References
1. Rahman MM, Masum MHU, Wajed S, Talukder A. A comprehensive review on
COVID-19 vaccines: development, effectiveness, adverse effects,
distribution and challenges. Virusdisease (2022) 33(1):1–22.
Epub 2022/02/08. doi: 10.1007/s13337-022-00755-1.
2. Hale T, Angrist N, Goldszmidt R, Kira B, Petherick A, Phillips T, et
al. A global panel database of pandemic policies (Oxford COVID-19
Government Response Tracker). Nat Hum Behav (2021) 5(4):529–38.
Epub 2021/03/10. doi: 10.1038/s41562-021-01079-8.
3. Hale T, Petherick A, Anania J, Andretti B, Noam Angrist, Roy Barnes,
et al. Variation in Government Responses to COVID-19. Version 14.1.
Blavatnik School of Government Working Paper. 27 July 2022.
www.bsg.ox.ac.uk/covidtracker
(2022) [Accessed June 13, 2023].
4. Qi H, Liu B, Wang X, Zhang L. The humoral response and antibodies
against SARS-CoV-2 infection. Nature Immunology (2022)
23(7):1008–20. doi: 10.1038/s41590-022-01248-5.
5. Liu M, Gan H, Liang Z, Liu L, Liu Q, Mai Y, et al. Review of
therapeutic mechanisms and applications based on SARS-CoV-2 neutralizing
antibodies. Front Microbiol (2023) 14:1122868. Epub 2023/04/04.
doi: 10.3389/fmicb.2023.1122868.
6. Moss P. The T cell immune response against SARS-CoV-2. Nature
Immunology (2022) 23(2):186–93. doi: 10.1038/s41590-021-01122-w.
7. Carabelli AM, Peacock TP, Thorne LG, Harvey WT, Hughes J, Peacock SJ,
et al. SARS-CoV-2 variant biology: immune escape, transmission and
fitness. Nat Rev Microbiol (2023) 21(3):162–77. Epub 2023/01/19.
doi: 10.1038/s41579-022-00841-7.
8. World Health Organization. Updated working definitions and primary
actions for SARS-CoV-2 variants.
https://www.who.int/publications/m/item/updated-working-definitions-and-primary-actions-for--sars-cov-2-variants
(2023) [Accessed April 13, 2023].
9. Viana R, Moyo S, Amoako DG, Tegally H, Scheepers C, Althaus CL, et
al. Rapid epidemic expansion of the SARS-CoV-2 omicron variant in
southern Africa. Nature (2022) 603(7902):679–86. Epub
2022/01/19. doi: 10.1038/s41586-022-04411-y.
10. World Health Organization. One year since the emergence of COVID-19
virus variant Omicron.
https://www.who.int/news-room/feature-stories/detail/one-year-since-the-emergence-of-omicron#:~:text=It%20was%2026%20November%202021,of%20the%20COVID%2D19%20pandemic.
(2022) [Accessed April 17, 2023].
11. Plotkin SA, Gilbert PB. Nomenclature for immune correlates of
protection after vaccination. Clin Infect Dis (2012)
54(11):1615–7. doi: 10.1093/cid/cis238.
12. Plotkin SA. Correlates of protection induced by vaccination.Clin Vaccine Immunol (2010) 17(7):1055–65. doi:
10.1128/CVI.00131-10.
13. Gilbert PB, Qin L, Self SG. Evaluating a surrogate endpoint at three
levels, with application to vaccine development. Stat Med (2008)
27(23):4758–78. Epub 2007/11/06. doi: 10.1002/sim.3122.
14. Gilbert PB, Montefiori DC, McDermott AB, Fong Y, Benkeser D, Deng W,
et al. Immune correlates analysis of the mRNA-1273 COVID-19 vaccine
efficacy clinical trial. Science (2022) 375(6576):43–50. Epub
2021/11/24. doi: 10.1126/science.abm3425.
15. Fong Y, McDermott AB, Benkeser D, Roels S, Stieh DJ, Vandebosch A,
et al. Immune correlates analysis of the ENSEMBLE single Ad26.COV2.S
dose vaccine efficacy clinical trial. Nat Microbiol (2022)
7(12):1996–2010. Epub 2022/11/11. doi: 10.1038/s41564-022-01262-1.
16. Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM, Owens
DR, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine
administered in a prime-boost regimen in young and old adults (COV002):
a single-blind, randomised, controlled, phase 2/3 trial. Lancet(2021) 396(10267):1979–93. Epub 2020/11/23. doi:
10.1016/s0140-6736(20)32466-1.
17. Feng S, Phillips DJ, White T, Sayal H, Aley PK, Bibi S, et al.
Correlates of protection against symptomatic and asymptomatic SARS-CoV-2
infection. Nat Med (2021) 27(11):2032–40. Epub 2021/10/01. doi:
10.1038/s41591-021-01540-1.
18. Li G, Cappuccini F, Marchevsky NG, Aley PK, Aley R, Anslow R, et al.
Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine in
children aged 6-17 years: a preliminary report of COV006, a phase 2
single-blind, randomised, controlled trial. Lancet (2022)
399(10342):2212–25. Epub 2022/06/13. doi:
10.1016/s0140-6736(22)00770-x.
19. Cristiano A, Nuccetelli M, Pieri M, Sarubbi S, Pelagalli M, Calugi
G, et al. Serological anti-SARS-CoV-2 neutralizing antibodies
association to live virus neutralizing test titers in COVID-19
paucisymptomatic/symptomatic patients and vaccinated subjects. Int
Immunopharmacol (2021) 101(Pt B):108215. Epub 2021/10/15. doi:
10.1016/j.intimp.2021.108215.
20. Nilles EJ, Paulino CT, de St Aubin M, Duke W, Jarolim P, Sanchez IM,
et al. Tracking immune correlates of protection for emerging SARS-CoV-2
variants. Lancet Infect Dis (2023) 23(2):153–4. Epub 2023/01/15.
doi: 10.1016/s1473-3099(23)00001-4.
21. Cromer D, Steain M, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et
al. Neutralising antibody titres as predictors of protection against
SARS-CoV-2 variants and the impact of boosting: a meta-analysis.Lancet Microbe (2022) 3(1):e52–e61. Epub 2021/11/23. doi:
10.1016/s2666-5247(21)00267-6.
22. Jones TC, Biele G, Mühlemann B, Veith T, Schneider J,
Beheim-Schwarzbach J, et al. Estimating infectiousness throughout
SARS-CoV-2 infection course. Science (2021) 373(6551). Epub
2021/05/27. doi: 10.1126/science.abi5273.
23. Zhou J, Singanayagam A, Goonawardane N, Moshe M, Sweeney FP, Sukhova
K, et al. Viral emissions into the air and environment after SARS-CoV-2
human challenge: a phase 1, open label, first-in-human study.Lancet Microbe (2023). Epub 2023/06/13. doi:
10.1016/s2666-5247(23)00101-5.
24. Kale D, Herbec A, Beard E, Gold N, Shahab L. Patterns and predictors
of adherence to health-protective measures during COVID-19 pandemic in
the UK: cross-sectional and longitudinal findings from the HEBECO study.BMC Public Health (2022) 22(1):2347. Epub 2022/12/15. doi:
10.1186/s12889-022-14509-7.
25. Hutchins HJ, Wolff B, Leeb R, Ko JY, Odom E, Willey J, et al.
COVID-19 mitigation behaviors by age group - United States, April-June
2020. MMWR Morb Mortal Wkly Rep (2020) 69(43):1584–90. Epub
2020/10/30. doi: 10.15585/mmwr.mm6943e4.
26. Jamrozik E, Selgelid MJ. COVID-19 human challenge studies: ethical
issues. Lancet Infect Dis (2020) 20(8):e198–e203. Epub
2020/06/02. doi: 10.1016/s1473-3099(20)30438-2.
27. Killingley B, Mann AJ, Kalinova M, Boyers A, Goonawardane N, Zhou J,
et al. Safety, tolerability and viral kinetics during SARS-CoV-2 human
challenge in young adults. Nat Med (2022) 28(5):1031–41. Epub
2022/04/02. doi: 10.1038/s41591-022-01780-9.
28. Khosroshahi HT, Mardomi A. The initial infectious dose of SARS-CoV-2
and the severity of the disease: possible impact on the incubation
period. Future Virol (2021). doi: 10.2217/fvl-2020-0330.
29. Van Damme W, Dahake R, van de Pas R, Vanham G, Assefa Y. COVID-19:
does the infectious inoculum dose-response relationship contribute to
understanding heterogeneity in disease severity and transmission
dynamics? Med Hypotheses (2021) 146:110431. Epub 2020/12/09. doi:
10.1016/j.mehy.2020.110431.
30. Spinelli MA, Glidden DV, Gennatas ED, Bielecki M, Beyrer C,
Rutherford G, et al. Importance of non-pharmaceutical interventions in
lowering the viral inoculum to reduce susceptibility to infection by
SARS-CoV-2 and potentially disease severity. Lancet Infect Dis(2021) 21(9):e296–e301. Epub 2021/02/26. doi:
10.1016/s1473-3099(20)30982-8.
31. Zsichla L, Müller V. Risk factors of severe COVID-19: a review of
host, viral and environmental factors. Viruses (2023) 15(1):175.
Epub 2023/01/22. doi: 10.3390/v15010175.
32. Markov PV, Ghafari M, Beer M, Lythgoe K, Simmonds P, Stilianakis NI,
et al. The evolution of SARS-CoV-2. Nat Rev Microbiol (2023)
21(6):361–79. Epub 2023/04/06. doi: 10.1038/s41579-023-00878-2.
33. Klasse PJ, Moore JP. Antibodies to SARS-CoV-2 and their potential
for therapeutic passive immunization. Elife (2020) 9. Epub
2020/06/24. doi: 10.7554/eLife.57877.
34. Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison
EM, et al. SARS-CoV-2 variants, spike mutations and immune escape.Nat Rev Microbiol (2021) 19(7):409–24. Epub 2021/06/03. doi:
10.1038/s41579-021-00573-0.
35. Souza PFN, Mesquita FP, Amaral JL, Landim PGC, Lima KRP, Costa MB,
et al. The spike glycoprotein of SARS-CoV-2: a review of how mutations
of spike glycoproteins have driven the emergence of variants with high
transmissibility and immune escape. Int J Biol Macromol (2022)
208:105–25. Epub 2022/03/19. doi: 10.1016/j.ijbiomac.2022.03.058.
36. Liu C, Ginn HM, Dejnirattisai W, Supasa P, Wang B, Tuekprakhon A, et
al. Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and
convalescent serum. Cell (2021) 184(16):4220–36.e13. Epub
2021/07/10. doi: 10.1016/j.cell.2021.06.020.
37. Migueres M, Dimeglio C, Trémeaux P, Abravanel F, Raymond S, Lhomme
S, et al. Influence of immune escape and nasopharyngeal virus load on
the spread of SARS-CoV-2 Omicron variant. J Infect (2022)
84(4):e7–e9. Epub 2022/02/11. doi: 10.1016/j.jinf.2022.01.036.
38. Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y, et al. Antibody
resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature(2021) 593(7857):130–5. Epub 2021/03/09. doi:
10.1038/s41586-021-03398-2.
39. Kow CS, Ramachandram DS, Hasan SS. Risk of severe illness in
patients infected with SARS-CoV-2 of Delta variant: a systematic review
and meta-analysis. Infect Dis (Lond) (2022) 54(8):614–7. Epub
2022/04/08. doi: 10.1080/23744235.2022.2055787.
40. Kow CS, Ramachandram DS, Hasan SS. The risk of mortality and severe
illness in patients infected with the omicron variant relative to delta
variant of SARS-CoV-2: a systematic review and meta-analysis. Ir J
Med Sci (2023):1–8. Epub 2023/02/09. doi: 10.1007/s11845-022-03266-6.
41. Ciabattini A, Nardini C, Santoro F, Garagnani P, Franceschi C,
Medaglini D. Vaccination in the elderly: the challenge of immune changes
with aging. Semin Immunol (2018) 40:83–94. Epub 2018/12/07. doi:
10.1016/j.smim.2018.10.010.
42. Nian Y, Minami K, Maenesono R, Iske J, Yang J, Azuma H, et al.
Changes of T-cell immunity over a lifetime. Transplantation(2019) 103(11):2227–33. Epub 2019/05/21. doi:
10.1097/tp.0000000000002786.
43. COVID-19 Forecasting Team. Variation in the COVID-19
infection–fatality ratio by age, time, and geography during the
pre-vaccine era: a systematic analysis. Lancet (2022)
399(10334):1469–88. doi: 10.1016/S0140-6736(21)02867-1.
44. Collier DA, Ferreira I, Kotagiri P, Datir RP, Lim EY, Touizer E, et
al. Age-related immune response heterogeneity to SARS-CoV-2 vaccine
BNT162b2. Nature (2021) 596(7872):417–22. Epub 2021/07/01. doi:
10.1038/s41586-021-03739-1.
45. Bichara CDA, Queiroz MAF, da Silva Graça Amoras E, Vaz GL, Vallinoto
I, Bichara CNC, et al. Assessment of anti-SARS-CoV-2 antibodies
post-Coronavac vaccination in the Amazon region of Brazil.Vaccines (2021) 9(10):1169. Epub 2021/10/27. doi:
10.3390/vaccines9101169.
46. Walsh EE, Frenck RW, Jr., Falsey AR, Kitchin N, Absalon J, Gurtman
A, et al. Safety and immunogenicity of two RNA-based Covid-19 vaccine
candidates. N Engl J Med (2020) 383(25):2439–50. Epub
2020/10/15. doi: 10.1056/NEJMoa2027906.
47. Allotey J, Stallings E, Bonet M, Yap M, Chatterjee S, Kew T, et al.
Clinical manifestations, risk factors, and maternal and perinatal
outcomes of coronavirus disease 2019 in pregnancy: living systematic
review and meta-analysis. BMJ (2020) 370:m3320. Epub 2020/09/03.
doi: 10.1136/bmj.m3320.
48. Li J, Ayada I, Wang Y, den Hoed CM, Kamar N, Peppelenbosch MP, et
al. Factors associated with COVID-19 vaccine response in transplant
recipients: a systematic review and meta-analysis.Transplantation (2022) 106(10):2068–75. Epub 2022/06/29. doi:
10.1097/tp.0000000000004256.
49. Wankhede D, Grover S, Hofman P. Determinants of humoral immune
response to SARS-CoV-2 vaccines in solid cancer patients: a systematic
review and meta-analysis. Vaccine (2023). Epub 2023/02/16. doi:
10.1016/j.vaccine.2023.01.072.
50. Liu Y, Xiao Y, Wu S, Marley G, Ming F, Wang X, et al. People living
with HIV easily lose their immune response to SARS-CoV-2: result from a
cohort of COVID-19 cases in Wuhan, China. BMC Infect Dis (2021)
21(1):1029. Epub 2021/10/03. doi: 10.1186/s12879-021-06723-2.
51. Shen C, Risk M, Schiopu E, Hayek SS, Xie T, Holevinski L, et al.
Efficacy of COVID-19 vaccines in patients taking immunosuppressants.Ann Rheum Dis (2022) 81(6):875–80. Epub 2022/02/25. doi:
10.1136/annrheumdis-2021-222045.
52. Kompaniyets L, Pennington AF, Goodman AB, Rosenblum HG, Belay B, Ko
JY, et al. Underlying medical conditions and severe Illness among
540,667 adults hospitalized with COVID-19, March 2020-March 2021.Prev Chronic Dis (2021) 18:E66. Epub 2021/07/02. doi:
10.5888/pcd18.210123.
53. Yadav T, Kumar S, Mishra G, Saxena SK. Tracking the COVID-19
vaccines: the global landscape. Hum Vaccin Immunother (2023)
19(1):2191577. Epub 2023/03/31. doi: 10.1080/21645515.2023.2191577.
54. Lim SY, Kim JY, Jung J, Yun SC, Kim SH. Waning of humoral immunity
depending on the types of COVID-19 vaccine. Infect Dis (Lond)(2023) 55(3):216–20. Epub 2023/01/11. doi:
10.1080/23744235.2023.2165707.
55. Earle KA, Ambrosino DM, Fiore-Gartland A, Goldblatt D, Gilbert PB,
Siber GR, et al. Evidence for antibody as a protective correlate for
COVID-19 vaccines. Vaccine (2021) 39(32):4423–8. Epub
2021/07/03. doi: 10.1016/j.vaccine.2021.05.063.
56. Nham E, Ko JH, Song KH, Choi JY, Kim ES, Kim HJ, et al. Kinetics of
vaccine-induced neutralizing antibody titers and estimated protective
immunity against wild-type SARS-CoV-2 and the Delta variant: a
prospective nationwide cohort study comparing three COVID-19 vaccination
protocols in South Korea. Front Immunol (2022) 13:968105. Epub
2022/10/11. doi: 10.3389/fimmu.2022.968105.
57. Lafon E, Jäger M, Bauer A, Reindl M, Bellmann-Weiler R,
Wilflingseder D, et al. Comparative analyses of IgG/IgA neutralizing
effects induced by three COVID-19 vaccines against variants of concern.J Allergy Clin Immunol (2022) 149(4):1242–52.e12. Epub
2022/01/31. doi: 10.1016/j.jaci.2022.01.013.
58. Greaney AJ, Loes AN, Gentles LE, Crawford KHD, Starr TN, Malone KD,
et al. Antibodies elicited by mRNA-1273 vaccination bind more broadly to
the receptor binding domain than do those from SARS-CoV-2 infection.Sci Transl Med (2021) 13(600). Epub 2021/06/10. doi:
10.1126/scitranslmed.abi9915.
59. Meyers J, Windau A, Schmotzer C, Saade E, Noguez J, Stempak L, et
al. SARS-CoV-2 antibody profile of naturally infected and vaccinated
individuals detected using qualitative, semi-quantitative and multiplex
immunoassays. Diagn Microbiol Infect Dis (2022) 104(4):115803.
Epub 2022/09/27. doi: 10.1016/j.diagmicrobio.2022.115803.
60. Townsend JP, Hassler HB, Sah P, Galvani AP, Dornburg A. The
durability of natural infection and vaccine-induced immunity against
future infection by SARS-CoV-2. Proc Natl Acad Sci U S A (2022)
119(31):e2204336119. Epub 2022/07/21. doi: 10.1073/pnas.2204336119.
61. Yu Y, Esposito D, Kang Z, Lu J, Remaley AT, De Giorgi V, et al. mRNA
vaccine-induced antibodies more effective than natural immunity in
neutralizing SARS-CoV-2 and its high affinity variants. Sci Rep(2022) 12(1):2628. Epub 2022/02/18. doi: 10.1038/s41598-022-06629-2.
62. Vietri MT, D’Elia G, Caliendo G, Passariello L, Albanese L, Molinari
AM, et al. Antibody levels after BNT162b2 vaccine booster and SARS-CoV-2
Omicron infection. Vaccine (2022) 40(39):5726–31. Epub
2022/08/31. doi: 10.1016/j.vaccine.2022.08.045.
63. Munro APS, Janani L, Cornelius V, Aley PK, Babbage G, Baxter D, et
al. Safety and immunogenicity of seven COVID-19 vaccines as a third dose
(booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK
(COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2
trial. Lancet (2021) 398(10318):2258–76. Epub 2021/12/06. doi:
10.1016/s0140-6736(21)02717-3.
64. Andrews N, Tessier E, Stowe J, Gower C, Kirsebom F, Simmons R, et
al. Duration of protection against mild and severe disease by Covid-19
vaccines. N Engl J Med (2022) 386(4):340–50. Epub 2022/01/13.
doi: 10.1056/NEJMoa2115481.
65. Cerqueira-Silva T, Andrews JR, Boaventura VS, Ranzani OT, de Araújo
Oliveira V, Paixão ES, et al. Effectiveness of CoronaVac, ChAdOx1
nCoV-19, BNT162b2, and Ad26.COV2.S among individuals with previous
SARS-CoV-2 infection in Brazil: a test-negative, case-control study.Lancet Infect Dis (2022) 22(6):791–801. Epub 2022/04/04. doi:
10.1016/s1473-3099(22)00140-2.
66. Zhao M, Slotkin R, Sheth AH, Pischel L, Kyriakides TC, Emu B, et al.
Serum neutralizing antibody titers 12 months after coronavirus disease
2019 messenger RNA vaccination: correlation to clinical variables in an
adult, US population. Clin Infect Dis (2023) 76(3):e391–e9. Epub
2022/06/01. doi: 10.1093/cid/ciac416.
67. Lau EHY, Tsang OTY, Hui DSC, Kwan MYW, Chan WH, Chiu SS, et al.
Neutralizing antibody titres in SARS-CoV-2 infections. Nat Commun(2021) 12(1):63. Epub 2021/01/06. doi: 10.1038/s41467-020-20247-4.
68. Vanshylla K, Di Cristanziano V, Kleipass F, Dewald F, Schommers P,
Gieselmann L, et al. Kinetics and correlates of the neutralizing
antibody response to SARS-CoV-2 infection in humans. Cell Host
Microbe (2021) 29(6):917–29.e4. Epub 2021/05/14. doi:
10.1016/j.chom.2021.04.015.
69. Chen X, Pan Z, Yue S, Yu F, Zhang J, Yang Y, et al. Disease severity
dictates SARS-CoV-2-specific neutralizing antibody responses in
COVID-19. Signal Transduct Target Ther (2020) 5(1):180. Epub
2020/09/04. doi: 10.1038/s41392-020-00301-9.
70. Maciola AK, La Raja M, Pacenti M, Salata C, De Silvestro G, Rosato
A, et al. Neutralizing antibody responses to SARS-CoV-2 in recovered
COVID-19 patients are variable and correlate with disease severity and
receptor-binding domain recognition. Front Immunol (2022)
13:830710. Epub 2022/02/18. doi: 10.3389/fimmu.2022.830710.
71. Hansen CB, Jarlhelt I, Pérez-Alós L, Hummelshøj Landsy L, Loftager
M, Rosbjerg A, et al. SARS-CoV-2 antibody responses are correlated to
disease severity in COVID-19 convalescent individuals. J Immunol(2021) 206(1):109–17. Epub 2020/11/20. doi: 10.4049/jimmunol.2000898.
72. Wang P, Liu L, Nair MS, Yin MT, Luo Y, Wang Q, et al. SARS-CoV-2
neutralizing antibody responses are more robust in patients with severe
disease. Emerg Microbes Infect (2020) 9(1):2091–3. Epub
2020/09/16. doi: 10.1080/22221751.2020.1823890.
73. Chia WN, Zhu F, Ong SWX, Young BE, Fong SW, Le Bert N, et al.
Dynamics of SARS-CoV-2 neutralising antibody responses and duration of
immunity: a longitudinal study. Lancet Microbe (2021)
2(6):e240–e9. Epub 2021/03/30. doi: 10.1016/s2666-5247(21)00025-2.
74. U.S Food and Drug Administration. EUA for convalescent plasma.
https://www.fda.gov/media/141477/download (2021) [Accessed June
23, 2023].
75. U.S Food and Drug Administration. EUA for casirivimab and imdevimab.
https://www.fda.gov/media/143891/download (2020) [Accessed June
23, 2023].
76. Gilboa M, Gonen T, Barda N, Cohn S, Indenbaum V, Weiss-Ottolenghi Y,
et al. Factors associated with protection from SARS-CoV-2 omicron
variant infection and disease among vaccinated health care workers in
Israel. JAMA Netw Open (2023) 6(5):e2314757. Epub 2023/05/23.
doi: 10.1001/jamanetworkopen.2023.14757.
77. Vikström L, Fjällström P, Gwon YD, Sheward DJ, Wigren-Byström J,
Evander M, et al. Vaccine-induced correlate of protection against fatal
COVID-19 in older and frail adults during waves of
neutralization-resistant variants of concern: an observational study.Lancet Reg Health Eur (2023) 30:100646. Epub 2023/06/26. doi:
10.1016/j.lanepe.2023.100646.
78. Dimeglio C, Herin F, Martin-Blondel G, Miedougé M, Izopet J.
Antibody titers and protection against a SARS-CoV-2 infection. J
Infect (2022) 84(2):248–88. Epub 2021/09/25. doi:
10.1016/j.jinf.2021.09.013.
79. Bergwerk M, Gonen T, Lustig Y, Amit S, Lipsitch M, Cohen C, et al.
Covid-19 breakthrough infections in vaccinated health care workers.N Engl J Med (2021) 385(16):1474–84. Epub 2021/07/29. doi:
10.1056/NEJMoa2109072.
80. Lumley SF, O’Donnell D, Stoesser NE, Matthews PC, Howarth A, Hatch
SB, et al. Antibody status and incidence of SARS-CoV-2 infection in
health care workers. N Engl J Med (2021) 384(6):533–40. Epub
2020/12/29. doi: 10.1056/NEJMoa2034545.
81. Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et
al. Neutralizing antibody levels are highly predictive of immune
protection from symptomatic SARS-CoV-2 infection. Nat Med (2021)
27(7):1205–11. Epub 2021/05/19. doi: 10.1038/s41591-021-01377-8.
82. Gillot C, Bayart JL, Closset M, Cabo J, Maloteau V, Dogné JM, et al.
Peri-infection titers of neutralizing and binding antibodies as a
predictor of COVID-19 breakthrough infections in vaccinated healthcare
professionals: importance of the timing. Clin Chem Lab Med (2023)
61(9):1670–5. Epub 2023/04/01. doi: 10.1515/cclm-2023-0134.
83. Dispinseri S, Secchi M, Pirillo MF, Tolazzi M, Borghi M, Brigatti C,
et al. Neutralizing antibody responses to SARS-CoV-2 in symptomatic
COVID-19 is persistent and critical for survival. Nat Commun(2021) 12(1):2670. Epub 2021/05/13. doi: 10.1038/s41467-021-22958-8.
84. Dimeglio C, Herin F, Da-Silva I, Gernigon C, Porcheron M,
Chapuy-Regaud S, et al. Decreased efficiency of neutralizing antibodies
from previously infected or vaccinated individuals against the B.1.617.2
(delta) SARS-CoV-2 variant. Microbiol Spectr (2022)
10(4):e0270621. Epub 2022/07/23. doi: 10.1128/spectrum.02706-21.
85. Kim PS, Dimcheff DE, Siler A, Schildhouse RJ, Chensue SW. Effect of
monoclonal antibody therapy on the endogenous SARS-CoV-2 antibody
response. Clin Immunol (2022) 236:108959. Epub 2022/02/27. doi:
10.1016/j.clim.2022.108959.
86. Epling BP, Rocco JM, Boswell KL, Laidlaw E, Galindo F, Kellogg A, et
al. Clinical, virologic, and immunologic evaluation of symptomatic
coronavirus disease 2019 rebound following nirmatrelvir/ritonavir
treatment. Clin Infect Dis (2023) 76(4):573–81. Epub 2022/10/07.
doi: 10.1093/cid/ciac663.
87. Shelton JF, Shastri AJ, Ye C, Weldon CH, Filshtein-Sonmez T, Coker
D, et al. Trans-ancestry analysis reveals genetic and nongenetic
associations with COVID-19 susceptibility and severity. Nat Genet(2021) 53(6):801–8. Epub 2021/04/24. doi: 10.1038/s41588-021-00854-7.
88. Pairo-Castineira E, Clohisey S, Klaric L, Bretherick AD, Rawlik K,
Pasko D, et al. Genetic mechanisms of critical illness in COVID-19.Nature (2021) 591(7848):92–8. Epub 2020/12/12. doi:
10.1038/s41586-020-03065-y.
89. Matuozzo D, Talouarn E, Marchal A, Zhang P, Manry J, Seeleuthner Y,
et al. Rare predicted loss-of-function variants of type I IFN immunity
genes are associated with life-threatening COVID-19. Genome Med(2023) 15(1):22. Epub 2023/04/06. doi: 10.1186/s13073-023-01173-8.
90. Kousathanas A, Pairo-Castineira E, Rawlik K, Stuckey A, Odhams CA,
Walker S, et al. Whole-genome sequencing reveals host factors underlying
critical COVID-19. Nature (2022) 607(7917):97–103. Epub
2022/03/08. doi: 10.1038/s41586-022-04576-6.
91. COVID-19 Host Genetics Initiative. Mapping the human genetic
architecture of COVID-19. Nature (2021) 600(7889):472–7. Epub
2021/07/08. doi: 10.1038/s41586-021-03767-x.
92. Azak E, Karadenizli A, Uzuner H, Karakaya N, Canturk NZ, Hulagu S.
Comparison of an inactivated Covid19 vaccine-induced antibody response
with concurrent natural Covid19 infection. Int J Infect Dis(2021) 113:58–64. Epub 2021/10/02. doi: 10.1016/j.ijid.2021.09.060.
93. Secchi M, Bazzigaluppi E, Brigatti C, Marzinotto I, Tresoldi C,
Rovere-Querini P, et al. COVID-19 survival associates with the
immunoglobulin response to the SARS-CoV-2 spike receptor binding domain.J Clin Invest (2020) 130(12):6366–78. Epub 2020/09/30. doi:
10.1172/jci142804.
94. Arkhipova-Jenkins I, Helfand M, Armstrong C, Gean E, Anderson J,
Paynter RA, et al. Antibody response after SARS-CoV-2 infection and
implications for immunity: a rapid living review. Ann Intern Med(2021) 174(6):811–21. Epub 2021/03/16. doi: 10.7326/m20-7547.
95. Sterlin D, Mathian A, Miyara M, Mohr A, Anna F, Claër L, et al. IgA
dominates the early neutralizing antibody response to SARS-CoV-2.Sci Transl Med (2021) 13(577). Epub 2020/12/09. doi:
10.1126/scitranslmed.abd2223.
96. Swartz MD, DeSantis SM, Yaseen A, Brito FA, Valerio-Shewmaker MA,
Messiah SE, et al. Antibody duration after infection from SARS-CoV-2 in
the Texas coronavirus antibody rresponse survey. J Infect Dis(2023) 227(2):193–201. Epub 2022/05/07. doi: 10.1093/infdis/jiac167.
97. Abraha I, Eusebi P, Germani A, Pasquarelli E, Pascolini S,
Antonietti R, et al. Temporal trends and differences of
SARS-CoV-2-specific antibody responses in symptomatic and asymptomatic
subjects: a longitudinal study from Umbria in Italy. BMJ Open(2022) 12(7):e056370. Epub 2022/07/20. doi: 10.1136/bmjopen-2021-056370.
98. Ripperger TJ, Uhrlaub JL, Watanabe M, Wong R, Castaneda Y, Pizzato
HA, et al. Orthogonal SARS-CoV-2 serological assays enable surveillance
of low-prevalence communities and reveal durable humoral immunity.Immunity (2020) 53(5):925–33.e4. Epub 2020/11/02. doi:
10.1016/j.immuni.2020.10.004.
99. Hvidt AK, Baerends EAM, Søgaard OS, Stærke NB, Raben D, Reekie J, et
al. Comparison of vaccine-induced antibody neutralization against
SARS-CoV-2 variants of concern following primary and booster doses of
COVID-19 vaccines. Front Med (Lausanne) (2022) 9:994160. Epub
2022/10/21. doi: 10.3389/fmed.2022.994160.
100. Rosseto-Welter EA, Rodrigues SS, de Figueiredo AB, França CN,
Oliveira DBL, Bachi ALL, et al. Cellular and humoral immune responses to
vaccination for COVID-19 are negatively impacted by senescent T cells: a
case report. Vaccines (2023) 11(4):840. Epub 2023/04/28. doi:
10.3390/vaccines11040840.
101. Omran EA, Habashy RE, Ezz Elarab LA, Hashish MH, El-Barrawy MA,
Abdelwahab IA, et al. Anti-spike and neutralizing antibodies after two
doses of COVID-19 sinopharm/BIBP vaccine. Vaccines (2022)
10(8):1340. Epub 2022/08/27. doi: 10.3390/vaccines10081340.
102. Lyke KE, Atmar RL, Islas CD, Posavad CM, Szydlo D, Paul Chourdhury
R, et al. Rapid decline in vaccine-boosted neutralizing antibodies
against SARS-CoV-2 omicron variant. Cell Rep Med (2022)
3(7):100679. Epub 2022/07/08. doi: 10.1016/j.xcrm.2022.100679.
103. Furukawa K, Tjan LH, Kurahashi Y, Sutandhio S, Nishimura M, Arii J,
et al. Assessment of neutralizing antibody response against SARS-CoV-2
variants after 2 to 3 doses of the BNT162b2 mRNA COVID-19 vaccine.JAMA Netw Open (2022) 5(5):e2210780. Epub 2022/05/10. doi:
10.1001/jamanetworkopen.2022.10780.
104. Fox T, Geppert J, Dinnes J, Scandrett K, Bigio J, Sulis G, et al.
Antibody tests for identification of current and past infection with
SARS-CoV-2. Cochrane Database Syst Rev (2022) 11(11):Cd013652.
Epub 2022/11/18. doi: 10.1002/14651858.CD013652.pub2.
105. Theel ES. Performance characteristics of high-throughput serologic
assays for severe acute respiratory syndrome coronavirus 2 with Food and
Drug Administration Emergency Use authorization: a review. Clin
Lab Med (2022) 42(1):15–29. Epub 2022/02/15. doi:
10.1016/j.cll.2021.10.006.
106. Olbrich L, Castelletti N, Schälte Y, Garí M, Pütz P, Bakuli A, et
al. Head-to-head evaluation of seven different seroassays including
direct viral neutralisation in a representative cohort for SARS-CoV-2.J Gen Virol (2021) 102(10):001653. Epub 2021/10/09. doi:
10.1099/jgv.0.001653.
107. The National SARS-CoV-2 Serology Assay Evaluation Group.
Performance characteristics of five immunoassays for SARS-CoV-2: a
head-to-head benchmark comparison. Lancet Infect Dis (2020)
20(12):1390–400. Epub 2020/09/27. doi: 10.1016/s1473-3099(20)30634-4.
108. Harritshøj LH, Gybel-Brask M, Afzal S, Kamstrup PR, Jørgensen CS,
Thomsen MK, et al. Comparison of 16 serological SARS-CoV-2 immunoassays
in 16 clinical laboratories. J Clin Microbiol (2021) 59(5). Epub
2021/02/13. doi: 10.1128/jcm.02596-20.
109. Chiereghin A, Zagari RM, Galli S, Moroni A, Gabrielli L, Venturoli
S, et al. Recent advances in the evaluation of serological assays for
the diagnosis of SARS-CoV-2 infection and COVID-19. Front Public
Health (2020) 8:620222. Epub 2021/03/09. doi:
10.3389/fpubh.2020.620222.
110. Riester E, Findeisen P, Hegel JK, Kabesch M, Ambrosch A, Rank CM,
et al. Performance evaluation of the Roche Elecsys Anti-SARS-CoV-2 S
immunoassay. J Virol Methods (2021) 297:114271. Epub 2021/08/31.
doi: 10.1016/j.jviromet.2021.114271.
111. Muecksch F, Wise H, Batchelor B, Squires M, Semple E, Richardson C,
et al. Longitudinal serological analysis and neutralizing antibody
levels in coronavirus disease 2019 convalescent patients. J Infect
Dis (2021) 223(3):389–98. Epub 2020/11/04. doi:
10.1093/infdis/jiaa659.
112. Migueres M, Chapuy-Regaud S, Miédougé M, Jamme T, Lougarre C, Da
Silva I, et al. Current immunoassays and detection of antibodies
elicited by Omicron SARS-CoV-2 infection. J Med Virol (2023)
95(1):e28200. Epub 2022/10/09. doi: 10.1002/jmv.28200.
113. Springer DN, Perkmann T, Jani CM, Mucher P, Prüger K, Marculescu R,
et al. Reduced sensitivity of commercial spike-specific antibody assays
after primary infection with the SARS-CoV-2 Omicron variant.Microbiol Spectr (2022) 10(5):e0212922. Epub 2022/08/26. doi:
10.1128/spectrum.02129-22.
114. Habermann E, Frommert LM, Ghannam K, Nguyen My L, Gieselmann L,
Tober-Lau P, et al. Performance of commercial SARS-CoV-2 wild-type and
Omicron BA.1 antibody assays compared with pseudovirus neutralization
tests. J Clin Virol (2023) 165:105518. Epub 2023/06/25. doi:
10.1016/j.jcv.2023.105518.
115. Rössler A, Knabl L, Raschbichler LM, Peer E, von Laer D, Borena W,
et al. Reduced sensitivity of antibody tests after omicron infection.Lancet Microbe (2023) 4(1):e10–e1. Epub 2022/09/23. doi:
10.1016/s2666-5247(22)00222-1.
116. Montesinos I, Dahma H, Wolff F, Dauby N, Delaunoy S, Wuyts M, et
al. Neutralizing antibody responses following natural SARS-CoV-2
infection: dynamics and correlation with commercial serologic tests.J Clin Virol (2021) 144:104988. Epub 2021/10/05. doi:
10.1016/j.jcv.2021.104988.
117. Theel ES, Johnson PW, Kunze KL, Wu L, Gorsh AP, Granger D, et al.
SARS-CoV-2 serologic assays dependent on dual-antigen binding
demonstrate diverging kinetics relative to other antibody detection
methods. J Clin Microbiol (2021) 59(9):e0123121. Epub 2021/06/25.
doi: 10.1128/jcm.01231-21.
118. Chapuy-Regaud S, Miédougé M, Abravanel F, Da Silva I, Porcheron M,
Fillaux J, et al. Evaluation of three quantitative anti-SARS-CoV-2
antibody immunoassays. Microbiol Spectr (2021) 9(3):e0137621.
Epub 2021/12/24. doi: 10.1128/spectrum.01376-21.
119. Lustig Y, Sapir E, Regev-Yochay G, Cohen C, Fluss R, Olmer L, et
al. BNT162b2 COVID-19 vaccine and correlates of humoral immune responses
and dynamics: a prospective, single-centre, longitudinal cohort study in
health-care workers. Lancet Respir Med (2021) 9(9):999–1009.
Epub 2021/07/06. doi: 10.1016/s2213-2600(21)00220-4.
120. Rubio-Acero R, Castelletti N, Fingerle V, Olbrich L, Bakuli A,
Wölfel R, et al. In search of the SARS-CoV-2 protection correlate:
head-to-head comparison of two quantitative S1 assays in
pre-characterized oligo-/asymptomatic patients. Infect Dis Ther(2021) 10(3):1505–18. Epub 2021/06/18. doi: 10.1007/s40121-021-00475-x.
121. Jochum S, Kirste I, Hortsch S, Grunert VP, Legault H, Eichenlaub U,
et al. Clinical utility of Elecsys anti-SARS-CoV-2 S assay in COVID-19
vaccination: an exploratory analysis of the mRNA-1273 Phase 1 trial.Front Immunol (2021) 12:798117. Epub 2022/02/08. doi:
10.3389/fimmu.2021.798117.
122. Regev-Yochay G, Lustig Y, Joseph G, Gilboa M, Barda N, Gens I, et
al. Correlates of protection against COVID-19 infection and intensity of
symptomatic disease in vaccinated individuals exposed to SARS-CoV-2 in
households in Israel (ICoFS): a prospective cohort study. Lancet
Microbe (2023) 4(5):e309–e18. Epub 2023/03/25. doi:
10.1016/s2666-5247(23)00012-5.
123. Lu Y, Wang J, Li Q, Hu H, Lu J, Zeliang C. Advances in
neutralization assays for SARS-CoV-2. Scand J Immunol (2021)
94:e13088.
124. Ast V, Costina V, Eichner R, Bode A, Aida S, Gerhards C, et al.
Assessing the quality of serological testing in the COVID-19 pandemic:
results of a European External Quality Assessment (EQA) scheme for
anti-SARS-CoV-2 antibody detection. J Clin Microbiol (2021)
59(9):e0055921. Epub 2021/07/01. doi: 10.1128/JCM.00559-21.
125. Perkmann T, Mucher P, Osze D, Muller A, Perkmann-Nagele N, Koller
T, et al. Comparison of five Anti-SARS-CoV-2 antibody assays across
three doses of BNT162b2 reveals insufficient standardization of
SARS-CoV-2 serology. J Clin Virol (2023) 158:105345. Epub
2022/12/04. doi: 10.1016/j.jcv.2022.105345.
126. World Health Organization. Establishment of the WHO International
Standard and Reference Panel for anti-SARS-CoV-2 antibody. 2020, WHO
Expert Committee on Biological Standardization (WHO/BS/2020.2403).
https://www.who.int/publications/m/item/WHO-BS-2020.2403 (2020)
[Accessed June 23, 2023].
127. Beyerl J, Rubio-Acero R, Castelletti N, Paunovic I, Kroidl I, Khan
ZN, et al. A dried blood spot protocol for high throughput analysis of
SARS-CoV-2 serology based on the Roche Elecsys anti-N assay.EBioMedicine (2021) 70:103502. Epub 2021/08/02. doi:
10.1016/j.ebiom.2021.103502.
128. Decru B, Van Elslande J, Weemaes M, Houben E, Empsen I, André E, et
al. Comparison of the diagnostic performance with whole blood and plasma
of four rapid antibody tests for SARS-CoV-2. Clin Chem Lab Med(2020) 58(10):e197–e9. Epub 2020/07/07. doi: 10.1515/cclm-2020-0817.
129. Fröberg J, Diavatopoulos DA. Mucosal immunity to severe acute
respiratory syndrome coronavirus 2 infection. Curr Opin Infect
Dis (2021) 34(3):181–6. Epub 2021/04/27. doi:
10.1097/qco.0000000000000724.
130. Guerrieri M, Francavilla B, Fiorelli D, Nuccetelli M, Passali FM,
Coppeta L, et al. Nasal and salivary mucosal humoral immune response
elicited by mRNA BNT162b2 COVID-19 vaccine compared to SARS-CoV-2
natural infection. Vaccines (2021) 9(12). Epub 2021/12/29. doi:
10.3390/vaccines9121499.
131. Cervia C, Nilsson J, Zurbuchen Y, Valaperti A, Schreiner J,
Wolfensberger A, et al. Systemic and mucosal antibody responses specific
to SARS-CoV-2 during mild versus severe COVID-19. J Allergy Clin
Immunol (2021) 147(2):545–57.e9. Epub 2020/11/23. doi:
10.1016/j.jaci.2020.10.040.
132. Russell MW, Mestecky J. Mucosal immunity: the missing link in
comprehending SARS-CoV-2 infection and transmission. Front
Immunol (2022) 13:957107. Epub 2022/09/06. doi:
10.3389/fimmu.2022.957107.
133. Heaney CD, Pisanic N, Randad PR, Kruczynski K, Howard T, Zhu X, et
al. Comparative performance of multiplex salivary and commercially
available serologic assays to detect SARS-CoV-2 IgG and neutralization
titers. J Clin Virol (2021) 145:104997. doi:
10.1016/j.jcv.2021.104997.
134. Conklin SE, Martin K, Manabe YC, Schmidt HA, Miller J, Keruly M, et
al. Evaluation of serological SARS-CoV-2 lateral flow assays for rapid
point-of-care testing. J Clin Microbiol (2021) 59(2):e02020-20.
Epub 2020/11/20. doi: 10.1128/jcm.02020-20.
135. Sims MD, Podolsky RH, Childers KL, Higgins B, Trueman J, Homayouni
R, et al. Dried blood spots are a valid alternative to venipuncture for
COVID-19 antibody testing. J Immunol Methods (2023) 513:113420.
Epub 2023/01/04. doi: 10.1016/j.jim.2022.113420.
136. Kaufman HW, Meyer WA, Clarke NJ, Radcliff J, Rank CM, Freeman J, et
al. Assessing vulnerability to COVID-19 in high-risk populations: the
role of SARS-CoV-2 spike-targeted serology. Popul Health Manag(2023) 26(1):29–36. Epub 2023/02/18. doi: 10.1089/pop.2022.0241.
137. Perry J, Osman S, Wright J, Richard-Greenblatt M, Buchan SA,
Sadarangani M, et al. Does a humoral correlate of protection exist for
SARS-CoV-2? A systematic review. PLoS One (2022) 17(4):e0266852.
Epub 2022/04/09. doi: 10.1371/journal.pone.0266852.
138. Haveri A, Solastie A, Ekström N, Österlund P, Nohynek H, Nieminen
T, et al. Neutralizing antibodies to SARS-CoV-2 Omicron variant after
third mRNA vaccination in health care workers and elderly subjects.Eur J Immunol (2022) 52(5):816–24. Epub 2022/03/22. doi:
10.1002/eji.202149785.
139. O’Mahoney LL, Routen A, Gillies C, Ekezie W, Welford A, Zhang A, et
al. The prevalence and long-term health effects of Long Covid among
hospitalised and non-hospitalised populations: A systematic review and
meta-analysis. EClinicalMedicine (2023) 55:101762. Epub
2022/12/08. doi: 10.1016/j.eclinm.2022.101762.
140. Desai A, Kulkarni A, Rajkumar SV, Gyawali B. Clinical trial end
points in severe COVID-19. Mayo Clin Proc (2020) 95(8):1578–80.
Epub 2020/08/06. doi: 10.1016/j.mayocp.2020.05.025.
141. Hansen CH, Michlmayr D, Gubbels SM, Mølbak K, Ethelberg S.
Assessment of protection against reinfection with SARS-CoV-2 among 4
million PCR-tested individuals in Denmark in 2020: a population-level
observational study. Lancet (2021) 397(10280):1204–12. Epub
2021/03/21. doi: 10.1016/s0140-6736(21)00575-4.
142. Abu-Raddad LJ, Chemaitelly H, Coyle P, Malek JA, Ahmed AA, Mohamoud
YA, et al. SARS-CoV-2 antibody-positivity protects against reinfection
for at least seven months with 95% efficacy. EClinicalMedicine(2021) 35:100861. Epub 2021/05/04. doi: 10.1016/j.eclinm.2021.100861.
143. Hall VJ, Foulkes S, Charlett A, Atti A, Monk EJM, Simmons R, et al.
SARS-CoV-2 infection rates of antibody-positive compared with
antibody-negative health-care workers in England: a large, multicentre,
prospective cohort study (SIREN). Lancet (2021)
397(10283):1459–69. Epub 2021/04/13. doi:
10.1016/s0140-6736(21)00675-9.
144. Lumley SF, Rodger G, Constantinides B, Sanderson N, Chau KK, Street
TL, et al. An observational cohort study on the incidence of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and
B.1.1.7 variant infection in healthcare workers by antibody and
vaccination status. Clin Infect Dis (2022) 74(7):1208–19. Epub
2021/07/04. doi: 10.1093/cid/ciab608.
145. Abu-Raddad LJ, Chemaitelly H, Ayoub HH, Coyle P, Malek JA, Ahmed
AA, et al. Introduction and expansion of the SARS-CoV-2 B.1.1.7 variant
and reinfections in Qatar: a nationally representative cohort study.PLoS Med (2021) 18(12):e1003879. Epub 2021/12/17. doi:
10.1371/journal.pmed.1003879.
146. Chemaitelly H, Bertollini R, Abu-Raddad LJ. Efficacy of natural
immunity against SARS-CoV-2 reinfection with the beta variant. N
Engl J Med (2021) 385(27):2585–6. Epub 2021/12/16. doi:
10.1056/NEJMc2110300.
147. Nordström P, Ballin M, Nordström A. Risk of SARS-CoV-2 reinfection
and COVID-19 hospitalisation in individuals with natural and hybrid
immunity: a retrospective, total population cohort study in Sweden.Lancet Infect Dis (2022) 22(6):781–90. Epub 2022/04/04. doi:
10.1016/s1473-3099(22)00143-8.
148. Altarawneh HN, Chemaitelly H, Hasan MR, Ayoub HH, Qassim S,
AlMukdad S, et al. Protection against the omicron variant from previous
SARS-CoV-2 infection. N Engl J Med (2022) 386(13):1288–90. Epub
2022/02/10. doi: 10.1056/NEJMc2200133.
149. Pulliam JRC, van Schalkwyk C, Govender N, von Gottberg A, Cohen C,
Groome MJ, et al. Increased risk of SARS-CoV-2 reinfection associated
with emergence of omicron in South Africa. Science (2022)
376(6593):eabn4947. Epub 2022/03/16. doi: 10.1126/science.abn4947.
150. Guedes AR, Oliveira MS, Tavares BM, Luna-Muschi A, Lazari CDS,
Montal AC, et al. Reinfection rate in a cohort of healthcare workers
over 2 years of the COVID-19 pandemic. Sci Rep (2023) 13(1):712.
Epub 2023/01/14. doi: 10.1038/s41598-022-25908-6.
151. Chemaitelly H, Nagelkerke N, Ayoub HH, Coyle P, Tang P, Yassine HM,
et al. Duration of immune protection of SARS-CoV-2 natural infection
against reinfection. J Travel Med (2022) 29(8):taac109. Epub
2022/10/01. doi: 10.1093/jtm/taac109.
152. Bowe B, Xie Y, Al-Aly Z. Acute and postacute sequelae associated
with SARS-CoV-2 reinfection. Nature Medicine (2022)
28(11):2398–405. doi: 10.1038/s41591-022-02051-3.
153. Yang SL, Ripen AM, Lee JV, Koh K, Yen CH, Chand AK, et al. Time
from last immunity event against infection during Omicron-dominant
period in Malaysia. Int J Infect Dis (2023) 128:98–101. Epub
2022/12/30. doi: 10.1016/j.ijid.2022.12.025.
154. Stein C, Nassereldine H, Sorensen RJD, Amlag JO, Bisignano C, Byrne
S, et al. Past SARS-CoV-2 infection protection against re-infection: a
systematic review and meta-analysis. Lancet (2023). doi:
10.1016/S0140-6736(22)02465-5.