[1] L.
Dusonchet, S. Favuzza, F. Massaro, E. Telaretti, G. Zizzo,
Technological
and
legislative status point of
stationary
energy storages in the EU, Renew. Sustain. Energy Rev. 101 (2019)
158–167.
[2] F.P.
Sioshansi, Consumer, Prosumer, Prosumager: How Service Innovations
Will Disrupt
the Utility
Business
Model, Academic Press, 2019.
[3] M. dos Santos Silva, Study on “residential prosumers in the
European
energy
union”, 2017.
[4] A.
Fernández-Izquierdo, A. Cimmino, C. Patsonakis, A.C. Tsolakis, R.
García- Castro, D. Ioannidis, D.
Tzovaras,
OpenADR ontology: Semantic enrichment
of demand
response strategies in smart grids, in:
Proceedings
of the 2020 International Conference on Smart Energy Systems and
Technologies,
Istanbul,
Turkey, 7-9
September 2020, IEEE, 2020, pp. 1–6.
[5] M.H. Yaghmaee, A. Leon-Garcia, M. Moghaddassian, On the
performance of distributed and cloud-based demand response in smart
grid, IEEE Trans. Smart Grid 9 (5) (2018) 5403–5417,
http://dx.doi.org/10.1109/TSG.2017.
2688486.
[6] C.
Wang, N. Nasiriani, G. Kesidis, B. Urgaonkar, Q. Wang, L.Y. Chen,
A. Gupta, R.
Birke, Recouping energy costs from cloud tenants: Tenant
demand
response aware pricing
design, in:
Proceedings of the 2015 ACM
Sixth
International Conference on Future Energy Systems,
Bangalore,
India, July 14-17, 2015, ACM, 2015, pp. 141–150.
[7] T. Deng, J. Yao, H. Guan, Maximizing profit of cloud service
brokerage with economic demand response, in: Proceedings of the IEEE
Conference on Computer Communications, Honolulu, HI, USA, April 16-19,
2018, IEEE, 2018, pp. 1907–1915,
http://dx.doi.org/10.1109/INFOCOM.2018.8486412.
[8] Y. Chen, J.M. Chang, Fair demand response with electric vehicles
for the cloud based energy management service, IEEE Trans. Smart Grid 9
(1) (2018) 458–468,
http://dx.doi.org/10.1109/TSG.2016.2609738.
[9] K. Kaur, S. Garg, G. Kaddoum, S.H. Ahmed, F. Gagnon, M.
Atiquzza- man, Demand-response management using a fleet of electric
vehicles: An opportunistic-SDN-based edge-cloud framework for smart
grids, IEEE Netw. 33 (5) (2019)
46–53,
http://dx.doi.org/10.1109/MNET.001.1800496.
[10] X. Zhang, D. Biagioni, M. Cai, P. Graf, S. Rahman, An
edge-cloud integrated solution for buildings demand
response using reinforcement learning, IEEE Trans. Smart Grid 12 (1)
(2021) 420–431,
http://dx.doi.org/10.1109/TSG.
2020.3014055.
[11] M. Frincu, R. Draghici, Towards a scalable cloud enabled smart
home automation architecture for demand response, in: Proceedings of the
2016 IEEE PES Innovative Smart Grid Technologies Conference Europe,
Ljubljana, Slovenia, October 9-12, 2016, IEEE, 2016, pp. 1–6,
http://dx.doi.org/10.
1109/ISGTEurope.2016.7856235.
[12] N.
Galkin, C.-W. Yang, L. Nordström, V. Vyatkin, Prototyping
multi-protocol
communication
to enable
semantic
interoperability for demand response
services,
in: 2021 IEEE International Conference on
Communications,
Control, and Computing Technologies for Smart Grids (SmartGridComm),
IEEE, 2021,
pp.
15–20.
[13] J. Wu, F. Orlandi, T. AlSkaif, D. O’Sullivan, S. Dev, A
semantic web approach to uplift decentralized household energy data,
Sustain. Energy Grids Netw. 32 (2022) 100891,
http://dx.doi.org/10.1016/j.segan.2022.100891,
URL:
https://www.sciencedirect.com/science/article/pii/S2352467722001497.
[14] I.
Esnaola-Gonzalez, F.J. Díez, L. Berbakov, N. Tomasevic, P. Štorek, M.
Cruz,
P.
Kirketerp, Semantic interoperability for demand-response programs:
Respond project’s use case, in: 2018
Global
Internet of Things Summit (GIoTS), IEEE, 2018, pp. 1–6.
[15] Q.
Zhou, S. Natarajan, Y. Simmhan, V. Prasanna, Semantic information mod-
eling for
emerging
applications
in smart grid, in: 2012 Ninth International
Conference
on Information Technology-New
Generations,
IEEE, 2012, pp. 775–782.
[16] Hongseok Kim, Y. Kim, K. Yang, M. Thottan, Cloud-based demand
response for smart grid: Architecture and distributed algorithms, in:
Proceedings of the 2011 IEEE International Conference on Smart Grid
Communications, Brussels, Belgium, October 17-20, 2011, IEEE, pp.
398–403,
http://dx.doi.
org/10.1109/SmartGridComm.2011.6102355.
[17] F.
Bellifemine, A. Poggi, G. Rimassa, JADE–a FIPA-compliant agent
framework, in: Proceedings of PAAM,
London,
1999, p. 33.
[18] H.
Wicaksono, T. Boroukhian, A. Bashyal, A demand-response system for
sustainable manufacturing using
linked data
and machine learning, in: Dynamics in Logistics, Springer, Cham, 2021,
pp. 155–181.
[19]
A.T.
Schreiber, Y. Raimond, RDF 1.1 primer, 2014.
[20] P.
Hitzler, M. Krötzsch, B. Parsia, P.F. Patel-Schneider, S. Rudolph, OWL
2 web
ontology language
primer, W3C
Recomm. (2009).
[21] A.
Fernández-Izquierdo, A. Cimmino, R. García-Castro, Supporting demand-
response strategies with the
DELTA
ontology, in: 2021 IEEE/ACS 18th
International
Conference on Computer Systems and
Applications
(AICCSA), IEEE, 2021, pp. 1–8.
[22] H. Knublauch, D. Kontokostas, Shapes constraint language
(SHACL), W3C Recomm. (2017) URL:
https://www.w3.org/TR/shacl/.
[23] A.
Cimmino, A. Fernández-Izquierdo, M. Poveda-Villalón, R. García-Castro,
Ontologies for IoT semantic
interoperability,
in: C. Zivkovic, Y. Guan, C.
Grimm
(Eds.), IoT Platforms, Use Cases, Privacy, and
Business
Models: With
Hands-on
Examples Based on the VICINITY Platform, Springer International
Publishing,
Cham, 2021, pp. 99–123.
[24]
Energy
Market Information Exchange (EMIX) Version 1.0, OASIS Consor- tium,
2012.
[25] An
Introduction to the Universal Smart Energy Framework, Smart Energy,
2019.
[26]
OpenADR 2.0
Profile Specification, B Profile, OpenADR Alliance, 2015.
[27] EN
50090-1 Home and Building Electronic Systems (HBES), CENELEC, 2011.
[28]
IEC
61970-301:2020 Energy Management System Application Program Interface
(EMS-API) - Part 301:
Common
Information Model (CIM) base, International Electrotechnical Commission,
2020.
[29]
IEC 62056
Electricity Metering Data Exchange - The DLMS/COSEM Suite, International
Electrotechnical
Commission,
2016.
[30]
IEC
62746-10-1:2018 Systems Interface Between Customer Energy Man- agement
System and the Power
Management
System, International Electrotechnical Commission, 2018.
[31] C.
Neureiter, Introduction to the SGAM toolbox, in: Josef Ressel Center
for
User-Centric
Smart Grid
Privacy,
Security and Control, Salzburg University of Applied Sciences, Tech.
Rep, 2013.
[32] T.
Linnenberg., A.W. Mueller., L. Christiansen., C. Seitz., A. Fay.,
OntoENERGY
– a
lightweight ontology for supporting energy-efficiency tasks - en- abling
generic evaluation of energy
efficiency
in the engineering phase of
automated
manufacturing plants, in: Proceedings of the
International
Con- ference on Knowledge Engineering and Ontology Development,
Algarve,
Portugal,
September
19-22, 2013, Vol. 1, 2013, pp. 337–344.
[33]
J.L.
Hippolyte, S. Howell, B. Yuce, M. Mourshed, H.A. Sleiman, M. Vinyals,
L. Vanhee,
Ontology-based demand-side flexibility management in smart grids using a
multi-agent system,
in:
Proceedings of the 2016 IEEE Interna- tional Smart Cities Conference,
Trento, Italy, September 12-15,
2016, 2016,
pp. 1–7.
[34]
M.J.
Kofler, C. Reinisch, W. Kastner, A semantic representation of energy-
related information in future
smart
homes, Energy Build. 47 (2012) 169–179.
[35] J.
Verhoosel, D. Rothengatter, F. Rumph, M. Konsman, An ontology for
modeling
flexibility in smart grid
energy
management, in: Proceedings of
the EWork
and EBusiness in Architecture, Engineering and
Construction
- European Conference on Product and Process Modelling, Reykjavik,
Iceland, 25-27 July 2012,
CRC Press,
2012, pp. 931–938.
[36]
T.G.
Stavropoulos, D. Vrakas, D. Vlachava, N. Bassiliades, Bonsai: a smart
building ontology for ambient
intelligence,
in: Proceedings of the 2nd
International
Conference on Web Intelligence, Mining and
Semantics,
Craiova, Romania, June 13-15, 2012, ACM, 2012, pp. 1–12.
[37]
J.-L.
Hippolyte, S. Howell, B. Yuce, M. Mourshed, H.A. Sleiman, M. Vinyals,
L. Vanhée,
Ontology-based demand-side flexibility management in smart grids using a
multi-agent system,
in: 2016
IEEE International Smart Cities Conference (ISC2), IEEE, 2016, pp.
1–7.
[38] I.
Esnaola-Gonzalez, J. Bermúdez, I. Fernandez, A. Arnaiz, EEPSA as a core
ontology for energy efficiency
and thermal
comfort in buildings, Appl. Ontol. 16 (2) (2021) 193–228.
[39] M.
Haghgoo, I. Sychev, A. Monti, F.H. Fitzek, SARGON–smart energy domain
ontology, IET Smart Cities 2
(4) (2020)
191–198.
[40]
M.-F.
Robbe, M. Vinyals, S. Lodeweyckx, J.M. Espeche, P.-E. Brun, S.V.
Costa, M.
Mourshed, A.
Kavgić, T.
Loureiro, Putting residential flexibility
management
into action with pilot sites in europe:
From
mas2tering to drive projects, Multidiscip. Digit. Publ. Inst. Proc. 2
(15) (2018) 1130.
[41]
A.M.
Ouksel, A. Sheth, Semantic interoperability in global information
systems, ACM SIGMOD Rec. 28
(1) (1999)
5–12.
[42] I.
Esnaola-Gonzalez, F.J. Diez, Integrating building and iot data in
demand
response
solutions, in:
Proceedings
of the 7th Linked Data in Architecture
and
Construction Workshop (LDAC 2019), 2389,
CEUR, 2019,
pp. 92–105.
[43]
A.E.
Youssef, Exploring cloud computing services and applications, J. Emerg.
Trends Comput. Inform. Sci. 3
(6) (2012)
838–847.
[44] A.
Hornsby, R. Walsh, From instant messaging to cloud computing, an XMPP
review, in: Proceedings of
the IEEE
International Symposium on Consumer Electronics , Braunschweig, Germany,
June 7-10, 2010,
IEEE, 2010,
pp. 1–6.
[45] M.
Kirsche, R. Klauck, Unify to bridge gaps: Bringing XMPP into the
internet of things, in: Proceedings of
the 2012
IEEE International Conference on Per-
vasive
Computing and Communications Workshops,
Lugano,
Switzerland, March 19-23, 2012, IEEE, 2012, pp. 455–458.
[46] A.
Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati,
Linking
data to ontologies,
in: Journal
on Data Semantics X, Springer, 2008, pp. 133–173.
[47]
C.R.
Rivero, A. Schultz, C. Bizer, D. Ruiz Cortés, Benchmarking the perfor-
mance of linked data translation
systems,
in: Proceedings of the Workshop
on Linked
Data on the Web, Lyon, France, 16 April, 2012,
CEUR-WS,
2012.
[48] O.
Ethelbert, F.F. Moghaddam, P. Wieder, R. Yahyapour, A JSON token-based
authentication and access
management
schema for cloud saas applications, in: Proceedings of the 5th IEEE
International Conference on
Future
Internet of Things and Cloud, Prague, Czech Republic, August 21-23,
2017, IEEE, 2017, pp. 47–53.
[49] A.
Cimmino, N. Andreadou, A. Fernández-Izquierdo, C. Patsonakis, A.C.
Tsolakis, A. Lucas, D. Ioannidis,
E.
Kotsakis, D. Tzovaras, R. García-Castro, Semantic interoperability for
DR schemes employing the SGAM
framework,
in:
Proceedings of the 2020 International Conference on Smart Energy
Systems
and
Technologies,
Istanbul, Turkey, 7-9 September 2020, IEEE, 2020, pp. 1–6.
[50]A. Cimmino a,J. Cano-Benito a, A. Fernández-Izquierdo a, C.
Patsonakis b, A. C. Tsolakis b, R. García-Castro a,
D. Ioannidis b, D. Tzovaras b : A scalable, secure, and semantically
interoperable client for cloud-enabled Demand Response, Future
Generation Computer Systems 141 (2023) 54–66 .
[51] L.
Daniele, F. den Hartog, J. Roes, Created in close interaction with the
industry: the smart appliances reference
(SAREF)
ontology, in: Proceedings
of the 7th
International Workshop Formal Ontologies Meet Industries,
Berlin,
Germany, August 5, 2015, Springer, 2015, pp. 100–112.
[52]
D.G.
Pereira, A. Afonso, F.M. Medeiros, Overview of Friedman’s test and
post-hoc
analysis, Comm. Statist.
Simulation
Comput. 44 (10) (2015) 2636–2653.