References
  1. Underhill, G.H., Peter, G., Chen, C.S. and Bhatia, S.N., (2012). Bioengineering methods for analysis of cells in vitro. Annual review of cell and developmental biology , 28 , p.385.
  2. Mehling, M., (2014). Tay S. Microfluidic cell culture. Curr Opin Biotechnol , 25 , pp.95-102.
  3. Esch, E.W., Bahinski, A. and Huh, D., (2015). Organs-on-chips at the frontiers of drug discovery. Nature reviews Drug discovery ,14 (4), pp.248-260.
  4. Kimura, H., Yamamoto, T., Sakai, H., Sakai, Y. and Fujii, T., (2008). An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab on a Chip ,8 (5), pp.741-746.
  5. Kim, H.J., Huh, D., Hamilton, G. and Ingber, D.E., (2012). Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab on a Chip ,12 (12), pp.2165-2174.
  6. Wu, M.H., Huang, S.B. and Lee, G.B., (2010). Microfluidic cell culture systems for drug research. Lab on a Chip , 10 (8), pp.939-956.
  7. Huh, D., Hamilton, G.A. and Ingber, D.E., (2011). From 3D cell culture to organs-on-chips. Trends in cell biology , 21 (12), pp.745-754.
  8. Marx, U., Andersson, T.B., Bahinski, A., Beilmann, M., Beken, S., Cassee, F.R., Cirit, M., Daneshian, M., Fitzpatrick, S., Frey, O. and Gaertner, C., (2016). Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing.Altex , 33 (3), p.272.
  9. Morgan, S.J., Elangbam, C.S., Berens, S., Janovitz, E., Vitsky, A., Zabka, T. and Conour, L., (2013). Use of animal models of human disease for nonclinical safety assessment of novel pharmaceuticals.Toxicologic pathology , 41 (3), pp.508-518.
  10. Vinci, M., Gowan, S., Boxall, F., Patterson, L., Zimmermann, M., Lomas, C., Mendiola, M., Hardisson, D. and Eccles, S.A., (2012). Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC biology , 10 (1), pp.1-21.
  11. Cheah, L.T., Dou, Y.H., Seymour, A.M.L., Dyer, C.E., Haswell, S.J., Wadhawan, J.D. and Greenman, J., (2010). Microfluidic perfusion system for maintaining viable heart tissue with real-time electrochemical monitoring of reactive oxygen species. Lab on a Chip ,10 (20), pp.2720-2726.
  12. Kieninger, J., Weltin, A., Flamm, H. and Urban, G.A., (2018). Microsensor systems for cell metabolism–from 2D culture to organ-on-chip. Lab on a Chip , 18 (9), pp.1274-1291.
  13. Probst, C., Schneider, S. and Loskill, P., (2018). High-throughput organ-on-a-chip systems: Current status and remaining challenges.Current Opinion in Biomedical Engineering , 6 , pp.33-41.
  14. Rogal, J., Probst, C. and Loskill, P., (2017). Integration concepts for multi-organ chips: how to maintain flexibility?!. Future science OA , 3 (2), p.FSO180.
  15. Oomen, P.E., Skolimowski, M.D. and Verpoorte, E., (2016). Implementing oxygen control in chip-based cell and tissue culture systems.Lab on a chip , 16 (18), pp.3394-3414.
  16. Brennan, M.D., Rexius-Hall, M.L., Elgass, L.J. and Eddington, D.T., (2014). Oxygen control with microfluidics. Lab on a Chip ,14 (22), pp.4305-4318.
  17. Polini, A., Prodanov, L., Bhise, N.S., Manoharan, V., Dokmeci, M.R. and Khademhosseini, A., (2014). Organs-on-a-chip: a new tool for drug discovery. Expert opinion on drug discovery , 9 (4), pp.335-352.
  18. Weise, F., Fernekorn, U., Hampl, J., Klett, M. and Schober, A., (2013). Analysis and comparison of oxygen consumption of HepG2 cells in a monolayer and three‐dimensional high density cell culture by use of a matrigrid®. Biotechnology and Bioengineering ,110 (9), pp.2504-2512.
  19. Zhang, Y.S., Aleman, J., Shin, S.R., Kilic, T., Kim, D., Mousavi Shaegh, S.A., Massa, S., Riahi, R., Chae, S., Hu, N. and Avci, H., (2017). Multisensor-integrated Organs-On-Chips Platform for Automated and Continual. Situ .
  20. Shah, P., Fritz, J.V., Glaab, E., Desai, M.S., Greenhalgh, K., Frachet, A., Niegowska, M., Estes, M., Jäger, C., Seguin-Devaux, C. and Zenhausern, F., (2016). A microfluidics-based in vitro model of the gastrointestinal human–microbe interface. Nature communications , 7 (1), pp.1-15.
  21. Domansky, K., Inman, W., Serdy, J., Dash, A., Lim, M.H. and Griffith, L.G., (2010). Perfused multiwell plate for 3D liver tissue engineering. Lab on a Chip , 10 (1), pp.51-58.
  22. McKenzie, J.R., Cognata, A.C., Davis, A.N., Wikswo, J.P. and Cliffel, D.E., (2015). Real-time monitoring of cellular bioenergetics with a multianalyte screen-printed electrode. Analytical chemistry ,87 (15), pp.7857-7864.
  23. Curto, V.F., Marchiori, B., Hama, A., Pappa, A.M., Ferro, M.P., Braendlein, M., Rivnay, J., Fiocchi, M., Malliaras, G.G., Ramuz, M. and Owens, R.M., (2017). Organic transistor platform with integrated microfluidics for in-line multi-parametric in vitro cell monitoring.Microsystems & nanoengineering , 3 (1), pp.1-12.
  24. Pohanka, M., (2016). Three-dimensional printing in analytical chemistry: principles and applications. Analytical Letters ,49 (18), pp.2865-2882.
  25. Palenzuela, C.L.M. and Pumera, M., (2018). (Bio) Analytical chemistry enabled by 3D printing: Sensors and biosensors. TrAC Trends in Analytical Chemistry , 103 , pp.110-118.
  26. Ambrosi, A. and Pumera, M., (2016). 3D-printing technologies for electrochemical applications. Chemical Society Reviews ,45 (10), pp.2740-2755.
  27. Cardoso, R.M., Mendonça, D.M., Silva, W.P., Silva, M.N., Nossol, E., da Silva, R.A., Richter, E.M. and Muñoz, R.A., (2018). 3D printing for electroanalysis: From multiuse electrochemical cells to sensors.Analytica chimica acta , 1033 , pp.49-57.
  28. Honeychurch, K.C., Rymansaib, Z. and Iravani, P., (2018). Anodic stripping voltammetric determination of zinc at a 3-D printed carbon nanofiber–graphite–polystyrene electrode using a carbon pseudo-reference electrode. Sensors and Actuators B: Chemical ,267 , pp.476-482.
  29. Rymansaib, Z., Iravani, P., Emslie, E., Medvidović‐Kosanović, M., Sak‐Bosnar, M., Verdejo, R. and Marken, F., (2016). All‐polystyrene 3D‐printed electrochemical device with embedded carbon nanofiber‐graphite‐polystyrene composite conductor.Electroanalysis , 28 (7), pp.1517-1523.
  30. Manzanares Palenzuela, C.L., Novotný, F., Krupička, P., Sofer, Z. and Pumera, M., (2018). 3D-printed graphene/polylactic acid electrodes promise high sensitivity in electroanalysis. Analytical chemistry , 90 (9), pp.5753-5757.
  31. O’Neil, G.D., Ahmed, S., Halloran, K., Janusz, J.N., Rodríguez, A. and Rodríguez, I.M.T., (2019). Single-step fabrication of electrochemical flow cells utilizing multi-material 3D printing.Electrochemistry Communications , 99 , pp.56-60
  32. Katseli, V., Economou, A., & Kokkinos, C., (2019). Single-step fabrication of an integrated 3D-printed device for electrochemical sensing applications. Electrochemistry Communications, 103 , pp.100-103
  33. Balasubramanian, K., & Burghard, M., (2006). Biosensors based on carbon nanotubes. Analytical and Bioanalytical Chemistry, 385 (3), pp.452-468
  34. Katz, E., & Willner, I., (2004). Biomolecule-functionalized carbon nanotubes: Applications in nanobioelectronics. ChemPhysChem, 5 (8), pp.1084-1104.
  35. Guiseppi-Elie, A., Lei, C., & Baughman, R. H., (2002). Direct electron transfer of glucose oxidase on carbon nanotubes.Nanotechnology , 13 (5), 559.
  36. Lee, H., Hong, Y. J., Baik, S., Hyeon, T., & Kim, D. H., (2018). Enzyme‐based glucose sensor: from invasive to wearable device.Advanced healthcare materials , 7 (8), 1701150.
  37. Wang, J., (2008). Electrochemical glucose biosensors. Chemical reviews , 108 (2), pp.814-825.
  38. Bruen, D., Delaney, C., Florea, L., & Diamond, D., (2017). Glucose sensing for diabetes monitoring: recent developments. Sensors ,17 (8), 1866.
  39. Kammerer, S. and Küpper, J.H., (2018). Human hepatocyte systems for in vitro toxicology analysis. Journal of Cellular Biotechnology ,3 (2), pp.85-93.