References
1. Marti M, Good RT, Rug M, Knuepfer E, Cowman AF. Targeting Malaria Virulence and Remodeling Proteins to the Host Erythrocyte.Science. 2004;306(5703):1930-1933.
2. Hiller NL, Bhattacharjee S, van Ooij C, et al. A host-targeting signal in virulence proteins reveals a secretome in malarial infection.Science. 2004;306(5703):1934-1937.
3. Sargeant T, Marti M, Caler E, et al. Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biology. 2006;7(2):R12.
4. Boddey JA, Carvalho TG, Hodder AN, et al. Role of plasmepsin V in export of diverse protein families from the Plasmodium falciparumexportome. Traffic. 2013;14(5):532-550.
5. Jonsdottir TK, Gabriela M, Crabb BS, T FdK-W, Gilson PR. Defining the Essential Exportome of the Malaria Parasite. Trends Parasitol.2021;37(7):664-675.
6. Lingelbach K, Joiner KA. The parasitophorous vacuole membrane surrounding Plasmodium and Toxoplasma : an unusual compartment in infected cells. Journal of Cell Science.1998;111(11):1467-1475.
7. Ward GE, Miller LH, Dvorak JA. The origin of parasitophorous vacuole membrane lipids in malaria-infected erythrocytes. Journal of Cell Science. 1993;106(1):237-248.
8. de Koning-Ward TF, Gilson PR, Boddey JA, et al. A newly discovered protein export machine in malaria parasites. Nature.2009;459(7249):945-949.
9. Elsworth B, Matthews K, Nie CQ, et al. PTEX is an essential nexus for protein export in malaria parasites. Nature.2014;511(7511):587-591.
10. Beck JR, Muralidharan V, Oksman A, Goldberg DE. PTEX component HSP101 mediates export of diverse malaria effectors into host erythrocytes. Nature. 2014;511(7511):592-595.
11. Marapana DS, Dagley LF, Sandow JJ, et al. Plasmepsin V cleaves malaria effector proteins in a distinct endoplasmic reticulum translocation interactome for export to the erythrocyte. Nat Microbiol. 2018;3(9):1010-1022.
12. Boddey JA, Hodder AN, Gunther S, et al. An aspartyl protease directs malaria effector proteins to the host cell. Nature.2010;463(7281):627-631.
13. Russo I, Babbitt S, Muralidharan V, Butler T, Oksman A, Goldberg DE. Plasmepsin V licenses Plasmodium proteins for export into the host erythrocyte. Nature. 2010;463(7281):632-636.
14. Boddey JA, Moritz RL, Simpson RJ, Cowman AF. Role of thePlasmodium Export Element in Trafficking Parasite Proteins to the Infected Erythrocyte. Traffic. 2009;10(3):285-299.
15. Przyborski JM, Nyboer B, Lanzer M. Ticket to ride: export of proteins to the Plasmodium falciparum -infected erythrocyte.Mol Microbiol. 2016;101(1):1-11.
16. Gehde N, Hinrichs C, Montilla I, Charpian S, Lingelbach K, Przyborski JM. Protein unfolding is an essential requirement for transport across the parasitophorous vacuolar membrane ofPlasmodium falciparum . Molecular Microbiology.2009;71(3):613-628.
17. Ansorge I, Benting J, Bhakdi S, Lingelbach K. Protein sorting inPlasmodium falciparum -infected red blood cells permeabilized with the pore-forming protein streptolysin O. . Biochemical Journal.1996;315(1):307-314.
18. Matthews KM, Kalanon M, de Koning-Ward TF. Uncoupling the Threading and Unfoldase Actions of Plasmodium HSP101 Reveals Differences in Export between Soluble and Insoluble Proteins. mBio. 2019;10(3).
19. Ho C-M, Beck JR, Lai M, et al. Malaria parasite translocon structure and mechanism of effector export. Nature. 2018;561:70-75.
20. Beck JR, Ho CM. Transport mechanisms at the malaria parasite-host cell interface. PLoS Pathog. 2021;17(4):e1009394.
21. Egea PF. Crossing the Vacuolar Rubicon: Structural Insights into Effector Protein Trafficking in Apicomplexan Parasites.Microorganisms. 2020;8(6).
22. Wickham ME, Rug M, Ralph SA, et al. Trafficking and assembly of the cytoadherence complex in Plasmodium falciparum -infected human erythrocytes. EMBO Journal. 2001;20(20):5636-5649.
23. Lopez-Estran C, Bhattacharjee S, Harrison T, Haldar K. Cooperative domains define a unique host cell-targeting signal in Plasmodium falciparum -infected erythrocytes. Proceedings of the National Academy of Sciences. 2003;100(21).
24. Knuepfer E, Rug M, Cowman AF. Function of the Plasmodiumexport element can be blocked by green fluorescent protein.Molecular and Biochemical Parasitology. 2005;142(2):258-262.
25. Haase S, Herrmann S, Grüring C, et al. Sequence requirements for the export of the Plasmodium falciparum Maurer’s clefts protein REX2.Molecular Microbiology. 2009;71(4):1003-1017.
26. Melcher M, Muhle RA, Henrich PP, et al. Identification of a role for the PfEMP1 semi-conserved head structure in protein trafficking to the surface of Plasmodium falciparum infected red blood cells.Cell Microbiol. 2010;12(10):1446-1462.
27. Marti M, Baum J, Rug M, Tilley L, Cowman AF. Signal-mediated export of proteins from the malaria parasite to the host erythrocyte. The Journal of Cell Biology. 2005;171(4):587-592.
28. Dixon MWA, Hawthorne PL, Spielmann T, Anderson KL, Trenholme KR, Gardiner DL. Targeting of the Ring Exported Protein 1 to the Maurer’s Clefts is Mediated by a Two-Phase Process. Traffic.2008;9(8):1316-1326.
29. van Ooij C, Tamez P, Bhattacharjee S, et al. The Malaria Secretome: From Algorithms to Essential Function in Blood Stage Infection.PLoS Pathogens. 2008;4(6):e1000084.
30. Boddey JA, O’Neill MT, Lopaticki S, et al. Export of malaria proteins requires co-translational processing of the PEXEL motif independent of phosphatidylinositol-3-phosphate binding. Nature Communications. 2016;7:10470.
31. Spielmann T, Gilberger T-W. Protein export in malaria parasites: do multiple export motifs add up to multiple export pathways? Trends in Parasitology. 2010;26(1):6-10.
32. Spielmann T, Gilberger TW. Critical Steps in Protein Export ofPlasmodium falciparum Blood Stages. Trends Parasitol.2015;31(10):514-525.
33. Przyborski JM, Miller SK, Pfahler JM, et al. Trafficking of STEVOR to the Maurer’s clefts in Plasmodium falciparum -infected erythrocytes. EMBO J. 2005;24(13):2306-2317.
34. Chang HH, Falick AM, Carlton PM, Sedat JW, DeRisi JL, Marletta MA. N-terminal processing of proteins exported by malaria parasites.Molecular and Biochemical Parasitology. 2008;160(2):107-115.
35. Crabb BS, de Koning-Ward TF, Gilson PR. Protein export inPlasmodium parasites: from the endoplasmic reticulum to the vacuolar export machine. International Journal For Parasitology.2010;40(5):509-513.
36. Tarr SJ, Cryar A, Thalassinos K, Haldar K, Osborne AR. The C-terminal portion of the cleaved HT motif is necessary and sufficient to mediate export of proteins from the malaria parasite into its host cell. Molecular Microbiology. 2013;87(4):835-850.
37. Haase S, Hanssen E, Matthews K, Kalanon M, de Koning-Ward TF. The exported protein PbCP1 localises to cleft-like structures in the rodent malaria parasite Plasmodium berghei . PloS One.2013;8(4):e61482.
38. Grüring C, Heiber A, Kruse F, et al. Uncovering Common Principles in Protein Export of Malaria Parasites. Cell Host & Microbe.2012;12(5):717-729.
39. Tarr SJ, Cryar A, Thalassinos K, Haldar K, Osborne AR. The C-terminal portion of the cleaved HT motif is necessary and sufficient to mediate export of proteins from the malaria parasite into its host cell. Molecular Microbiology. 2012:n/a-n/a.
40. Deil S, Lanzer M. New insights into PEXEL-mediated protein export in Plasmodium falciparum: the role of N-terminal acetylation : Department für Infektiologie Heidelberg, Universität Heidelberg; 2014.
41. Hodder AN, Sleebs BE, Czabotar PE, et al. Structural basis for plasmepsin V inhibition that blocks export of malaria proteins to human erythrocytes. Nat Struct Mol Biol. 2015;22(8):590-596.
42. Gabriela M, Matthews KM, Boshoven C, et al. A revised mechanism for how Plasmodium falciparum recruits and exports proteins into its erythrocytic host cell. PLoS Pathog. 2022;18(2):e1009977.
43. Charnaud SC, Jonsdottir TK, Sanders PR, et al. Spatial organization of protein export in malaria parasite blood stages. Traffic.2018;19(8):605-623.
44. Riglar DT, Rogers KL, Hanssen E, et al. Spatial association with PTEX complexes defines regions for effector export into Plasmodium falciparum -infected erythrocytes. Nature Comm. 2013;4:1415.
45. Mesen-Ramirez P, Reinsch F, Blancke Soares A, et al. Stable Translocation Intermediates Jam Global Protein Export inPlasmodium falciparum Parasites and Link the PTEX Component EXP2 with Translocation Activity. PLoS Pathog. 2016;12(5):e1005618.
46. Bullen HE, Charnaud SC, Kalanon M, et al. Biosynthesis, Localization, and Macromolecular Arrangement of the Plasmodiumfalciparum Translocon of Exported Proteins (PTEX). J Biol Chem. 2012;287(11):7871-7884.
47. Schneider M, Rosam M, Glaser M, et al. BiPPred: Combined sequence- and structure-based prediction of peptide binding to the Hsp70 chaperone BiP. Proteins. 2016;84(10):1390-1407.
48. Looker O, Dans MG, Bullen HE, Sleebs BE, Crabb BS, Gilson PR. The Medicines for Malaria Venture Malaria Box contains inhibitors of protein secretion in Plasmodium falciparum blood stage parasites.Traffic. 2022;23(9):442-461.
49. Sleebs BE, Lopaticki S, Marapana DS, et al. Inhibition of Plasmepsin V Activity Demonstrates Its Essential Role in Protein Export, PfEMP1 Display, and Survival of Malaria Parasites. PLoS Biology.2014;12(7):e1001897.
50. Bedi RK, Patel C, Mishra V, Xiao H, Yada RY, Bhaumik P. Understanding the structural basis of substrate recognition byPlasmodium falciparum plasmepsin V to aid in the design of potent inhibitors. Sci Rep. 2016;6:31420.
51. Schlieker C, Weibezahn J, Patzelt H, et al. Substrate recognition by the AAA+ chaperone ClpB. Nat Struct Mol Biol. 2004;11(7):607-615.
52. Lum R, Niggemann M, Glover JR. Peptide and protein binding in the axial channel of Hsp104. Insights into the mechanism of protein unfolding. J Biol Chem. 2008;283(44):30139-30150.
53. Zolkiewski M, Zhang T, Nagy M. Aggregate reactivation mediated by the Hsp100 chaperones. Arch Biochem Biophys. 2012;520(1):1-6.
54. Kenniston JA, Baker TA, Sauer RT. Partitioning between unfolding and release of native domains during ClpXP degradation determines substrate selectivity and partial processing. Proc Natl Acad Sci U S A.2005;102(5):1390-1395.
55. Cordova JC, Olivares AO, Shin Y, et al. Stochastic but highly coordinated protein unfolding and translocation by the ClpXP proteolytic machine. Cell. 2014;158(3):647-658.
56. Desantis ME, Shorter J. The elusive middle domain of Hsp104 and ClpB: location and function. Biochim Biophys Acta.2012;1823(1):29-39.
57. Garten M, Nasamu AS, Niles JC, Zimmerberg J, Goldberg DE, Beck JR. EXP2 is a nutrient-permeable channel in the vacuolar membrane ofPlasmodium and is essential for protein export via PTEX.Nature Microbiology. 2018;3:1090-1098.
58. Trager W, Jensen J. Human malaria parasites in continuous culture.Science. 1976;193(4254):673-675.
59. Hasenkamp S, Russell KT, Horrocks P. Comparison of the absolute and relative efficiencies of electroporation-based transfection protocols for Plasmodium falciparum . Malar J. 2012;11:210.
60. Tonkin CJ, van Dooren GG, Spurck TP, et al. Localization of organellar proteins in Plasmodium falciparum using a novel set of transfection vectors and a new immunofluorescence fixation method.Molecular and Biochemical Parasitology. 2004;137(1):13-21.