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Key Points: 13 

● ODP Site 752 is marked by a 405-kyr and 100-kyr eccentricity and obliquity imprint in 14 

XRF-derived records.  15 

● Late Miocene Biogenic Bloom is absent at Broken Ridge according to the XRF-derived 16 

paleoproductivity proxy. 17 

● Shift in inter-ocean connectivity to the middle latitudes modified current intensity over 18 

Broken Ridge throughout the Miocene.  19 

20 
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Abstract 21 

A significant shift in Earth's climate characterizes the Neogene, transitioning from a single-ice-22 

sheet planet to the current bipolar configuration. This climate evolution is closely linked to 23 

changing ocean currents, but globally-distributed continuous high-resolution sedimentary records 24 

are needed to fully capture this interaction. The Ocean Drilling Program (ODP) Site 752, located 25 

on Broken Ridge in the Indian Ocean, provides such a Miocene-to-recent archive. We use X-ray 26 

fluorescence (XRF) core scanning to build an eccentricity-tuned age-depth model and 27 

reconstruct paleoceanographic changes since 23 Ma. We find two intervals of enhanced 28 

productivity, during the early and middle Miocene (18.5 – 13.7 Ma) and late Pliocene/early 29 

Pleistocene (3 – 1 Ma). We also report a mixed eccentricity-obliquity imprint in the XRF-derived 30 

paleoproductivity proxy. In terms of grain size, three coarsening steps occur between 19.2 – 16 31 

Ma, 10.8 – 8 Ma, and since 2.6 Ma. The steps respectively indicate stronger current winnowing 32 

in response to vigorous Antarctic Intermediate Water flow over Broken Ridge in the early 33 

Miocene, the first transient onset of Tasman Leakage in the Late Miocene, and the intensification 34 

of global oceanic circulation at the Plio-Pleistocene transition. High-resolution iron and 35 

manganese series provide a detailed Neogene dust record. This study utilized a single hole from 36 

an ODP legacy-site. Nevertheless, we managed to provide novel perspectives on past Indian 37 

Ocean responses to astronomical forcing. We conclude that Neogene sediments from Broken 38 

Ridge harbor the potential for even more comprehensive reconstructions. Realizing this potential 39 

necessitates re-drilling of these sedimentary archives utilizing modern drilling strategies.  40 

  41 
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Plain Language Summary 42 

This study looks into how the Indian Ocean changed since the start of the Neogene (last 23 43 

million years). We use X-ray fluorescence (XRF) analyses to measure the chemical composition 44 

of a marine sediment core (ODP Site 752), drilled on Broken Ridge at 1086 m water depth. Our 45 

results show that the central Indian Ocean had overall higher productivity levels between 18.5 – 46 

13.7 million years ago, but productivity levels varied significantly on timescales from ten 47 

thousand to hundred thousand years. These changes were influenced by variations in the Earth's 48 

orbit around the Sun. The grain size of the sediment became coarser at three intervals during the 49 

last 23 million years, which is thought to be caused by stronger ocean currents over Broken 50 

Ridge at those times. Overall, the study suggests that the Indian Ocean has gone through 51 

significant changes in the past and that the sediment from this site could be useful for further 52 

paleoceanographic research.  53 
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1 Introduction 54 

The global ocean is an interconnected system, regulating the atmosphere, climate and 55 

elemental budgets (e.g., Broeker, 1991, Stocker et al., 1992). The Indian Ocean acts as a 56 

switchboard within this system, connecting the larger water masses of the Pacific and the 57 

Atlantic Oceans. Today, direct connectivity between the larger ocean basins is mainly exclusive 58 

to the middle latitudes. But, in the past, low-latitude inter-basin connections played a more 59 

significant role. As the Indian Ocean transitioned from an open tectonic configuration to a 60 

restricted configuration throughout the Neogene, it underwent significant changes in its climatic 61 

and oceanic organization. Two major oceanic gateway closures affected Indian Ocean 62 

connectivity during the Neogene. The first was the restriction of the Indonesian Gateway 63 

(between Borneo and New Guinea, ~25 Ma, Kuhnt et al., 2004), which connects the Pacific to 64 

the Indian Ocean. This restriction blocked the flow of warm Pacific water into the Indian Ocean 65 

(Kuhnt et al., 2004). The second was the final termination of the Tethyan Ocean (~13.8 Ma, 66 

Bialik et al., 2019). This final closure of the Tethyan Ocean decoupled the Mediterranean Sea 67 

and the Indian Ocean, preventing Indian Ocean warm water from flowing west and entering the 68 

Atlantic Ocean at low latitudes. The closure of the Tethys shifted the inter-basinal connection 69 

between the Indian and Atlantic oceans to the mid-latitudes. Hence, surface waters were forced 70 

south around Africa (Agulhas Leakage; de Ruijter et al., 1999; Durgadoo et al., 2017; Gordon, 71 

2003; Ohishi et al., 2017; Ridgway & Dunn, 2007). This configuration is marked by three inter-72 

connected southern subtropical gyres, which together form the Southern Hemisphere Supergyre 73 

(Speich et al., 2002; Ridgway & Dunn, 2007). To a lesser extent, similar shift occurred between 74 

the Pacific and Indian oceans. The link between the Pacific and Indian oceans occurs mainly 75 

through routes the low-latitude Indonesian Throughflow (ITF, Gordon et al., 2005) and the 76 
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middle-latitude Tasman Leakage (TL, Speich et al., 2001). The ITF transports water from the 77 

Pacific to the Indian Ocean at surface water depths (<300 m, van Sebille et al., 2014). Tasman 78 

Leakage occurs at intermediate water depths south of Australia (Middleton, 2002, Speich et al., 79 

2002, van Sebille et al., 2012, 2014, Rosell-Fieschi et al., 2013) and was established ~7 Myr ago 80 

(Christensen et al., 2021) – marking another connectivity shift to the middle-latitudes. 81 

Neogene shifts in Indian Ocean dynamics are also interwoven with the evolution of the 82 

monsoon systems. Monsoonal winds drive ocean currents and contribute to upwelling and 83 

downwelling (Betzler et al., 2016, Bialik et al., 2020). Hence, monsoonal winds influence ocean 84 

salinity, temperature, oxygen, and nutrient levels. Previous research (Dickens & Owen, 1994) 85 

has suggested the existence of an expanded oxygen minimum zone (OMZ) between 6.5 to 3 Ma, 86 

ranging from the northern Indian Ocean as far south as Broken Ridge. This interpretation is 87 

mainly based on observations of Mn depletions at Broken Ridge and benthic foraminifera 88 

assemblages (Dickens & Owen, 1994, Gupta et al., 2013). However, the timing and extent of this 89 

OMZ during the Late Miocene are poorly understood. Definitive evidence for the cross-90 

hemispheric expansion of the Indian Ocean OMZ is currently lacking.  91 

Over the last decade, the International Ocean Discovery Program (IODP) has primarily 92 

focused on the Indian Ocean marginal areas, particularly on regions influenced by monsoons 93 

(Clift et al., 2022). However, locations in the interior of the Indian Ocean also holds great 94 

potential for revealing shifts in the position of the Indian Ocean gyres, productivity patterns, and 95 

general changes in ocean circulation. Such regions were sampled by the Ocean Drilling Program 96 

(ODP) in the 1980’s and 90’s. For example, ODP Leg 121 drilled Site 752 on Broken Ridge. 97 

Broken Ridge is a west-northwest trending oceanic plateau in the central Indian Ocean that 98 

separated from the Kerguelen Plateau during the middle Eocene (~42 Ma). Since then, it has 99 
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drifted from a ~55°S paleolatitude to its present-day location at ~31°S (Berggren et al., 1985; 100 

Mutter & Cande, 1983). It was accompanied with subsidence but no large-scale tilting during its 101 

northward drift. This makes for a ~100 m-thick package of Neogene sediments that accumulated 102 

on Broken Ridge. At ODP Site 752, this so-called horizontal cap consists of nannofossils ooze 103 

with foraminiferal sand (94.5 – 97% CaCO3, Peirce & Weissel, 1989). While Site 752 has good 104 

recovery in its Neogene section (~95.9%), the site has not yet been studied for paleoceanography 105 

on astronomical timescales. Moreover, due to its location and the intermediate water depth, this 106 

site can be used for tracing Antarctic Intermediate water (AAIW), and Tasman Leakage (TL). 107 

Nevertheless, this sedimentary archive has the potential to reveal spatial and temporal changes in 108 

Indian Ocean paleoceanography since the Early Miocene. This is mainly because new 109 

techniques, like cm-scale X-Ray Fluorescence (XRF) core scanning, are standardly used 110 

nowadays but were not yet available at the time of coring. 111 

In this study, we generate an astronomically-tuned age-depth model, based on the XRF-112 

derived calcium-iron (Ca/Fe) ratios downcore. Thereby, it is important to acknowledge that the 113 

XRF data used in this study originate from a single hole (ODP Hole 752A), precluding the 114 

application of stratigraphic splicing techniques employed in contemporary IODP 115 

paleoceanographic studies. Nonetheless, the 95.9%-recovery achieved in Hole 752A enables us 116 

to develop an age-depth model based on the eccentricity scale. This age-depth model is then used 117 

to investigate time-series of other elemental proxies and to characterize oceanographic change at 118 

Broken Ridge since the Early Miocene (e.g., productivity, current winnowing, and dust 119 

transport).   120 
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2 Materials and Methods 121 

2.1 Site description  122 

      Ocean Drilling Program (ODP) Hole 752A (Fig. 1a) was drilled near the crest of Broken 123 

Ridge (30°53.475'S, 93°34.652'E; 1086.3m water depth). Broken Ridge separated from the 124 

Kerguelen Plateau due to lithospheric extension and seafloor spreading that began before 42 Ma 125 

(Berggren et al., 1985; Mutter & Cande, 1983). Broken Ridge has moved north by about 20° of 126 

latitude since the Middle Eocene as part of the Indo-Australian plate. More than 1500 m of 127 

sediments have accumulated on Broken Ridge, recording the oceanographic history of the Indian 128 

Ocean from the Late Cretaceous until today. Sediments from Broken Ridge consist of four major 129 

sections. The horizontal cap (fourth section) has been recovered at Site 752, 753, 754, 755 and 130 

1141 (Peirce & Weissel, 1989, Coffin et al., 2000). At Site 752, the horizontal cap consists of 131 

nannofossils and foraminiferal ooze with foraminiferal sand (94.5 – 97% CaCO3). The base of 132 

the horizontal cap includes some upper Eocene and upper Oligocene sediments, but it chiefly 133 

consists of Neogene carbonate oozes, deposited under pelagic conditions (Peirce & Weissel, 134 

1989). For this study, we exclusively focus on the Neogene portion of the horizontal cap, clearly 135 

above the angular unconformity, studying sediments between cores 752A-1H and 752A-10H (0 136 

– 91.70 meters below sea floor (mbsf); Fig. 1b).  137 

Broken Ridge has always been located in intermediate water depths throughout the studied 138 

interval. The angular unconformity described above consists of two pebble layers at the bottom 139 

of the horizontal cap. Subsequent paleo-water depths gradually deepen up section. Sclater et al. 140 

(1985) calculated 316 m of subsidence for Broken Ridge since 22 Ma, based on an assumption 141 

that the Broken Ridge crust is 85 Myr old. However, the age of the crust is ~100 Ma according to 142 
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2.2 X-ray fluorescence core scanning 156 

            The bulk elemental composition of ODP Hole 752A sediments was measured on the 157 

archive-half core surfaces using X-ray fluorescence core scanning using an Itrax XRF scanner 158 

(Löwemark et al., 2019) at the Kochi Core Center, Kochi, Japan. Measurements were taken at a 159 

spatial resolution of 2 cm, with an X-Ray beam size of 0.2 x 20 mm, a Molybdenum X-Ray 160 

source energy of 30 kV (55 mA, no filter), and a 10 s count time for each measurement. Element 161 

intensities (in counts) were obtained by processing raw X-ray spectra using the ITRAX software 162 

for the elements Al, Si, P, S, Cl, Ar, K, Ca, Ti, V,Cr, Mn, Fe, Ni, Cu, Zn, Ga, As, Se, Br, Rb, Sr, 163 

Y, Zr, Cd, Sn, Cs, Ba, Ta, W, Re as well as the coherent (coh) incoherent (inc) scatter of the 164 

Molybdenum X-ray source.    165 

2.2.1 Paleoproductivity index 166 

 To reconstruct changes in paleoproductivity, we utilize a group of metallic 167 

micronutrients (Cd, Cu, Ni, Zn, Cr and Br). These elements are usually depleted at the surface 168 

ocean by biology, we argue their accumulation in the sediment could be used to trace 169 

productivity (Tribovillard et al., 2006, Steiner et al., 2017). To generate a paleoproductivity 170 

index we summed up the XRF counts of all productivity-related elements and multiplied by 1000. 171 

To account for the background, we then divided the product by Ca counts. This 172 

paleoproductivity index is designed to capture fluctuations in the relative strength of the nutrient-173 

limited biological pump versus the alkalinity pump. 174 

We recognize that counts for the selected metallic micronutrients are generally low. 175 

Nevertheless, we argue that each of those elements carries a paleoproductivitiy signal (and is 176 

therefore not pure noise) because of three main reasons. First, for all these elements, an exposure 177 
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time of 10 s is sufficient to obtain reliable results according to the practical guidelines in 178 

Löwemark et al. (2019). Second, the covariance matrix (Fig. S1) of Cd/Ca, Cu/Ca, Ni/Ca, Zn/Ca, 179 

Cr/Ca and Br/Ca shows that these productivity-related elements are mostly positively correlated, 180 

and hence likely to be reflecting the same paleoproductivity signal. Especially Zn, Cr, Ni and Cu 181 

seem to be elements with mutually consistent (and therefore non-random) signals. Third, and 182 

most importantly, our paleoproductivity index exhibits co-variation with shipboard Corg 183 

measurements.  184 

2.2.2 Current winnowing proxy 185 

            Here, we use the total counts received by the XRF core-scanner detector as a measure of 186 

sediment bulk density. Total counts record shows a good agreement with the shipboard GRA 187 

bulk density (Fig. S2), which supports that total counts record relates to the sediment bulk 188 

density and can be used as proxy for the current winnowing. We also checked the 189 

paleoproductivity index with this XRF-derived current winnowing proxy, which show no 190 

correlation between these two records.  191 

2.3 Grain size analysis 192 

            Grain size measurements of 123 samples throughout the last 23 million years were 193 

conducted in the Particle-Size Laboratory at MARUM, University of Bremen with a Beckman 194 

Coulter Laser Diffraction Particle Size Analyzer LS 13320. Samples were first diluted (dilution 195 

factor: >25), and the samples were boiled with ~0.3 g tetra-sodium diphosphate decahydrate 196 

(Na4P2O7 * 10H2O) to ensure fully disaggregated prior to the measurements (McGregor et al., 197 

2009). All preparation steps and measurements were carried out with deionized, degassed and 198 

filtered water (filter mesh size: 0.2 µm) to reduce the potential influence of gas bubbles or 199 
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particles within the water. The particle-size distribution result of a sample consists of 116 size 200 

classes (from 0.04 to 2000 μm). The calculation of the particle sizes relies on the Fraunhofer 201 

diffraction theory and the Polarization Intensity Differential Scattering (PIDS) for particles from 202 

0.4 to 2000 µm and from 0.04 to 0.4 µm, respectively. The reproducibility was checked regularly 203 

when analyzing the full sample by replicate analyses of three internal glass-bead standards and is 204 

found to be better than ±0.7 µm for the mean and ±0.6 µm for the median particle size (1σ). The 205 

average standard deviation integrated overall size classes is better than ±4 vol% (note that the 206 

standard deviation of the individual size classes is not distributed uniformly). All provided 207 

statistic values are based on a geometric statistic. 208 

2.4 Biostratigraphy 209 

            Biostratigraphic age control points from the shipboard report (Peirce & Weissel, 1989) 210 

were updated to GTS2020 (Table 1, Raffi et al., 2020). During the expedition, 4-to-5 cm thick 211 

biostratigraphic samples were taken from every core catcher (i.e., every ~9 m). The depth error 212 

shown in Table 1 was calculated by taking the stratigraphic distance between the proposed 213 

stratigraphic depth of the datum in the shipboard report and the stratigraphic depth of the 214 

corresponding biostratigraphic sample. The biostratigraphic age-depth tie-points (Table 1) 215 

suggest relatively stable sedimentation rates throughout the studied interval, ranging between 2.9 216 

and 5.7 m/Myr.     217 

 218 

Table 1. Calcareous nannofossil datums (Peirce & Weissel, 1989) used for depth-age 219 

correlation at ODP Hole 752A. Samples for biostratigraphy have been taken from every core-220 
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catcher in the studied interval between cores 752A-1H and 752A-10H. We estimate the depth 221 

error by reporting the stratigraphic distance between the datum and the corresponding sample. 222 

Datum 

T = Top, B = Base 

References Depth 

(mbsf) 

Depth 

error  

(mbsf) 

Age (Ma, 

from 

GTS2020) 

T Discoaster brouweri Curry et al. (1995) 4.3 ±3.96 1.93 

T Reticulofenestra 

pseudoumbilicus 

Curry et al. (1995) 10.3 ±2.04 3.82 

B Ceratolithus acutus Backman and Raffi 

(1997); 

19.1 ±2.23 5.36 

B Amaurolithus primus Raffi and Flores 

(1995) 

25.1 ±1.31 7.45 

T Sphenolithus 

heteromorphus 

Backman and Raffi 

(1997) 

58.1 ±3.57 13.6 

B Sphenolithus 

heteromorphus 

Backman et al. (2012) 73.1 ±2.4 17.65 

T Reticulofenestra bisecta or 

Zygrhablithus bijugatus 

Roth, 1970, 

Deflandre 1959 

91.7 ±3.17 23.04 

 223 

2.5 Time-series analysis 224 

             Spectral analyses in this study were carried out using the multitaper method (MTM) with 225 

five 2π-tapers (Thomson, 1982) and robust AR(1) background estimation (Meyers, 2012), as 226 

implemented in the R-package astrochron (Meyers, 2014). We emphasize that the analyzed XRF 227 

dataset originates from a single hole is characterized by up to 1.92-m-long datagaps in-between 228 
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cores 752A-6H and 752A-7H. In present-day paleoceanographic studies, this issue is alleviated 229 

by constructing a stratigraphic splice using multiple holes. To better illustrate the effect of these 230 

datagaps, and to account for possible changes in sedimentation rate, we also carry out wavelet-231 

transform time-series analysis. Wavelet analysis was conducted using R-package biwavelet 232 

(Gouhier et al., 2021). Depth-to-time conversion and bandpass filtering were carried out using 233 

functions “tune” and “bandpass” from the R-package astrochron.   234 
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3 Astrochronology 235 

We adopt an astrochronologic approach to reconstruct the age-depth model (Table 1). 236 

First, we detrended the Ca/Fe depth series by cutting off the frequency smaller than 0.05 237 

cycles/m, and apply wavelet and spectral analysis to the Ca/Fe series in the depth domain. The 238 

power spectrum of the Ca/Fe depth series (Fig. 2b) shows a spectral peak ~0.63 cycles/m (~1.6 239 

m/cycle), which may reflect the imprint of the long 405-kyr eccentricity cycle given the 240 

biostratigraphic estimate of long-term average sedimentation rate around 5.7 m/Myr. We suspect 241 

that Ca/Fe is climatically controlled by aridity, which in turn could have driven changes in eolian 242 

flux. The same periodicity can be discerned from the wavelet transform, at least between 0 – 33 243 

mbsf and 44 – 65 mbsf (white dashed line on Fig. 3a). While the MTM power spectrum does not 244 

show a spectral peak that could be associated with 100-kyr eccentricity, the wavelet spectrum 245 

exhibits a bifurcation pattern at ~0.4 m cycles, and markedly higher periodicities between 33 – 246 

44 mbsf (white circles on Fig. 3a). The bifurcation pattern is in an agreement with the long-247 

eccentricity amplitude modulation of the 100-kyr cycles. The wavelet analysis thus suggests 248 

relatively stable sedimentation rates, in agreement with the biostratigraphic estimate, except for 249 

the interval between 33 – 44 mbsf, where sedimentation rates might have been somewhat higher. 250 

The wavelet transform also suggests significant variability at periodicities in-between the 251 

interpreted 100-kyr and 405-kyr eccentricity bands. This spectral power could tentatively be 252 

ascribed to the 173-kyr term in obliquity amplitude modulation.   253 

  In a next step, a broad Gaussian bandpass filter is applied to the Ca/Fe series. The filter 254 

is centered on the peak at ~0.63 cycles/m (bandwidth: 0.4 – 0.95 cycles/m). We fine-tuned the 255 

XRF- derived Ca/Fe series according to the above-described astronomical interpretation by 256 

correlating maxima in the Ca/Fe ~0.63 cycles/m filter to eccentricity maxima and vice versa 257 
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(grey connecting lines between Figs. 3a and 3b). This strategy can be adopted between 0 and 258 

15.1 Ma, but the older interval (15.1 – 23.0 Ma) does not exhibit the clear ~405-kyr imprint 259 

needed for astronomical tuning. Therefore, we use the biostratigraphic tie-points in the >15.1 Ma 260 

interval. We do not include any phase-lags while tuning. The phase relationship between the 261 

proxy and the astronomical solution is in agreement with the findings by Vervoort et al. (2021) 262 

for pelagic carbonates. This phase-relationship implies that more arid climates around the Indian 263 

Ocean correspond to eccentricity minima (e.g., De Vleeschouwer et al., 2018, Duesing et al., 264 

2021, Liu et al., 2021). The power spectrum (Fig. 2c) of the astronomically-tuned Ca/Fe time-265 

series shows an obliquity signal, reaching to the 99% confidence level. We present the Ca/Fe 266 

time-series along the final astronomically-tuned age model in Fig. 3d.   267 
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 268 

 269 

Figure 2. Spectral analysis of Ca/Fe series. (a) Spectral power distribution of the Ca/Fe time-270 

series along the biostratigraphic datums (red dots) with error bars showing depth-uncertainties 271 

and the astronomically-tuned age model (blue); (b) Spectral power distribution of the Ca/Fe 272 

depth-series. The grey line represents the 99% of confidence interval and the light grey line 273 

represents the 95% of confidence interval; (c) Spectral power distribution of the Ca/Fe time-274 

series along the astronomically-tuned age model. The grey line represents the 99% of confidence 275 

interval and the light grey line represents the 95% of confidence interval. 276 
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(yellow) and La11 Eccentricity solution (gray). The astronomically-tuned age-depth model is 284 

refined by tuning maxima in Ca/Fe depth series into eccentricity maxima; (e) Sedimentation rate. 285 
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climate transition; LMC: Late Miocene cooling; iNHG: intensification of Northern Hemisphere 301 

glaciation. 302 

4.1 Paleoproductivity  303 

The paleoproductivity index fluctuates at relatively high values in the Early and Middle 304 

Miocene before sharply decreasing around 14 Ma (Fig. 5a). This pattern shows the same trend as 305 

the low-resolution shipboard record of organic carbon content (Peirce & Weissel, 1989, Fig. 5a), 306 

which again, approved the validation of this paleoproductivity proxy. The index rebounds after 307 

the middle Miocene minimum and then maintains a rather stable level until the Late Pliocene. 308 

None of these shifts correspond to the Late Miocene-Early Pliocene Biogenic Bloom event in the 309 

Indian Ocean and elsewhere (Dickens & Owen, 1999, Hermoyian & Owen, 2001, Grant & 310 

Dickens, 2002, Karatsolis et al., 2022). Nor do we observe particularly elevated productivity 311 

levels around the time of the biogenic bloom (Fig. 5a, b). This is consistent with the very 312 

heterogeneous nature of the Late Miocene Biogenic bloom (Pillot et al., 2023): The Biogenic 313 

Bloom appears to have been highly magnified in already high productivity zones, whereas ODP 314 

Site 752 was located in the center of a low productivity oceanic gyre throughout the studied 315 

interval. ODP Site 752 is also far away from any continental margin area or upwelling zone. All 316 

these factors combined make ODP Site 752 less suited to capture the surface productivity 317 

increase of the biogenic bloom.    318 

The multitaper power spectrum of the paleoproductivity index displays statistically-319 

significant peaks at frequencies that are reminiscent of 405-kyr and ~100-kyr eccentricity forcing. 320 

Elevated spectral power can also be observed at higher frequencies, possibly hinting at an 321 

imprint of obliquity and precession (Fig. 6). However, the 2-cm sampling resolution (~5 kyr 322 
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temporal resolution) may not be adequate to interpret the highest-frequency peaks (precession) 323 

with confidence. We interpret the paleoproductivity reconstruction to be driven by eccentricity 324 

and obliquity on astronomical timescales. Therewith, we make a similar inference as Karatsolis 325 

et al. (2022), who constructed and analyzed a low-latitude global paleoproductivity composite 326 

between 7 and 3 Ma. Our Broken Ridge paleoproductivity reconstruction shows similar 327 

dynamics to the Karatsolis record on eccentricity timescales before 4.4 Ma. Following 4.4 Ma, 328 

however, the behavior diverges (Fig. 5b). Karatsolis et al. (2022) report a sudden collapse of 329 

paleoproductivity (inferred to be the end of the Biogenic Bloom) at 4.4 Ma, whereas 330 

paleoproductivity levels at Site 752 remain unchanged before and after 4.4 Ma. The divergence 331 

between the two records reiterates the fact that Site 752 lies outside any of the oceanic 332 

productivity belts, and therefore exhibits an independent paleoproductivity signal. This signal is 333 

influenced by the same orbital parameters (eccentricity and obliquity) – but is not impacted by 334 

the large-scale shifts in nutrient availability occurring at oceanic margins. It would also suggest 335 

that the productivity gradients between oceanic margins and Broken Ridge during the Biogenic 336 

Bloom may have been steeper. 337 

We suggest that the paleoproductivity patterns as recorded by ODP Hole 752A were 338 

primarily influenced by the northward tectonic movement of the Broken Ridge plateau, climate-339 

driven changes in the latitude of the subtropical front, and astronomically-paced changes in 340 

global ocean circulation. During the Early and Middle Miocene, Broken Ridge was situated at a 341 

latitude of ~40°S and we find enhanced paleoproductivity during globally-warm eccentricity 342 

maxima. This phase-relationship is illustrated by the negative correlation between our 343 

productivity index and the benthic foraminiferal δ18O record (note the flipped isotope axis in Fig. 344 

5c). This observation is in an agreement with the eccentricity-pacing of ocean, climate and 345 
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carbon cycle dynamics in the Middle Miocene, as described in Holbourn et al. (2007). At that 346 

time, low eccentricity orbits might have favored organic carbon burial and global cooling. 347 

Eccentricity maxima on the other hand, especially precession-driven maxima in austral summer 348 

insolation, resulted in a smaller Antarctic ice sheet (De Vleeschouwer et al., 2017). With a 349 

warmer planet and smaller ice sheet came less vigorous ocean circulation, lower calcium 350 

carbonate saturation states in the ocean and a net flux of CO2 from the ocean to the atmosphere. 351 

These warmer conditions have also been inferred to be associated with more intense monsoons 352 

(Holbourn et al., 2007). For ODP Hole 752A, we infer a higher paleoproductivity index during 353 

eccentricity maxima (Fig. 4b, g), suggesting a simultaneous enhancement of the biological pump 354 

and possibly a less efficient alkalinity pump. This model is best illustrated by the rapid rise in 355 

paleoproductivity index after 18.5 Ma (Fig. 5a): This interval coincides with a rapid increase in 356 

eccentricity forcing after a long-term 2.4-Myr eccentricity minimum (Fig. 4b, g) and a rapid 357 

warming after one of the coolest intervals of the Early-Middle Miocene (Holbourn et al., 2015).  358 

The globally-warm period of the Early and especially the Middle Miocene (Miocene 359 

Climatic Optimum, MCO) was abruptly terminated by a major increase in Antarctic ice volume 360 

and a global sea level fall at 13.9 Ma. This global cooling (Middle Miocene Climatic Transition, 361 

MMCT) coincided with a dramatic decline of productivity over Broken Ridge. This event is 362 

paired with a rapid rise and fall in oceanic turnover (Crampton et al., 2016). Afterwards, 363 

productivity slightly recovered and remained rather stable throughout the Late Miocene and early 364 

Pliocene. This stability is likely the result of the northward tectonic movement of Broken Ridge 365 

on the one hand, and the simultaneous northward shift of the Southern Hemisphere climate belts 366 

on the other hand (Groeneveld et al., 2017). Throughout this interval, Broken Ridge was 367 

probably situated slightly north of the subtropical front. The most recent increase in 368 
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green) from 8 to 2 Ma; (c) ODP Hole 752A paleoproductivity index (dark green) compared to 380 

the benthic δ18O megasplice (De Vleeschouwer et al., 2017) (grey) from 20.5 to 14 Ma. 381 
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4.2 Current winnowing  387 

The Neogene portion of Site 752 is mainly foraminiferal and nannofossil oozes (Peirce & 388 

Weissel, 1989). Those two sedimentary components generate a bimodal grain size distribution 389 

with two distinct modes, at ~10 µm and ~150 µm, throughout the studied interval (Fig. 7b). 390 

While the relative strength of these two modes are marked by considerable variability through 391 

time, their position in terms of grain size is stable. This pattern indicates that calcareous 392 

nannofossils and foraminifera are the two major parts of the sediments, with calcareous 393 

nannofossils making up the bulk part of the finest sediment (<63µm) and foraminifera making up 394 

the coarser part of the sediment (100 – 350µm).  395 

We find, however, strong variations in the fine fraction proportion with respect to the 396 

total sediments. These variations likely reflect periods of stronger and weaker winnowing, with 397 

stronger winnowing leading to a removal of the finest fraction (House et al., 1991). Although 398 

there are other factors that may have influence on the grain size, they play only a minor role here 399 

over Broken Ridge (House et al., 1991). The most common among these factors is dissolution. 400 

However, the paleodepths were always above the lysocline (Prell and Peterson, 1985, Rea and 401 

Leinen, 1985), and foraminifera are well preserved throughout the Neogene. Moreover, there is 402 

no dissolution pulse or sea-level change resemblance to the grain size record (House et al., 403 

1991). Therefore, we argue that the grain size record mainly reflects variations in current energy. 404 

The grain-size variations are also registered by the core bulk density, with a strong negative 405 

correlation between both (note the reversed y-axis for total counts on Fig. 7a). The total counts 406 

reflect sediment bulk density, which is thus inversely correlated with grain size and current 407 

winnowing intensity.  408 
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The total counts time-series and the percentage of the grain size >63µm series both 409 

suggest a decrease in winnowing between 23 – 19.2 Ma, as well as between 15 – 13.7 Ma (Fig. 410 

7a). In Figure 7b, these intervals of weakening winnowing are marked by shifts in the relative 411 

importance, away from the coarser mode, towards the finer mode in the grain size distribution. 412 

The 15-13.7 Ma declining trend culminates in the finest sediment grain size distribution observed 413 

in the studied interval between 13.7 and 10.8 Ma (Fig. 7). There are three periods during which 414 

winnowing becomes stronger and grain size distribution coarser: 19.2 – 16 Ma, 10.8– 8 Ma, and 415 

~2.6 Ma to the recent. The relative importance of the foraminifera mode increases during these 416 

higher current energy intervals (Fig. 7b). 417 

Current winnowing was important in the earliest Miocene portion of the record, then 418 

gradually decreased until 19.2 Ma. We relate this relatively strong winnowing to Antarctic 419 

Intermediate Waters (AAIW) flowing over Broken Ridge. In the earliest Miocene, two 420 

intermediate water masses were present in the Indian Ocean, with Tethyan Intermediate Waters 421 

(TIW) coming in from the northwest and occupying the intermediate water depth range in most 422 

of the western Indian Ocean. As a consequence, AAIW was forced to spread into the eastern 423 

Indian Ocean with vigorous flow over Broken Ridge (Wyrtki et al., 1971, Fine, 1993). The 424 

decline in winnowing energy over Broken Ridge between 23 and 19.2 Ma coincided with the 425 

initial disconnection between the Indian Ocean and the Tethys Sea due to the restriction of the 426 

Mesopotamian gateway (Bialik et al., 2019). This restriction resulted in a weakening of the low-427 

latitude circumglobal ocean circulation, and TIW was gradually being cut off from its source. As 428 

a consequence, AAIW had the opportunity to occupy a larger part of the intermediate water 429 

depth range in the Indian Ocean, and expand to the west. In other words, AAIW could have 430 

dissipated its kinetic energy over an increasingly large area, with a reduction in current 431 



manuscript submitted to Paleoceanography and Paleoclimatology 
 

winnowing over Broken Ridge as a result. In contrast, the subsequent interval between 19.2 to 16 432 

Ma was characterized by a marked increase in current winnowing. We attribute this increase in 433 

winnowing to an eastward shift in the AAIW flow, which would then be again more focused 434 

over Broken Ridge. As a result, Broken Ridge would have been increasingly exposed to more 435 

energetic oceanic currents. However, the driving factor that caused AAIW shift eastward remains 436 

unclear. A second decline in both winnowing proxies is observed between 15 – 13.7 Ma, which 437 

corresponds with the final closure of the Mesopotamian Seaway around 13.8 Ma (Bialik et al., 438 

2019). This closure led to the complete termination of low-latitude circumglobal ocean 439 

circulation, and also to a further weakening of Indian Ocean circulation and a reduction in 440 

winnowing over Broken Ridge. Following this evolution, a "quiet period" is discerned between 441 

13.7 and 10.8 Ma. The "quiet period" is marked by higher percentage of finer sediments and a 442 

more distinctive nannofossil peak (Fig. 7b). The onset of the “quiet period” at Broken Ridge 443 

somewhat surprisingly coincides with the Middle Miocene Climatic Transition (MMCT) and the 444 

establishment of the West Antarctic ice sheet (Levy et al., 2016). Those significant changes in 445 

the global climate system led to a stronger meridional temperature gradient and intensification of 446 

global ocean circulation. Our results from Broken Ridge thus suggest that the ocean’s behavior 447 

around this time was actually more heterogenous then previously considered. While most of the 448 

surface and upper intermediate water depths currents see remarkable strengthening (Eberli & 449 

Betzler, 2019), ODP Site 752 on Broken Ridge experienced relatively weak intermediate 450 

currents. We note that this interval is also very stable in terms of productivity due to a 451 

simultaneous and similarly large northward tectonic and climate-belt shift.  452 

Winnowing increases again between 10.8 and 7.5 Ma, coinciding with the first short-453 

lived occurrences of Tasman Leakage (Christensen et al., 2021). This body of intermediate water 454 
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logarithmic scale. The black arrow point out an interval with mass transport deposit (Fig.S3). 467 

MTD = Mass transport deposit. 468 

  469 
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4.3 Fe- and Mn-enriched dust 470 

The presence and abundance of minerals and trace metals in Broken Ridge sediments has 471 

been used in several past studies to make inferences over global climate aridity and ocean water 472 

oxygenation (e.g., Hovan & Rea, 1991, 1992, Dickens & Owen, 1994). In the framework of this 473 

paper, we highlight that the XRF-derived Fe and Mn depth-series agree remarkably well with 474 

these previously published records (Fig. 8). The XRF-derived iron (Fe) series exhibits similar 475 

trends as the eolian component record provided in Hovan and Rea (1991, Fig. 8a), with 476 

particularly high values during the Middle Miocene and a significant decrease after ~15 Ma. 477 

While Fe counts slightly recover around 3 Ma, both proxy records remain at a low level since the 478 

Late Miocene. The manganese (Mn) time-series shows a good agreement with the data generated 479 

by Dickens & Owen (1994), which exhibits a similar evolution, with highest counts in the Early 480 

and Middle Miocene and much lower values after that. The decline of Mn (Fig. 8b) and Mn/Sc 481 

ratio in the sediment between 6.5 and 3 Ma has been described to an expansion of the OMZ by 482 

Dickens & Owen (1994). However, in the light of our winnowing reconstruction presented-483 

above, the overall decrease in sedimentary Mn content may potentially be driven by the long-484 

term increase in current energy.  485 

The decline of Fe and Mn in the Early and Middle Micoene is intriguing, as 486 

simultaneously elevated Fe and Mn counts hint towards submarine hydrothermal activity and the 487 

Amsterdam – St. Paul hotspot was only ~500 km away from Broken Ridge in the Early Miocene 488 

(Janin et al., 2011, Maia et al., 2011, Resing et al., 2015). However, Hovan and Rea (1991) did 489 

not find volcanogenic materials in their investigated smear slides from ODP Hole 752A. Hence, 490 

we adhere to their original interpretation that the mineral component of Broken Ridge Neogene 491 

sediments is mostly eolian in nature, and that changes in mineral flux reflect major climatic shifts 492 
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5 Conclusions 507 

The main patterns observed in the XRF records of ODP Hole 752A coincide with major 508 

Neogene climate evolutionary steps. The Miocene Climatic Optimum is characterized by high 509 

variability and generally high productivity index, with productivity of ODP Hole 752A pulsing at 510 

the same eccentricity beat as the dynamics of the global climate, ocean and carbon cycle. 511 

Following 13.9 Ma and the expansion of the Antarctic ice sheet, ODP Hole 752A experienced a 512 

decline in productivity and current winnowing, in conjunction with the northward shift of 513 

latitudinal climate belts and oceanographic reorganization. The productivity index stabilized at 514 

moderate levels during the Late Miocene and Pliocene. This stabilization is likely due to the 515 

combined effect of a northward tectonic movement of the site and a gradual northward shift of 516 

the climate belts. In the last 3 Myr, increased productivity and current winnowing proxies is 517 

observed. These changes are interpreted to be the result of invigorated ocean circulation at the 518 

time of intensifying northern hemisphere glaciation. The XRF-derived Fe and Mn series provide 519 

a high-resolution record, probably reflecting eolian dust, in good agreement with previous low-520 

resolution smear-slide analyses (Hovan & Rea, 1991). These higher resolution dust records form 521 

the basis for future provenance analyses and a more detailed investigation of eolian dust fluxes. 522 

The above-described features are constrained in time by an astronomically-calibrated age-depth 523 

model. This provides a reference framework for future paleoclimatic and paleoceanographic 524 

studies.  525 

However, to further improve the precision and accuracy of future paleoceanographic studies, 526 

particularly those focusing on Milanković (obliquity and precession) timescales, obtaining 527 

higher-resolution and fully-continuous sedimentary records is essential. This can be achieved by 528 

re-drilling Broken Ridge with state-of-the art coring techniques and strategies. This includes the 529 
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use of the advanced piston corer (APC) and the construction of a stratigraphically complete 530 

composite section by splicing (at least) three different holes at the same site.  531 

  532 
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