References

1. Rahman MM, Masum MHU, Wajed S, Talukder A. A comprehensive review on COVID-19 vaccines: development, effectiveness, adverse effects, distribution and challenges. Virusdisease (2022) 33(1):1–22. Epub 2022/02/08. doi: 10.1007/s13337-022-00755-1.
2. Hale T, Angrist N, Goldszmidt R, Kira B, Petherick A, Phillips T, et al. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat Hum Behav (2021) 5(4):529–38. Epub 2021/03/10. doi: 10.1038/s41562-021-01079-8.
3. Hale T, Petherick A, Anania J, Andretti B, Noam Angrist, Roy Barnes, et al. Variation in Government Responses to COVID-19. Version 14.1. Blavatnik School of Government Working Paper. 27 July 2022. www.bsg.ox.ac.uk/covidtracker (2022) [Accessed June 13, 2023].
4. Qi H, Liu B, Wang X, Zhang L. The humoral response and antibodies against SARS-CoV-2 infection. Nature Immunology (2022) 23(7):1008–20. doi: 10.1038/s41590-022-01248-5.
5. Liu M, Gan H, Liang Z, Liu L, Liu Q, Mai Y, et al. Review of therapeutic mechanisms and applications based on SARS-CoV-2 neutralizing antibodies. Front Microbiol (2023) 14:1122868. Epub 2023/04/04. doi: 10.3389/fmicb.2023.1122868.
6. Moss P. The T cell immune response against SARS-CoV-2. Nature Immunology (2022) 23(2):186–93. doi: 10.1038/s41590-021-01122-w.
7. Carabelli AM, Peacock TP, Thorne LG, Harvey WT, Hughes J, Peacock SJ, et al. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol (2023) 21(3):162–77. Epub 2023/01/19. doi: 10.1038/s41579-022-00841-7.
8. World Health Organization. Updated working definitions and primary actions for SARS-CoV-2 variants. https://www.who.int/publications/m/item/updated-working-definitions-and-primary-actions-for--sars-cov-2-variants (2023) [Accessed April 13, 2023].
9. Viana R, Moyo S, Amoako DG, Tegally H, Scheepers C, Althaus CL, et al. Rapid epidemic expansion of the SARS-CoV-2 omicron variant in southern Africa. Nature (2022) 603(7902):679–86. Epub 2022/01/19. doi: 10.1038/s41586-022-04411-y.
10. World Health Organization. One year since the emergence of COVID-19 virus variant Omicron. https://www.who.int/news-room/feature-stories/detail/one-year-since-the-emergence-of-omicron#:~:text=It%20was%2026%20November%202021,of%20the%20COVID%2D19%20pandemic. (2022) [Accessed April 17, 2023].
11. Plotkin SA, Gilbert PB. Nomenclature for immune correlates of protection after vaccination. Clin Infect Dis (2012) 54(11):1615–7. doi: 10.1093/cid/cis238.
12. Plotkin SA. Correlates of protection induced by vaccination.Clin Vaccine Immunol (2010) 17(7):1055–65. doi: 10.1128/CVI.00131-10.
13. Gilbert PB, Qin L, Self SG. Evaluating a surrogate endpoint at three levels, with application to vaccine development. Stat Med (2008) 27(23):4758–78. Epub 2007/11/06. doi: 10.1002/sim.3122.
14. Gilbert PB, Montefiori DC, McDermott AB, Fong Y, Benkeser D, Deng W, et al. Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science (2022) 375(6576):43–50. Epub 2021/11/24. doi: 10.1126/science.abm3425.
15. Fong Y, McDermott AB, Benkeser D, Roels S, Stieh DJ, Vandebosch A, et al. Immune correlates analysis of the ENSEMBLE single Ad26.COV2.S dose vaccine efficacy clinical trial. Nat Microbiol (2022) 7(12):1996–2010. Epub 2022/11/11. doi: 10.1038/s41564-022-01262-1.
16. Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM, Owens DR, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet(2021) 396(10267):1979–93. Epub 2020/11/23. doi: 10.1016/s0140-6736(20)32466-1.
17. Feng S, Phillips DJ, White T, Sayal H, Aley PK, Bibi S, et al. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. Nat Med (2021) 27(11):2032–40. Epub 2021/10/01. doi: 10.1038/s41591-021-01540-1.
18. Li G, Cappuccini F, Marchevsky NG, Aley PK, Aley R, Anslow R, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine in children aged 6-17 years: a preliminary report of COV006, a phase 2 single-blind, randomised, controlled trial. Lancet (2022) 399(10342):2212–25. Epub 2022/06/13. doi: 10.1016/s0140-6736(22)00770-x.
19. Cristiano A, Nuccetelli M, Pieri M, Sarubbi S, Pelagalli M, Calugi G, et al. Serological anti-SARS-CoV-2 neutralizing antibodies association to live virus neutralizing test titers in COVID-19 paucisymptomatic/symptomatic patients and vaccinated subjects. Int Immunopharmacol (2021) 101(Pt B):108215. Epub 2021/10/15. doi: 10.1016/j.intimp.2021.108215.
20. Nilles EJ, Paulino CT, de St Aubin M, Duke W, Jarolim P, Sanchez IM, et al. Tracking immune correlates of protection for emerging SARS-CoV-2 variants. Lancet Infect Dis (2023) 23(2):153–4. Epub 2023/01/15. doi: 10.1016/s1473-3099(23)00001-4.
21. Cromer D, Steain M, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et al. Neutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: a meta-analysis.Lancet Microbe (2022) 3(1):e52–e61. Epub 2021/11/23. doi: 10.1016/s2666-5247(21)00267-6.
22. Jones TC, Biele G, Mühlemann B, Veith T, Schneider J, Beheim-Schwarzbach J, et al. Estimating infectiousness throughout SARS-CoV-2 infection course. Science (2021) 373(6551). Epub 2021/05/27. doi: 10.1126/science.abi5273.
23. Zhou J, Singanayagam A, Goonawardane N, Moshe M, Sweeney FP, Sukhova K, et al. Viral emissions into the air and environment after SARS-CoV-2 human challenge: a phase 1, open label, first-in-human study.Lancet Microbe (2023). Epub 2023/06/13. doi: 10.1016/s2666-5247(23)00101-5.
24. Kale D, Herbec A, Beard E, Gold N, Shahab L. Patterns and predictors of adherence to health-protective measures during COVID-19 pandemic in the UK: cross-sectional and longitudinal findings from the HEBECO study.BMC Public Health (2022) 22(1):2347. Epub 2022/12/15. doi: 10.1186/s12889-022-14509-7.
25. Hutchins HJ, Wolff B, Leeb R, Ko JY, Odom E, Willey J, et al. COVID-19 mitigation behaviors by age group - United States, April-June 2020. MMWR Morb Mortal Wkly Rep (2020) 69(43):1584–90. Epub 2020/10/30. doi: 10.15585/mmwr.mm6943e4.
26. Jamrozik E, Selgelid MJ. COVID-19 human challenge studies: ethical issues. Lancet Infect Dis (2020) 20(8):e198–e203. Epub 2020/06/02. doi: 10.1016/s1473-3099(20)30438-2.
27. Killingley B, Mann AJ, Kalinova M, Boyers A, Goonawardane N, Zhou J, et al. Safety, tolerability and viral kinetics during SARS-CoV-2 human challenge in young adults. Nat Med (2022) 28(5):1031–41. Epub 2022/04/02. doi: 10.1038/s41591-022-01780-9.
28. Khosroshahi HT, Mardomi A. The initial infectious dose of SARS-CoV-2 and the severity of the disease: possible impact on the incubation period. Future Virol (2021). doi: 10.2217/fvl-2020-0330.
29. Van Damme W, Dahake R, van de Pas R, Vanham G, Assefa Y. COVID-19: does the infectious inoculum dose-response relationship contribute to understanding heterogeneity in disease severity and transmission dynamics? Med Hypotheses (2021) 146:110431. Epub 2020/12/09. doi: 10.1016/j.mehy.2020.110431.
30. Spinelli MA, Glidden DV, Gennatas ED, Bielecki M, Beyrer C, Rutherford G, et al. Importance of non-pharmaceutical interventions in lowering the viral inoculum to reduce susceptibility to infection by SARS-CoV-2 and potentially disease severity. Lancet Infect Dis(2021) 21(9):e296–e301. Epub 2021/02/26. doi: 10.1016/s1473-3099(20)30982-8.
31. Zsichla L, Müller V. Risk factors of severe COVID-19: a review of host, viral and environmental factors. Viruses (2023) 15(1):175. Epub 2023/01/22. doi: 10.3390/v15010175.
32. Markov PV, Ghafari M, Beer M, Lythgoe K, Simmonds P, Stilianakis NI, et al. The evolution of SARS-CoV-2. Nat Rev Microbiol (2023) 21(6):361–79. Epub 2023/04/06. doi: 10.1038/s41579-023-00878-2.
33. Klasse PJ, Moore JP. Antibodies to SARS-CoV-2 and their potential for therapeutic passive immunization. Elife (2020) 9. Epub 2020/06/24. doi: 10.7554/eLife.57877.
34. Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, et al. SARS-CoV-2 variants, spike mutations and immune escape.Nat Rev Microbiol (2021) 19(7):409–24. Epub 2021/06/03. doi: 10.1038/s41579-021-00573-0.
35. Souza PFN, Mesquita FP, Amaral JL, Landim PGC, Lima KRP, Costa MB, et al. The spike glycoprotein of SARS-CoV-2: a review of how mutations of spike glycoproteins have driven the emergence of variants with high transmissibility and immune escape. Int J Biol Macromol (2022) 208:105–25. Epub 2022/03/19. doi: 10.1016/j.ijbiomac.2022.03.058.
36. Liu C, Ginn HM, Dejnirattisai W, Supasa P, Wang B, Tuekprakhon A, et al. Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell (2021) 184(16):4220–36.e13. Epub 2021/07/10. doi: 10.1016/j.cell.2021.06.020.
37. Migueres M, Dimeglio C, Trémeaux P, Abravanel F, Raymond S, Lhomme S, et al. Influence of immune escape and nasopharyngeal virus load on the spread of SARS-CoV-2 Omicron variant. J Infect (2022) 84(4):e7–e9. Epub 2022/02/11. doi: 10.1016/j.jinf.2022.01.036.
38. Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature(2021) 593(7857):130–5. Epub 2021/03/09. doi: 10.1038/s41586-021-03398-2.
39. Kow CS, Ramachandram DS, Hasan SS. Risk of severe illness in patients infected with SARS-CoV-2 of Delta variant: a systematic review and meta-analysis. Infect Dis (Lond) (2022) 54(8):614–7. Epub 2022/04/08. doi: 10.1080/23744235.2022.2055787.
40. Kow CS, Ramachandram DS, Hasan SS. The risk of mortality and severe illness in patients infected with the omicron variant relative to delta variant of SARS-CoV-2: a systematic review and meta-analysis. Ir J Med Sci (2023):1–8. Epub 2023/02/09. doi: 10.1007/s11845-022-03266-6.
41. Ciabattini A, Nardini C, Santoro F, Garagnani P, Franceschi C, Medaglini D. Vaccination in the elderly: the challenge of immune changes with aging. Semin Immunol (2018) 40:83–94. Epub 2018/12/07. doi: 10.1016/j.smim.2018.10.010.
42. Nian Y, Minami K, Maenesono R, Iske J, Yang J, Azuma H, et al. Changes of T-cell immunity over a lifetime. Transplantation(2019) 103(11):2227–33. Epub 2019/05/21. doi: 10.1097/tp.0000000000002786.
43. COVID-19 Forecasting Team. Variation in the COVID-19 infection–fatality ratio by age, time, and geography during the pre-vaccine era: a systematic analysis. Lancet (2022) 399(10334):1469–88. doi: 10.1016/S0140-6736(21)02867-1.
44. Collier DA, Ferreira I, Kotagiri P, Datir RP, Lim EY, Touizer E, et al. Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature (2021) 596(7872):417–22. Epub 2021/07/01. doi: 10.1038/s41586-021-03739-1.
45. Bichara CDA, Queiroz MAF, da Silva Graça Amoras E, Vaz GL, Vallinoto I, Bichara CNC, et al. Assessment of anti-SARS-CoV-2 antibodies post-Coronavac vaccination in the Amazon region of Brazil.Vaccines (2021) 9(10):1169. Epub 2021/10/27. doi: 10.3390/vaccines9101169.
46. Walsh EE, Frenck RW, Jr., Falsey AR, Kitchin N, Absalon J, Gurtman A, et al. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. N Engl J Med (2020) 383(25):2439–50. Epub 2020/10/15. doi: 10.1056/NEJMoa2027906.
47. Allotey J, Stallings E, Bonet M, Yap M, Chatterjee S, Kew T, et al. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: living systematic review and meta-analysis. BMJ (2020) 370:m3320. Epub 2020/09/03. doi: 10.1136/bmj.m3320.
48. Li J, Ayada I, Wang Y, den Hoed CM, Kamar N, Peppelenbosch MP, et al. Factors associated with COVID-19 vaccine response in transplant recipients: a systematic review and meta-analysis.Transplantation (2022) 106(10):2068–75. Epub 2022/06/29. doi: 10.1097/tp.0000000000004256.
49. Wankhede D, Grover S, Hofman P. Determinants of humoral immune response to SARS-CoV-2 vaccines in solid cancer patients: a systematic review and meta-analysis. Vaccine (2023). Epub 2023/02/16. doi: 10.1016/j.vaccine.2023.01.072.
50. Liu Y, Xiao Y, Wu S, Marley G, Ming F, Wang X, et al. People living with HIV easily lose their immune response to SARS-CoV-2: result from a cohort of COVID-19 cases in Wuhan, China. BMC Infect Dis (2021) 21(1):1029. Epub 2021/10/03. doi: 10.1186/s12879-021-06723-2.
51. Shen C, Risk M, Schiopu E, Hayek SS, Xie T, Holevinski L, et al. Efficacy of COVID-19 vaccines in patients taking immunosuppressants.Ann Rheum Dis (2022) 81(6):875–80. Epub 2022/02/25. doi: 10.1136/annrheumdis-2021-222045.
52. Kompaniyets L, Pennington AF, Goodman AB, Rosenblum HG, Belay B, Ko JY, et al. Underlying medical conditions and severe Illness among 540,667 adults hospitalized with COVID-19, March 2020-March 2021.Prev Chronic Dis (2021) 18:E66. Epub 2021/07/02. doi: 10.5888/pcd18.210123.
53. Yadav T, Kumar S, Mishra G, Saxena SK. Tracking the COVID-19 vaccines: the global landscape. Hum Vaccin Immunother (2023) 19(1):2191577. Epub 2023/03/31. doi: 10.1080/21645515.2023.2191577.
54. Lim SY, Kim JY, Jung J, Yun SC, Kim SH. Waning of humoral immunity depending on the types of COVID-19 vaccine. Infect Dis (Lond)(2023) 55(3):216–20. Epub 2023/01/11. doi: 10.1080/23744235.2023.2165707.
55. Earle KA, Ambrosino DM, Fiore-Gartland A, Goldblatt D, Gilbert PB, Siber GR, et al. Evidence for antibody as a protective correlate for COVID-19 vaccines. Vaccine (2021) 39(32):4423–8. Epub 2021/07/03. doi: 10.1016/j.vaccine.2021.05.063.
56. Nham E, Ko JH, Song KH, Choi JY, Kim ES, Kim HJ, et al. Kinetics of vaccine-induced neutralizing antibody titers and estimated protective immunity against wild-type SARS-CoV-2 and the Delta variant: a prospective nationwide cohort study comparing three COVID-19 vaccination protocols in South Korea. Front Immunol (2022) 13:968105. Epub 2022/10/11. doi: 10.3389/fimmu.2022.968105.
57. Lafon E, Jäger M, Bauer A, Reindl M, Bellmann-Weiler R, Wilflingseder D, et al. Comparative analyses of IgG/IgA neutralizing effects induced by three COVID-19 vaccines against variants of concern.J Allergy Clin Immunol (2022) 149(4):1242–52.e12. Epub 2022/01/31. doi: 10.1016/j.jaci.2022.01.013.
58. Greaney AJ, Loes AN, Gentles LE, Crawford KHD, Starr TN, Malone KD, et al. Antibodies elicited by mRNA-1273 vaccination bind more broadly to the receptor binding domain than do those from SARS-CoV-2 infection.Sci Transl Med (2021) 13(600). Epub 2021/06/10. doi: 10.1126/scitranslmed.abi9915.
59. Meyers J, Windau A, Schmotzer C, Saade E, Noguez J, Stempak L, et al. SARS-CoV-2 antibody profile of naturally infected and vaccinated individuals detected using qualitative, semi-quantitative and multiplex immunoassays. Diagn Microbiol Infect Dis (2022) 104(4):115803. Epub 2022/09/27. doi: 10.1016/j.diagmicrobio.2022.115803.
60. Townsend JP, Hassler HB, Sah P, Galvani AP, Dornburg A. The durability of natural infection and vaccine-induced immunity against future infection by SARS-CoV-2. Proc Natl Acad Sci U S A (2022) 119(31):e2204336119. Epub 2022/07/21. doi: 10.1073/pnas.2204336119.
61. Yu Y, Esposito D, Kang Z, Lu J, Remaley AT, De Giorgi V, et al. mRNA vaccine-induced antibodies more effective than natural immunity in neutralizing SARS-CoV-2 and its high affinity variants. Sci Rep(2022) 12(1):2628. Epub 2022/02/18. doi: 10.1038/s41598-022-06629-2.
62. Vietri MT, D’Elia G, Caliendo G, Passariello L, Albanese L, Molinari AM, et al. Antibody levels after BNT162b2 vaccine booster and SARS-CoV-2 Omicron infection. Vaccine (2022) 40(39):5726–31. Epub 2022/08/31. doi: 10.1016/j.vaccine.2022.08.045.
63. Munro APS, Janani L, Cornelius V, Aley PK, Babbage G, Baxter D, et al. Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial. Lancet (2021) 398(10318):2258–76. Epub 2021/12/06. doi: 10.1016/s0140-6736(21)02717-3.
64. Andrews N, Tessier E, Stowe J, Gower C, Kirsebom F, Simmons R, et al. Duration of protection against mild and severe disease by Covid-19 vaccines. N Engl J Med (2022) 386(4):340–50. Epub 2022/01/13. doi: 10.1056/NEJMoa2115481.
65. Cerqueira-Silva T, Andrews JR, Boaventura VS, Ranzani OT, de Araújo Oliveira V, Paixão ES, et al. Effectiveness of CoronaVac, ChAdOx1 nCoV-19, BNT162b2, and Ad26.COV2.S among individuals with previous SARS-CoV-2 infection in Brazil: a test-negative, case-control study.Lancet Infect Dis (2022) 22(6):791–801. Epub 2022/04/04. doi: 10.1016/s1473-3099(22)00140-2.
66. Zhao M, Slotkin R, Sheth AH, Pischel L, Kyriakides TC, Emu B, et al. Serum neutralizing antibody titers 12 months after coronavirus disease 2019 messenger RNA vaccination: correlation to clinical variables in an adult, US population. Clin Infect Dis (2023) 76(3):e391–e9. Epub 2022/06/01. doi: 10.1093/cid/ciac416.
67. Lau EHY, Tsang OTY, Hui DSC, Kwan MYW, Chan WH, Chiu SS, et al. Neutralizing antibody titres in SARS-CoV-2 infections. Nat Commun(2021) 12(1):63. Epub 2021/01/06. doi: 10.1038/s41467-020-20247-4.
68. Vanshylla K, Di Cristanziano V, Kleipass F, Dewald F, Schommers P, Gieselmann L, et al. Kinetics and correlates of the neutralizing antibody response to SARS-CoV-2 infection in humans. Cell Host Microbe (2021) 29(6):917–29.e4. Epub 2021/05/14. doi: 10.1016/j.chom.2021.04.015.
69. Chen X, Pan Z, Yue S, Yu F, Zhang J, Yang Y, et al. Disease severity dictates SARS-CoV-2-specific neutralizing antibody responses in COVID-19. Signal Transduct Target Ther (2020) 5(1):180. Epub 2020/09/04. doi: 10.1038/s41392-020-00301-9.
70. Maciola AK, La Raja M, Pacenti M, Salata C, De Silvestro G, Rosato A, et al. Neutralizing antibody responses to SARS-CoV-2 in recovered COVID-19 patients are variable and correlate with disease severity and receptor-binding domain recognition. Front Immunol (2022) 13:830710. Epub 2022/02/18. doi: 10.3389/fimmu.2022.830710.
71. Hansen CB, Jarlhelt I, Pérez-Alós L, Hummelshøj Landsy L, Loftager M, Rosbjerg A, et al. SARS-CoV-2 antibody responses are correlated to disease severity in COVID-19 convalescent individuals. J Immunol(2021) 206(1):109–17. Epub 2020/11/20. doi: 10.4049/jimmunol.2000898.
72. Wang P, Liu L, Nair MS, Yin MT, Luo Y, Wang Q, et al. SARS-CoV-2 neutralizing antibody responses are more robust in patients with severe disease. Emerg Microbes Infect (2020) 9(1):2091–3. Epub 2020/09/16. doi: 10.1080/22221751.2020.1823890.
73. Chia WN, Zhu F, Ong SWX, Young BE, Fong SW, Le Bert N, et al. Dynamics of SARS-CoV-2 neutralising antibody responses and duration of immunity: a longitudinal study. Lancet Microbe (2021) 2(6):e240–e9. Epub 2021/03/30. doi: 10.1016/s2666-5247(21)00025-2.
74. U.S Food and Drug Administration. EUA for convalescent plasma. https://www.fda.gov/media/141477/download (2021) [Accessed June 23, 2023].
75. U.S Food and Drug Administration. EUA for casirivimab and imdevimab. https://www.fda.gov/media/143891/download (2020) [Accessed June 23, 2023].
76. Gilboa M, Gonen T, Barda N, Cohn S, Indenbaum V, Weiss-Ottolenghi Y, et al. Factors associated with protection from SARS-CoV-2 omicron variant infection and disease among vaccinated health care workers in Israel. JAMA Netw Open (2023) 6(5):e2314757. Epub 2023/05/23. doi: 10.1001/jamanetworkopen.2023.14757.
77. Vikström L, Fjällström P, Gwon YD, Sheward DJ, Wigren-Byström J, Evander M, et al. Vaccine-induced correlate of protection against fatal COVID-19 in older and frail adults during waves of neutralization-resistant variants of concern: an observational study.Lancet Reg Health Eur (2023) 30:100646. Epub 2023/06/26. doi: 10.1016/j.lanepe.2023.100646.
78. Dimeglio C, Herin F, Martin-Blondel G, Miedougé M, Izopet J. Antibody titers and protection against a SARS-CoV-2 infection. J Infect (2022) 84(2):248–88. Epub 2021/09/25. doi: 10.1016/j.jinf.2021.09.013.
79. Bergwerk M, Gonen T, Lustig Y, Amit S, Lipsitch M, Cohen C, et al. Covid-19 breakthrough infections in vaccinated health care workers.N Engl J Med (2021) 385(16):1474–84. Epub 2021/07/29. doi: 10.1056/NEJMoa2109072.
80. Lumley SF, O’Donnell D, Stoesser NE, Matthews PC, Howarth A, Hatch SB, et al. Antibody status and incidence of SARS-CoV-2 infection in health care workers. N Engl J Med (2021) 384(6):533–40. Epub 2020/12/29. doi: 10.1056/NEJMoa2034545.
81. Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med (2021) 27(7):1205–11. Epub 2021/05/19. doi: 10.1038/s41591-021-01377-8.
82. Gillot C, Bayart JL, Closset M, Cabo J, Maloteau V, Dogné JM, et al. Peri-infection titers of neutralizing and binding antibodies as a predictor of COVID-19 breakthrough infections in vaccinated healthcare professionals: importance of the timing. Clin Chem Lab Med (2023) 61(9):1670–5. Epub 2023/04/01. doi: 10.1515/cclm-2023-0134.
83. Dispinseri S, Secchi M, Pirillo MF, Tolazzi M, Borghi M, Brigatti C, et al. Neutralizing antibody responses to SARS-CoV-2 in symptomatic COVID-19 is persistent and critical for survival. Nat Commun(2021) 12(1):2670. Epub 2021/05/13. doi: 10.1038/s41467-021-22958-8.
84. Dimeglio C, Herin F, Da-Silva I, Gernigon C, Porcheron M, Chapuy-Regaud S, et al. Decreased efficiency of neutralizing antibodies from previously infected or vaccinated individuals against the B.1.617.2 (delta) SARS-CoV-2 variant. Microbiol Spectr (2022) 10(4):e0270621. Epub 2022/07/23. doi: 10.1128/spectrum.02706-21.
85. Kim PS, Dimcheff DE, Siler A, Schildhouse RJ, Chensue SW. Effect of monoclonal antibody therapy on the endogenous SARS-CoV-2 antibody response. Clin Immunol (2022) 236:108959. Epub 2022/02/27. doi: 10.1016/j.clim.2022.108959.
86. Epling BP, Rocco JM, Boswell KL, Laidlaw E, Galindo F, Kellogg A, et al. Clinical, virologic, and immunologic evaluation of symptomatic coronavirus disease 2019 rebound following nirmatrelvir/ritonavir treatment. Clin Infect Dis (2023) 76(4):573–81. Epub 2022/10/07. doi: 10.1093/cid/ciac663.
87. Shelton JF, Shastri AJ, Ye C, Weldon CH, Filshtein-Sonmez T, Coker D, et al. Trans-ancestry analysis reveals genetic and nongenetic associations with COVID-19 susceptibility and severity. Nat Genet(2021) 53(6):801–8. Epub 2021/04/24. doi: 10.1038/s41588-021-00854-7.
88. Pairo-Castineira E, Clohisey S, Klaric L, Bretherick AD, Rawlik K, Pasko D, et al. Genetic mechanisms of critical illness in COVID-19.Nature (2021) 591(7848):92–8. Epub 2020/12/12. doi: 10.1038/s41586-020-03065-y.
89. Matuozzo D, Talouarn E, Marchal A, Zhang P, Manry J, Seeleuthner Y, et al. Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19. Genome Med(2023) 15(1):22. Epub 2023/04/06. doi: 10.1186/s13073-023-01173-8.
90. Kousathanas A, Pairo-Castineira E, Rawlik K, Stuckey A, Odhams CA, Walker S, et al. Whole-genome sequencing reveals host factors underlying critical COVID-19. Nature (2022) 607(7917):97–103. Epub 2022/03/08. doi: 10.1038/s41586-022-04576-6.
91. COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19. Nature (2021) 600(7889):472–7. Epub 2021/07/08. doi: 10.1038/s41586-021-03767-x.
92. Azak E, Karadenizli A, Uzuner H, Karakaya N, Canturk NZ, Hulagu S. Comparison of an inactivated Covid19 vaccine-induced antibody response with concurrent natural Covid19 infection. Int J Infect Dis(2021) 113:58–64. Epub 2021/10/02. doi: 10.1016/j.ijid.2021.09.060.
93. Secchi M, Bazzigaluppi E, Brigatti C, Marzinotto I, Tresoldi C, Rovere-Querini P, et al. COVID-19 survival associates with the immunoglobulin response to the SARS-CoV-2 spike receptor binding domain.J Clin Invest (2020) 130(12):6366–78. Epub 2020/09/30. doi: 10.1172/jci142804.
94. Arkhipova-Jenkins I, Helfand M, Armstrong C, Gean E, Anderson J, Paynter RA, et al. Antibody response after SARS-CoV-2 infection and implications for immunity: a rapid living review. Ann Intern Med(2021) 174(6):811–21. Epub 2021/03/16. doi: 10.7326/m20-7547.
95. Sterlin D, Mathian A, Miyara M, Mohr A, Anna F, Claër L, et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2.Sci Transl Med (2021) 13(577). Epub 2020/12/09. doi: 10.1126/scitranslmed.abd2223.
96. Swartz MD, DeSantis SM, Yaseen A, Brito FA, Valerio-Shewmaker MA, Messiah SE, et al. Antibody duration after infection from SARS-CoV-2 in the Texas coronavirus antibody rresponse survey. J Infect Dis(2023) 227(2):193–201. Epub 2022/05/07. doi: 10.1093/infdis/jiac167.
97. Abraha I, Eusebi P, Germani A, Pasquarelli E, Pascolini S, Antonietti R, et al. Temporal trends and differences of SARS-CoV-2-specific antibody responses in symptomatic and asymptomatic subjects: a longitudinal study from Umbria in Italy. BMJ Open(2022) 12(7):e056370. Epub 2022/07/20. doi: 10.1136/bmjopen-2021-056370.
98. Ripperger TJ, Uhrlaub JL, Watanabe M, Wong R, Castaneda Y, Pizzato HA, et al. Orthogonal SARS-CoV-2 serological assays enable surveillance of low-prevalence communities and reveal durable humoral immunity.Immunity (2020) 53(5):925–33.e4. Epub 2020/11/02. doi: 10.1016/j.immuni.2020.10.004.
99. Hvidt AK, Baerends EAM, Søgaard OS, Stærke NB, Raben D, Reekie J, et al. Comparison of vaccine-induced antibody neutralization against SARS-CoV-2 variants of concern following primary and booster doses of COVID-19 vaccines. Front Med (Lausanne) (2022) 9:994160. Epub 2022/10/21. doi: 10.3389/fmed.2022.994160.
100. Rosseto-Welter EA, Rodrigues SS, de Figueiredo AB, França CN, Oliveira DBL, Bachi ALL, et al. Cellular and humoral immune responses to vaccination for COVID-19 are negatively impacted by senescent T cells: a case report. Vaccines (2023) 11(4):840. Epub 2023/04/28. doi: 10.3390/vaccines11040840.
101. Omran EA, Habashy RE, Ezz Elarab LA, Hashish MH, El-Barrawy MA, Abdelwahab IA, et al. Anti-spike and neutralizing antibodies after two doses of COVID-19 sinopharm/BIBP vaccine. Vaccines (2022) 10(8):1340. Epub 2022/08/27. doi: 10.3390/vaccines10081340.
102. Lyke KE, Atmar RL, Islas CD, Posavad CM, Szydlo D, Paul Chourdhury R, et al. Rapid decline in vaccine-boosted neutralizing antibodies against SARS-CoV-2 omicron variant. Cell Rep Med (2022) 3(7):100679. Epub 2022/07/08. doi: 10.1016/j.xcrm.2022.100679.
103. Furukawa K, Tjan LH, Kurahashi Y, Sutandhio S, Nishimura M, Arii J, et al. Assessment of neutralizing antibody response against SARS-CoV-2 variants after 2 to 3 doses of the BNT162b2 mRNA COVID-19 vaccine.JAMA Netw Open (2022) 5(5):e2210780. Epub 2022/05/10. doi: 10.1001/jamanetworkopen.2022.10780.
104. Fox T, Geppert J, Dinnes J, Scandrett K, Bigio J, Sulis G, et al. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst Rev (2022) 11(11):Cd013652. Epub 2022/11/18. doi: 10.1002/14651858.CD013652.pub2.
105. Theel ES. Performance characteristics of high-throughput serologic assays for severe acute respiratory syndrome coronavirus 2 with Food and Drug Administration Emergency Use authorization: a review. Clin Lab Med (2022) 42(1):15–29. Epub 2022/02/15. doi: 10.1016/j.cll.2021.10.006.
106. Olbrich L, Castelletti N, Schälte Y, Garí M, Pütz P, Bakuli A, et al. Head-to-head evaluation of seven different seroassays including direct viral neutralisation in a representative cohort for SARS-CoV-2.J Gen Virol (2021) 102(10):001653. Epub 2021/10/09. doi: 10.1099/jgv.0.001653.
107. The National SARS-CoV-2 Serology Assay Evaluation Group. Performance characteristics of five immunoassays for SARS-CoV-2: a head-to-head benchmark comparison. Lancet Infect Dis (2020) 20(12):1390–400. Epub 2020/09/27. doi: 10.1016/s1473-3099(20)30634-4.
108. Harritshøj LH, Gybel-Brask M, Afzal S, Kamstrup PR, Jørgensen CS, Thomsen MK, et al. Comparison of 16 serological SARS-CoV-2 immunoassays in 16 clinical laboratories. J Clin Microbiol (2021) 59(5). Epub 2021/02/13. doi: 10.1128/jcm.02596-20.
109. Chiereghin A, Zagari RM, Galli S, Moroni A, Gabrielli L, Venturoli S, et al. Recent advances in the evaluation of serological assays for the diagnosis of SARS-CoV-2 infection and COVID-19. Front Public Health (2020) 8:620222. Epub 2021/03/09. doi: 10.3389/fpubh.2020.620222.
110. Riester E, Findeisen P, Hegel JK, Kabesch M, Ambrosch A, Rank CM, et al. Performance evaluation of the Roche Elecsys Anti-SARS-CoV-2 S immunoassay. J Virol Methods (2021) 297:114271. Epub 2021/08/31. doi: 10.1016/j.jviromet.2021.114271.
111. Muecksch F, Wise H, Batchelor B, Squires M, Semple E, Richardson C, et al. Longitudinal serological analysis and neutralizing antibody levels in coronavirus disease 2019 convalescent patients. J Infect Dis (2021) 223(3):389–98. Epub 2020/11/04. doi: 10.1093/infdis/jiaa659.
112. Migueres M, Chapuy-Regaud S, Miédougé M, Jamme T, Lougarre C, Da Silva I, et al. Current immunoassays and detection of antibodies elicited by Omicron SARS-CoV-2 infection. J Med Virol (2023) 95(1):e28200. Epub 2022/10/09. doi: 10.1002/jmv.28200.
113. Springer DN, Perkmann T, Jani CM, Mucher P, Prüger K, Marculescu R, et al. Reduced sensitivity of commercial spike-specific antibody assays after primary infection with the SARS-CoV-2 Omicron variant.Microbiol Spectr (2022) 10(5):e0212922. Epub 2022/08/26. doi: 10.1128/spectrum.02129-22.
114. Habermann E, Frommert LM, Ghannam K, Nguyen My L, Gieselmann L, Tober-Lau P, et al. Performance of commercial SARS-CoV-2 wild-type and Omicron BA.1 antibody assays compared with pseudovirus neutralization tests. J Clin Virol (2023) 165:105518. Epub 2023/06/25. doi: 10.1016/j.jcv.2023.105518.
115. Rössler A, Knabl L, Raschbichler LM, Peer E, von Laer D, Borena W, et al. Reduced sensitivity of antibody tests after omicron infection.Lancet Microbe (2023) 4(1):e10–e1. Epub 2022/09/23. doi: 10.1016/s2666-5247(22)00222-1.
116. Montesinos I, Dahma H, Wolff F, Dauby N, Delaunoy S, Wuyts M, et al. Neutralizing antibody responses following natural SARS-CoV-2 infection: dynamics and correlation with commercial serologic tests.J Clin Virol (2021) 144:104988. Epub 2021/10/05. doi: 10.1016/j.jcv.2021.104988.
117. Theel ES, Johnson PW, Kunze KL, Wu L, Gorsh AP, Granger D, et al. SARS-CoV-2 serologic assays dependent on dual-antigen binding demonstrate diverging kinetics relative to other antibody detection methods. J Clin Microbiol (2021) 59(9):e0123121. Epub 2021/06/25. doi: 10.1128/jcm.01231-21.
118. Chapuy-Regaud S, Miédougé M, Abravanel F, Da Silva I, Porcheron M, Fillaux J, et al. Evaluation of three quantitative anti-SARS-CoV-2 antibody immunoassays. Microbiol Spectr (2021) 9(3):e0137621. Epub 2021/12/24. doi: 10.1128/spectrum.01376-21.
119. Lustig Y, Sapir E, Regev-Yochay G, Cohen C, Fluss R, Olmer L, et al. BNT162b2 COVID-19 vaccine and correlates of humoral immune responses and dynamics: a prospective, single-centre, longitudinal cohort study in health-care workers. Lancet Respir Med (2021) 9(9):999–1009. Epub 2021/07/06. doi: 10.1016/s2213-2600(21)00220-4.
120. Rubio-Acero R, Castelletti N, Fingerle V, Olbrich L, Bakuli A, Wölfel R, et al. In search of the SARS-CoV-2 protection correlate: head-to-head comparison of two quantitative S1 assays in pre-characterized oligo-/asymptomatic patients. Infect Dis Ther(2021) 10(3):1505–18. Epub 2021/06/18. doi: 10.1007/s40121-021-00475-x.
121. Jochum S, Kirste I, Hortsch S, Grunert VP, Legault H, Eichenlaub U, et al. Clinical utility of Elecsys anti-SARS-CoV-2 S assay in COVID-19 vaccination: an exploratory analysis of the mRNA-1273 Phase 1 trial.Front Immunol (2021) 12:798117. Epub 2022/02/08. doi: 10.3389/fimmu.2021.798117.
122. Regev-Yochay G, Lustig Y, Joseph G, Gilboa M, Barda N, Gens I, et al. Correlates of protection against COVID-19 infection and intensity of symptomatic disease in vaccinated individuals exposed to SARS-CoV-2 in households in Israel (ICoFS): a prospective cohort study. Lancet Microbe (2023) 4(5):e309–e18. Epub 2023/03/25. doi: 10.1016/s2666-5247(23)00012-5.
123. Lu Y, Wang J, Li Q, Hu H, Lu J, Zeliang C. Advances in neutralization assays for SARS-CoV-2. Scand J Immunol (2021) 94:e13088.
124. Ast V, Costina V, Eichner R, Bode A, Aida S, Gerhards C, et al. Assessing the quality of serological testing in the COVID-19 pandemic: results of a European External Quality Assessment (EQA) scheme for anti-SARS-CoV-2 antibody detection. J Clin Microbiol (2021) 59(9):e0055921. Epub 2021/07/01. doi: 10.1128/JCM.00559-21.
125. Perkmann T, Mucher P, Osze D, Muller A, Perkmann-Nagele N, Koller T, et al. Comparison of five Anti-SARS-CoV-2 antibody assays across three doses of BNT162b2 reveals insufficient standardization of SARS-CoV-2 serology. J Clin Virol (2023) 158:105345. Epub 2022/12/04. doi: 10.1016/j.jcv.2022.105345.
126. World Health Organization. Establishment of the WHO International Standard and Reference Panel for anti-SARS-CoV-2 antibody. 2020, WHO Expert Committee on Biological Standardization (WHO/BS/2020.2403). https://www.who.int/publications/m/item/WHO-BS-2020.2403 (2020) [Accessed June 23, 2023].
127. Beyerl J, Rubio-Acero R, Castelletti N, Paunovic I, Kroidl I, Khan ZN, et al. A dried blood spot protocol for high throughput analysis of SARS-CoV-2 serology based on the Roche Elecsys anti-N assay.EBioMedicine (2021) 70:103502. Epub 2021/08/02. doi: 10.1016/j.ebiom.2021.103502.
128. Decru B, Van Elslande J, Weemaes M, Houben E, Empsen I, André E, et al. Comparison of the diagnostic performance with whole blood and plasma of four rapid antibody tests for SARS-CoV-2. Clin Chem Lab Med(2020) 58(10):e197–e9. Epub 2020/07/07. doi: 10.1515/cclm-2020-0817.
129. Fröberg J, Diavatopoulos DA. Mucosal immunity to severe acute respiratory syndrome coronavirus 2 infection. Curr Opin Infect Dis (2021) 34(3):181–6. Epub 2021/04/27. doi: 10.1097/qco.0000000000000724.
130. Guerrieri M, Francavilla B, Fiorelli D, Nuccetelli M, Passali FM, Coppeta L, et al. Nasal and salivary mucosal humoral immune response elicited by mRNA BNT162b2 COVID-19 vaccine compared to SARS-CoV-2 natural infection. Vaccines (2021) 9(12). Epub 2021/12/29. doi: 10.3390/vaccines9121499.
131. Cervia C, Nilsson J, Zurbuchen Y, Valaperti A, Schreiner J, Wolfensberger A, et al. Systemic and mucosal antibody responses specific to SARS-CoV-2 during mild versus severe COVID-19. J Allergy Clin Immunol (2021) 147(2):545–57.e9. Epub 2020/11/23. doi: 10.1016/j.jaci.2020.10.040.
132. Russell MW, Mestecky J. Mucosal immunity: the missing link in comprehending SARS-CoV-2 infection and transmission. Front Immunol (2022) 13:957107. Epub 2022/09/06. doi: 10.3389/fimmu.2022.957107.
133. Heaney CD, Pisanic N, Randad PR, Kruczynski K, Howard T, Zhu X, et al. Comparative performance of multiplex salivary and commercially available serologic assays to detect SARS-CoV-2 IgG and neutralization titers. J Clin Virol (2021) 145:104997. doi: 10.1016/j.jcv.2021.104997.
134. Conklin SE, Martin K, Manabe YC, Schmidt HA, Miller J, Keruly M, et al. Evaluation of serological SARS-CoV-2 lateral flow assays for rapid point-of-care testing. J Clin Microbiol (2021) 59(2):e02020-20. Epub 2020/11/20. doi: 10.1128/jcm.02020-20.
135. Sims MD, Podolsky RH, Childers KL, Higgins B, Trueman J, Homayouni R, et al. Dried blood spots are a valid alternative to venipuncture for COVID-19 antibody testing. J Immunol Methods (2023) 513:113420. Epub 2023/01/04. doi: 10.1016/j.jim.2022.113420.
136. Kaufman HW, Meyer WA, Clarke NJ, Radcliff J, Rank CM, Freeman J, et al. Assessing vulnerability to COVID-19 in high-risk populations: the role of SARS-CoV-2 spike-targeted serology. Popul Health Manag(2023) 26(1):29–36. Epub 2023/02/18. doi: 10.1089/pop.2022.0241.
137. Perry J, Osman S, Wright J, Richard-Greenblatt M, Buchan SA, Sadarangani M, et al. Does a humoral correlate of protection exist for SARS-CoV-2? A systematic review. PLoS One (2022) 17(4):e0266852. Epub 2022/04/09. doi: 10.1371/journal.pone.0266852.
138. Haveri A, Solastie A, Ekström N, Österlund P, Nohynek H, Nieminen T, et al. Neutralizing antibodies to SARS-CoV-2 Omicron variant after third mRNA vaccination in health care workers and elderly subjects.Eur J Immunol (2022) 52(5):816–24. Epub 2022/03/22. doi: 10.1002/eji.202149785.
139. O’Mahoney LL, Routen A, Gillies C, Ekezie W, Welford A, Zhang A, et al. The prevalence and long-term health effects of Long Covid among hospitalised and non-hospitalised populations: A systematic review and meta-analysis. EClinicalMedicine (2023) 55:101762. Epub 2022/12/08. doi: 10.1016/j.eclinm.2022.101762.
140. Desai A, Kulkarni A, Rajkumar SV, Gyawali B. Clinical trial end points in severe COVID-19. Mayo Clin Proc (2020) 95(8):1578–80. Epub 2020/08/06. doi: 10.1016/j.mayocp.2020.05.025.
141. Hansen CH, Michlmayr D, Gubbels SM, Mølbak K, Ethelberg S. Assessment of protection against reinfection with SARS-CoV-2 among 4 million PCR-tested individuals in Denmark in 2020: a population-level observational study. Lancet (2021) 397(10280):1204–12. Epub 2021/03/21. doi: 10.1016/s0140-6736(21)00575-4.
142. Abu-Raddad LJ, Chemaitelly H, Coyle P, Malek JA, Ahmed AA, Mohamoud YA, et al. SARS-CoV-2 antibody-positivity protects against reinfection for at least seven months with 95% efficacy. EClinicalMedicine(2021) 35:100861. Epub 2021/05/04. doi: 10.1016/j.eclinm.2021.100861.
143. Hall VJ, Foulkes S, Charlett A, Atti A, Monk EJM, Simmons R, et al. SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: a large, multicentre, prospective cohort study (SIREN). Lancet (2021) 397(10283):1459–69. Epub 2021/04/13. doi: 10.1016/s0140-6736(21)00675-9.
144. Lumley SF, Rodger G, Constantinides B, Sanderson N, Chau KK, Street TL, et al. An observational cohort study on the incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and B.1.1.7 variant infection in healthcare workers by antibody and vaccination status. Clin Infect Dis (2022) 74(7):1208–19. Epub 2021/07/04. doi: 10.1093/cid/ciab608.
145. Abu-Raddad LJ, Chemaitelly H, Ayoub HH, Coyle P, Malek JA, Ahmed AA, et al. Introduction and expansion of the SARS-CoV-2 B.1.1.7 variant and reinfections in Qatar: a nationally representative cohort study.PLoS Med (2021) 18(12):e1003879. Epub 2021/12/17. doi: 10.1371/journal.pmed.1003879.
146. Chemaitelly H, Bertollini R, Abu-Raddad LJ. Efficacy of natural immunity against SARS-CoV-2 reinfection with the beta variant. N Engl J Med (2021) 385(27):2585–6. Epub 2021/12/16. doi: 10.1056/NEJMc2110300.
147. Nordström P, Ballin M, Nordström A. Risk of SARS-CoV-2 reinfection and COVID-19 hospitalisation in individuals with natural and hybrid immunity: a retrospective, total population cohort study in Sweden.Lancet Infect Dis (2022) 22(6):781–90. Epub 2022/04/04. doi: 10.1016/s1473-3099(22)00143-8.
148. Altarawneh HN, Chemaitelly H, Hasan MR, Ayoub HH, Qassim S, AlMukdad S, et al. Protection against the omicron variant from previous SARS-CoV-2 infection. N Engl J Med (2022) 386(13):1288–90. Epub 2022/02/10. doi: 10.1056/NEJMc2200133.
149. Pulliam JRC, van Schalkwyk C, Govender N, von Gottberg A, Cohen C, Groome MJ, et al. Increased risk of SARS-CoV-2 reinfection associated with emergence of omicron in South Africa. Science (2022) 376(6593):eabn4947. Epub 2022/03/16. doi: 10.1126/science.abn4947.
150. Guedes AR, Oliveira MS, Tavares BM, Luna-Muschi A, Lazari CDS, Montal AC, et al. Reinfection rate in a cohort of healthcare workers over 2 years of the COVID-19 pandemic. Sci Rep (2023) 13(1):712. Epub 2023/01/14. doi: 10.1038/s41598-022-25908-6.
151. Chemaitelly H, Nagelkerke N, Ayoub HH, Coyle P, Tang P, Yassine HM, et al. Duration of immune protection of SARS-CoV-2 natural infection against reinfection. J Travel Med (2022) 29(8):taac109. Epub 2022/10/01. doi: 10.1093/jtm/taac109.
152. Bowe B, Xie Y, Al-Aly Z. Acute and postacute sequelae associated with SARS-CoV-2 reinfection. Nature Medicine (2022) 28(11):2398–405. doi: 10.1038/s41591-022-02051-3.
153. Yang SL, Ripen AM, Lee JV, Koh K, Yen CH, Chand AK, et al. Time from last immunity event against infection during Omicron-dominant period in Malaysia. Int J Infect Dis (2023) 128:98–101. Epub 2022/12/30. doi: 10.1016/j.ijid.2022.12.025.
154. Stein C, Nassereldine H, Sorensen RJD, Amlag JO, Bisignano C, Byrne S, et al. Past SARS-CoV-2 infection protection against re-infection: a systematic review and meta-analysis. Lancet (2023). doi: 10.1016/S0140-6736(22)02465-5.