduces the enzyme activity and ameliorates the clinical severity of COVID-19. Sci Rep . 2022;12(1):1299. doi:10.1038/s41598-022-05424-3.
58. Tan J, Wu Z, Hu P, Gan L, Wang Y, Zhang D. Association between mutations in papain-like protease (PLpro) of SARS-CoV-2 with COVID-19 clinical outcomes. Pathogens . 2022;11(9):1008. doi:10.3390/pathogens11091008.
59. Duchene S, Featherstone L, Haritopoulou-Sinanidou M, Rambaut A, Lemey P, Baele G. Temporal signal and the phylodynamic threshold of SARS-CoV-2. Virus Evol . 2020;6(2):veaa061. doi:10.1093/ve/veaa061.
60. Tay JH, Porter AF, Wirth W, Duchene S. The emergence of SARS-CoV-2 variants of concern is driven by acceleration of the substitution rate.Mol Biol Evol . 2022;39(2):msac013. doi:10.1093/molbev/msac013.
61. Benazi N, Bounab S. Comparison of the evolutionary phylodynamic of Delta and Omicron variants of SARS-CoV-2. Research Square . 2022. doi:10.21203/rs.3.rs-1926171/v1.