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Abstract17

Extreme temperature events have traditionally been detected assuming a unimodal dis-18

tribution of temperature data. We found that surface temperature data can be described19

more accurately with a multimodal rather than a unimodal distribution. Here, we ap-20

plied Gaussian Mixture Models (GMM) to daily near-surface maximum air temperature21

data from the historical and future Coupled Model Intercomparison Project Phase 6 (CMIP6)22

simulations for 46 land regions defined by the Intergovernmental Panel on Climate Change23

(IPCC). Using the multimodal distribution, we found that temperature extremes, de-24

fined based on daily data in the warmest mode of the GMM distributions, are getting25

more frequent in all regions. Globally, a 10-year extreme temperature event relative to26

1980-2010 conditions will occur 15 times more frequently in the future under 3.0◦C of27

Global Warming Levels (GWL). The frequency increase can be even higher in tropical28

regions, such that 10-year extreme temperature events will occur almost twice a week.29

Additionally, we analysed the change in future temperature distributions under differ-30

ent GWL and found that the hot temperatures are increasing faster than cold temper-31

atures in low latitudes, while the cold temperatures are increasing faster than the hot32

temperatures in high latitudes. The smallest changes in temperature distribution can33

be found in tropical regions, where the annual temperature range is small. Our method34

captures the differences in geographical regions and shows that the frequency of extreme35

events will be even higher than reported in previous studies.36

Plain Language Summary37

Extreme temperature events are unusual weather conditions with exceptionally low38

or high temperatures. Traditionally, the temperature range was determined by assum-39

ing a single distribution, which describes the frequency of temperatures at a given cli-40

mate using their mean and variability. This single distribution was then used to detect41

extreme weather events. In this study, we found that temperature data from reanaly-42

ses and climate models can be more accurately described using a mixture of multiple Gaus-43

sian distributions. We used the information from this mixture of Gaussians to determine44

the cold and hot extremes of the distributions. We analysed their change in a future cli-45

mate and found that hot temperature extremes are getting more frequent in all analyzed46

regions at a rate that is even higher than found in previous studies. For example, a global47

10-year event will occur 15 times more frequently under 3.0◦C of global warming. Fur-48

thermore, our results show that the temperatures of hot days will increase faster than49

the temperature of cold days in equatorial regions, while the opposite will occur in po-50

lar regions. Extreme hot temperatures will be the new normal in highly populated re-51

gions such as the Mediterranean basin.52

1 Introduction53

Increasing levels of atmospheric carbon dioxide (CO2) concentration unequivocally54

transformed the earth’s climate (IPCC, 2021). This surplus of CO2 in the atmosphere55

contributes to the greenhouse effect, and by increasing the mean and the variability of56

global temperatures, it amplifies the risk of high-impact temperature extremes (Baker57

et al., 2018). The effects of anthropogenic global warming led to the emergence of heat58

extremes that would not have occurred previously (Robinson et al., 2021). This means59

that unprecedented heat extremes like the 2010 Russian heatwave or the 2021 western60

North America heatwave would have likely not happened without the warming effect (Rahmstorf61

& Coumou, 2011; Christidis et al., 2015; Thompson et al., 2022). The latter was found62

to be a remarkable four standard deviations away from the mean (Thompson et al., 2022).63

The Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6)64

concluded that human influence on the climate system is unequivocal (Eyring et al., 2021)65

and virtually certain to be the main driver of the changes in hot and cold extremes (Seneviratne66
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et al., 2021). It introduced more frequent and intense hot extremes since the 1950s on67

land areas while a decrease in cold extremes is observed (IPCC, 2021). Several studies68

found that the duration, frequency, and intensity of extreme events will increase, and ex-69

treme events will be introduced at new locations (Seneviratne et al., 2012; Rahmstorf70

& Coumou, 2011; Kharin et al., 2013; Sillmann, Kharin, Zhang, et al., 2013; Sillmann,71

Kharin, Zwiers, et al., 2013; Pfleiderer et al., 2019; Perkins-Kirkpatrick & Lewis, 2020;72

Vogel, Hauser, & Seneviratne, 2020; Raymond et al., 2020; Seneviratne et al., 2021; Mallick73

et al., 2022). As the number of occurrences of heat extremes like the 2003 European heat-74

wave and their duration increase, the socio-economic burden of climate change poses a75

threat to societies (Meehl & Tebaldi, 2004; Robine et al., 2008; Garćıa-León et al., 2021;76

Demiroglu et al., 2020; Perera et al., 2020; Seneviratne et al., 2021).77

The warming of the climate causes different changes in different regions. Tropics,78

polar regions and the Middle East and North Africa (MENA) region, are hot spots of79

notable climate trend shifts (Hao et al., 2018; Y. Zhang et al., 2022). Iyakaremye et al.80

(2022) have shown that an abrupt shift in the daily maximum temperatures occurred81

in Africa in the last two decades compared to the previous 20 years, which introduced82

more frequent and intense hot days. Moreover, climate model projections also show a83

1.6◦C increase in the annual maximum of daily maximum temperature over Africa in the84

future, despite a projected 1.5◦C global warming level (Iyakaremye et al., 2021). By the85

end of the century, the frequency and intensity of heatwaves will highly increase in the86

MENA region under a business-as-usual pathway scenario, which will affect about half87

of the MENA population (Lelieveld et al., 2016; Zittis et al., 2021; Ozturk et al., 2021).88

The number of occurrences of exceptionally hot summers, which have 2-4◦C hotter tem-89

peratures than the long-term average, has also increased from a single event between 195190

and 1980 to five events between 2001 and 2010 in Central and Eastern Europe, where91

the 2010 heatwave was the hottest and longest event with the largest geographical ex-92

tent that ever occurred over Europe (Twardosz & Kossowska-Cezak, 2013; Guerreiro et93

al., 2018). Similarly, other studies also found that the temperature extremes in Europe94

will increase 20-fold at the end of the century, compared to 1961-1990 (Nikulin et al.,95

2011; Schär et al., 2004; Barriopedro et al., 2011). Over the Americas, the dry and hot96

extremes showed an increase both in frequency and spatial scope over the past 122 years97

(Alizadeh et al., 2020; Cai et al., 2014).98

Correctly characterizing the temperature distributions to analyze extreme events99

is a still-continuing issue as extremes are by definition rare events, and several studies100

showed that the assumption of distributions or a stationary climate often underestimates101

the observed heat records (Benestad, 2004; Schär et al., 2004; Anderson & Kostinski, 2010;102

Fischer & Schär, 2010; Barriopedro et al., 2011; C. Li et al., 2019; Loikith & Neelin, 2019).103

Thompson et al. (2022) characterized extreme events by calculating a daily extreme in-104

dex which is the difference between the daily maximum temperature and mean daily max-105

imum temperature divided by the standard deviation. With the assumption of a nor-106

mal distribution, they found that the 2021 North American heatwave was one of the most107

extreme events with 4 standard deviations from the mean. Moreover, the authors pro-108

jected that 20% of the weather risk attribution forecast regions (Stone, 2019) will ex-109

perience extreme events that are four standard deviations from the means in the future.110

Other studies found that hot summers will be the norm, i.e. mean temperatures exceed111

the temperature of the historically hottest summer, within the next 1-2 decades (Mueller112

et al., 2016; Lewis et al., 2017; Vogel, Hauser, & Seneviratne, 2020; Vogel, Zscheischler,113

et al., 2020).114

Common indices to monitor and analyze climate extremes that are used in the cli-115

mate community at the moment, such as ETCCDI (the Expert Team on Climate Change116

Detection and Indices), are mostly based on daily mean near-surface air temperature or117

daily maximum near-surface air temperature (X. Zhang et al., 2011; Alexander et al.,118

2006). Two standard approaches to detect extreme events are the percentile-over-threshold119
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(POT) and the block maxima method. The block maxima method groups data into an120

equal length of blocks, e.g. month, season, or year, and use the maximum temperature121

value of each block to fit the data. The POT method defines a threshold, e.g. percentiles,122

and uses all temperature values above this threshold in the analysis. Choosing the per-123

centiles for defining extremes is not trivial as the temperature thresholds have a strong124

seasonality and temporal dependence (Huang et al., 2016). The block maxima method125

is more commonly used in climate studies because of its simplicity with monthly, sea-126

sonal or annual block periods for fitting generalized extreme value (GEV) distribution127

to temperature and precipitation extremes (Kharin et al., 2013; Wang et al., 2016; Pa-128

ciorek et al., 2018; Wehner et al., 2018; C. Li et al., 2021; IPCC, 2021). The block max-129

ima method, however, does not use all available data, as calculating a single maximum130

value from a block period throws out the rest of the data. To be approximated by the131

GEV distribution, the blocks are assumed to be long enough and “max-stable”, which132

means that if you take the maximum of a group of values selected from a specific GEV133

distribution, the result will be GEV distributed with the same shape parameter (Huang134

et al., 2016; Ben Alaya et al., 2020). However, these assumptions might not be valid for135

all possible use cases or all possible variables. For example, GEV is not the best fit for136

shorter block lengths as the fit improves with increasing block size (Ben Alaya et al., 2020;137

Wang et al., 2016). Ben Alaya et al. (2020) argued that the identically distributed ran-138

dom variables assumption of extreme value theory might be problematic for extreme pre-139

cipitation events. They considered a mixture of GEV distributions to fit precipitation140

data to demonstrate that the mixture distribution could be a potential explanation for141

the instability of annual maxima. Kollu et al. (2012) tested wind speed characteristics142

using mixture probability distribution functions (PDF). They found that conventional143

PDFs are inadequate to describe wind speed distributions compared to the mixture dis-144

tributions that they used in the study. A mixture of Gaussians was used by Shin et al.145

(2022) to describe the distribution of the daily thermal comfort index in South Korea,146

an index that has a strong seasonality. Ice surface temperature data follows a clear mul-147

timodal distribution, according to Clarkson et al. (2022). They also found that a uni-148

modal distribution fit is particularly poor at modelling the tail probabilities. Probabil-149

ity distributions with one and two components are called unimodal and bimodal, respec-150

tively, whereas distributions with multiple (two or more) components are called multi-151

modal distributions.152

The temperature distributions are expected to move towards warmer temperatures153

and to change their shape with changing means and standard deviations (IPCC, 2021).154

Also, the assumption of distribution might not be correct for all geographical regions as155

daily weather variables show a distinct non-Gaussianity (E. M. Volodin & Yurova, 2012;156

Perron & Sura, 2013; Kodra & Ganguly, 2014; Sardeshmukh et al., 2015; Linz et al., 2018;157

Tamarin-Brodsky et al., 2019). Furthermore, several studies found that daily mean, daily158

maximum and real forecast data of 2m temperatures show bimodal features (Grace, 1995;159

Wilks, 2002; Donat & Alexander, 2012; Cho & Jeong, 2016; Bertossa et al., 2021). These160

changes, shifts and bimodalities in the temperature distributions affect the probabilities161

in the tails. As extreme events are rare events that lie in the tails of a distribution, cor-162

rectly describing the tails is very important for extreme event detection. Even though163

the block maxima method is widely used in studies which used block sizes large enough164

to converge asymptotically to GEV distributions, a GEV distribution is not well suited165

to describe extreme value data when the bimodality is apparent or block sizes are short166

(Sardeshmukh et al., 2015; Wang et al., 2016; Knoben et al., 2019; Ben Alaya et al., 2020).167

Therefore, the properties of the entire probability distribution, i.e. mean, standard de-168

viation and shape, are needed to get the tail properties right (Sardeshmukh et al., 2015).169

A distribution can be described by not only the mean and the standard deviation, but170

also skewness and kurtosis. Donat and Alexander (2012) found that daily minimum and171

maximum temperatures have significantly shifted towards higher values and skewed to-172

wards the hotter part of the distribution. They highlighted that the changes in extremes173

are related not only to the means but also to other parameters of the daily temperature174
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distribution. Sardeshmukh and Sura (2009) found a parabolic relationship between kur-175

tosis and skewness that cause the non-Gaussianity of the observed daily weather anoma-176

lies. Similarly, Tamarin-Brodsky et al. (2022) used a mixture model with three Gaus-177

sians to describe the PDF of near-surface atmospheric temperature to analyze the re-178

lationship between kurtosis and skewness, as they are important to explain how the tails179

of the distribution change. They found that two- and three-Gaussian models are use-180

ful to explain the relationship between kurtosis and skewness.181

In the study presented here, our approach is to utilize the entire temperature dis-182

tribution to detect extreme events. We implemented Gaussian Mixture Models (GMM),183

which describe the probability distribution function of data points as a mixture of Gaus-184

sian distributions. We determined the number of Gaussian components in the temper-185

ature distribution of each grid cell of 46 land regions defined by the Intergovernmental186

Panel on Climate Change (IPCC) using daily near-surface maximum air temperature187

data from the historical and future Coupled Model Intercomparison Project Phase 6 (CMIP6)188

simulations. This choice was supported by previous studies which found distinct bimodal-189

ity in daily weather variables (Grace, 1995; Wilks, 2002; Donat & Alexander, 2012; Cho190

& Jeong, 2016; Bertossa et al., 2021) and was verified by applying the same analysis to191

the European Centre for Medium-Range Weather Forecasts Reanalysis 5th Generation192

(ECMWF-ERA5) data for the same historical time period (1980-2010). The parameters193

from the determined distribution components, namely means, standard deviations and194

weights, were used to calculate the change in the return period of extreme temperature195

events between the historical and future periods determined by using global warming lev-196

els (GWL). The return period of an event describes the average time between the oc-197

currences of a certain event of a defined size. In this study, we analysed 1-year, 5-year,198

10-year and 20-year events, where an n-year event means that the event in question would199

occur once in every n years. We only calculated return periods equal to or less than the200

available future data period to prevent overestimating the return periods of extreme events,201

since GMM distributions are not bounded. Section 2 presents the climate data and warm-202

ing levels used in this study, as well as the analyzed regions, and explains the method-203

ology of detecting extreme event return periods by using GMM. Section 3 shows our re-204

sults obtained using the GMM method for all analyzed IPCC land regions, and section205

4 finalizes the paper with a summary and discussion.206

2 Data and Methodology207

2.1 Climate Data208

For this study, we used daily near-surface maximum temperatures from the Cou-209

pled Model Intercomparison Project Phase 6 (CMIP6), and for which both the histor-210

ical simulations and the simulations for Shared Socioeconomic Pathways (SSPs) 1-2.6,211

2-4.5, 3-7.0 and 5-8.5 scenarios were available (O’Neill et al., 2014; Eyring et al., 2016;212

O’Neill et al., 2016). Additionally, ECMWF-ERA5 dataset was included for the 31-year213

time period (1980-2010). Table 1 shows the list of models and their resolutions. The 31-214

year time period from 1980 to 2010 from historical simulations is used as the base to cal-215

culate the return values of extreme temperature events, i.e. 1-year, 5-year, 10-year and216

20-year events. The GWL, as introduced in the IPCC AR6 report, are used to assess the217

changes in future climate in line with the warming levels defined in the Paris Agreement218

which are compared to the pre-industrial period (IPCC, 2021). The future period for each219

model is defined as a 20-year period when the central year of the future 20-year running220

global daily near-surface temperature mean of that model first exceeds a GWL of 1.5◦C,221

2◦C, 3◦C, and 4◦C between 2015 and 2100, relative to the global daily near-surface tem-222

perature mean of the 1850-1900 base period (IPCC, 2021; Hauser et al., 2022). As some223

datasets did not exceed certain warming levels, they were excluded from the analysis (e.g224

NOR-ESM2-MM was not used in calculations for 4◦C warming under SPP5-8.5, as it225
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did not exceed this level). Figure 1 shows the historical and future GWL periods for each226

CMIP6 model used in this study.

Table 1. Reanalysis data and CMIP6 models used in this study to detect extreme tempera-

ture events. Climate models with spatial resolutions ranging from 50 to 500 km were used in the

analyses. The first available ensemble members were chosen. The Renalysis dataset that has a

resolution of 25km was regridded to 100 km and used for evaluating modality.

Model Variant Resolution Reference

ECMWF-ERA5 Reanalysis 25 km (Hersbach et al., 2020)
ACCESS-CM2 r1i1p1f1 250 km (Dix et al., 2019)
ACCESS-ESM1-5 r1i1p1f1 250 km (Ziehn et al., 2019)
AWI-CM-1-1-MR r1i1p1f1 100 km (Semmler et al., 2018)
BCC-CSM2-MR r1i1p1f1 100 km (Wu et al., 2018)
CanESM5 r1i1p1f1 500 km (Swart et al., 2019)
CNRM-CM6-1 r1i1p1f2 250 km (Voldoire, 2018)
CNRM-CM6-1-HR r1i1p1f2 50 km (Voldoire, 2019)
CNRM-ESM2-1 r1i1p1f2 250 km (Seferian, 2018)
EC-Earth3 r1i1p1f1 100 km ((EC-Earth), 2019a)
EC-Earth3-CC r1i1p1f1 100 km ((EC-Earth), 2021)
EC-Earth3-Veg r1i1p1f1 100 km ((EC-Earth), 2019b)
EC-Earth3-Veg-LR r1i1p1f1 250 km ((EC-Earth), 2020)
FGOALS-g3 r1i1p1f1 250 km (L. Li, 2019)
GFDL-ESM4 r1i1p1f1 100 km (Krasting et al., 2018)
HadGEM3-GC31-LL r1i1p1f3 250 km (Ridley et al., 2019a)
HadGEM3-GC31-MM r1i1p1f3 100 km (Ridley et al., 2019b)
INM-CM4-8 r1i1p1f1 100 km (von et al., 2019)
INM-CM5-0 r1i1p1f1 100 km (E. Volodin et al., 2019)
IPSL-CM6A-LR r1i1p1f1 250 km (Boucher et al., 2018)
KACE-1-0-G r1i1p1f1 250 km (Byun et al., 2019)
MIROC6 r1i1p1f1 250 km (Tatebe & Watanabe, 2018)
MIROC-ES2L r1i1p1f2 500 km (Hajima et al., 2019)
MPI-ESM1-2-HR r1i1p1f1 100 km (Jungclaus et al., 2019)
MPI-ESM1-2-LR r1i1p1f1 250 km (Wieners et al., 2019)
MRI-ESM2-0 r1i1p1f1 100 km (Yukimoto et al., 2019)
NESM3 r1i1p1f1 250 km (Cao & Wang, 2019)
NorESM2-LM r1i1p1f1 250 km (Seland et al., 2019)
NorESM2-MM r1i1p1f1 100 km (Bentsen et al., 2019)
UKESM1-0-LL r1i1p1f2 250 km (Tang et al., 2019)

227
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Figure 1. Future periods of the CMIP6 models when the central year of the 20-year run-

ning window exceeds global warming levels relative to 1850-1900 base for the SSP5-8.5 scenario

(Hauser et al., 2022). The colors in the graph go from light to dark, each color representing a

different level of warming 1.5◦C, 2◦C, 3◦C, and 4◦C. These levels are expected to be exceeded

around 2026, 2040, 2060, and 2070 respectively. 31-year historical base period indicated in gray.

Note that different models have different time periods when they exceed the GWL. Future peri-

ods for other SSP scenarios are presented in the Supplementary Material Figure S2 to S4.

We extracted daily maximum near-surface air temperature for 31-year historical228

and 20-year future periods under GWL for each SSP individually for 46 IPCC land re-229
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gions that are shown in Figure 2 (Iturbide et al., 2020). All data extraction and prepro-230

cessing in this study were performed by using the Earth System Model Evaluation Tool231

(ESMValTool) version 2.5.0, which is an open-source software package for analysing and232

evaluating model simulations (Eyring et al., 2020; Lauer et al., 2020; Righi et al., 2020;233

Weigel et al., 2021). We extracted the daily maximum near-surface air temperature from234

each model for each region using shapefiles provided by IPCC (Iturbide et al., 2020), con-235

verted units from Kelvin to Celsius, and created a single spatiotemporal Network Com-236

mon Data Form (NetCDF) file for each region. The data were then ready to be used in237

the diagnostic script written in Python where the extreme events and their return pe-238

riods were analyzed.

Figure 2. 46 land regions defined by IPCC are used in the study. See Supplementary Material

Table S2 for region definitions.

239

2.2 Return Period Analyses240

For the return period calculation of extreme temperature events, i.e. 1-year, 5-year,241

10-year and 20-year events, we defined a temperature threshold for an event by calcu-242

lating the standard deviation distance of the event temperature from the mean temper-243

ature in the past, i.e. how many standard deviations away the event temperature was244

from the mean. We then applied this temperature threshold value to the future period245

but calculated its standard deviation distance from the mean using the parameters from246

the future distribution, i.e. how many standard deviations away the event temperature247

will be from the mean. To test the underlying distribution shape of the daily near-surface248

maximum temperature distribution, we first analyzed data from individual grid cells of249

each climate model. We found that daily maximum near-surface air temperature data250

in climate grid cells usually do not follow a unimodal distribution, but rather follow a251

bimodal distribution, a probability distribution composed of two components.252

To calculate the return periods of extreme events, we modelled the temperature253

data from a grid cell as mixtures of Gaussian distributions, rather than a single Gaus-254

sian distribution.GMM is a probabilistic model that describes the data points in a pop-255
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ulation as a mixture of Gaussian distributions with unknown parameters which are the256

mean, standard deviation and weight of each Gaussian component, five parameters in257

total for a bimodal distribution. An example goodness-of-fit test for normal distribution,258

GEV distribution with different shape parameters and GMM distributions on the daily259

maximum temperature data from a random grid cell is presented in the Supplementary260

Material Section 1. We used an unsupervised machine-learning package, the “Gaussian-261

Mixture” package from open-sourced machine-learning library Scikit-learn, to compute262

the unknown parameters of the Gaussian components in a mixture that generates all ob-263

served data points (Pedregosa et al., 2011). We applied this package to the daily max-264

imum near-surface air temperature data in each grid cell of the CMIP6 models. The “Gaus-265

sianMixture” package first randomly assigns values to component parameters and then266

uses the expectation-maximization algorithm (EM) to converge their values. EM fits GMM267

to data by alternating between two steps, Expectation (E) and Maximization (M). In268

the E step, it randomly assumes components and calculates the probability of each point269

to be generated by that component. In the M step, it tweaks parameters to maximize270

the likelihood found in the first step. It also uses the Bayesian Information Criteria (BIC)271

score, which is used to estimate the goodness-of-fit of a distribution, and which accounts272

for both the likelihood function and the number of parameters. For a Gaussian mixture273

with K components, µk is the mean, σk is the standard deviation, and ωk is the weight274

of kth component. Then, the probability distribution function of the GMM with K com-275

ponents would be:276

p(x) =

K∑
i=1

ωiN (x | µi, σi) (1)277

N (x | µi, σi) =
1

σi

√
2π

exp

(
− (x− µi)

2

2σ2
i

)
(2)278

K∑
i=1

ωi = 1 (3)279

280

In our analysis, we disregarded three or more Gaussian components. This choice281

was supported by the value of the BIC score, and the fact that increasing the number282

of components tends to cause overfitting, even though BIC scores penalise adding more283

parameters. Furthermore, we used the gradient of BIC scores rather than using the low-284

est score. We selected the number of Gaussian components where the highest gradient285

change occurs in the BIC scores as the best fit. To further prevent overfitting, we also286

applied the following unimodality test after estimating the BIC scores: If the BIC score287

returned a bimodal distribution, then the parameters of the mixture distribution com-288

ponents were used for the unimodality test. As shown in Equation 4, if the difference289

between the means of Gaussian components was less than or equal to twice the mini-290

mum of standard deviations, then unimodal distribution was assumed, otherwise, the291

bimodal distribution fit for the data was kept. After all these tests and checks, the ma-292

jority of grid cells showed a clear bimodal distribution. For a bimodal distribution, here-293

after we referred to the right (left) Gaussian component as “hot (cold) Gaussian” as shown294

in Figure 3).295

|µ1 − µ2| ≤ 2min(σ1, σ2) (4)296

First, we grouped grid cells of a region depending on their modality, either unimodal297

or bimodal, for each CMIP6 model, and calculated the percentages of grid modalities298

among all grid cells of a region for each CMIP6 model. We then determined the multi-299

model mean percentages of grid cell modalities of a region as shown in Figure 4. Addi-300

tionally, we calculated the global multi-model mean percentage of grid cell modalities301

using all regions and CMIP6 models. We found that globally 88.78% of all grid cells fol-302

low a bimodal distribution in the historical period as shown in the white box in the up-303

per centre part of Figure 4. Furthermore, we analysed the ECMWF-ERA5 dataset for304
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Figure 3. Exemplary bimodal distributions from a hypothetical grid cell for the historical

(blue) and future (red) simulations. The parameters of each Gaussian component, means (blue

and red dots), standard deviations and weights, determine the distribution shape, and are used in

the analyses.

the same historical time period (1980-2010) to confirm whether bimodality is also found305

in data other than model simulations. We regridded the ECMWF-ERA5 data from a306

25-km grid to a 100-km grid using the nearest neighbour method to have a similar res-307

olution as many CMIP6 datasets. ECMWF-ERA5 reanalysis dataset shows similar re-308

sults to the CMIP6 models: Globally 87.68% of all grid cells in the ECMWF-ERA5 re-309

analysis dataset follow a bimodal distribution as shown in the white box in the upper310

centre part of Figure 5, while only 12.32% of them follow a unimodal distribution.311
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Figure 4. Multi-model mean percentages of grid modalities for the historical period in study

regions grouped by continents. Dark and light blue bars show the percentage of grid cells with

unimodal or bimodal distribution, respectively, for the historical period of 29 CMIP6 simulations.
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Figure 5. Same as Figure 4 but for ECMWF-ERA5 reanalysis dataset.

Then, the parameters of the hot Gaussian component, µhistorical
hot , σhistorical

hot and312

ωhistorical
hot , were used to calculate the change in return periods. We only analysed 1-year,313

5-year, 10-year and 20-year events, as GMM are unbounded. One should be careful while314

calculating the return periods using GMM, as the unbounded tails of Gaussian compo-315

nent could overestimate the probabilities of longer return periods. Therefore, return pe-316

riods equal to or less than the analysis period were calculated using GMM. The change317

in return periods is calculated first in each grid cell of a region and then averaged together318

to produce regional results for each CMIP6 simulation.319

For normally distributed data, the expected percentage of the population inside320

the µ± dσ range is defined as321

E(µ± dσ) = erf

(
d√
2

)
(5)322

where erf is the error function and d is the standard deviation distance. The approxi-323

mate expected frequency, f , outside this range is then defined as the return period of324

an extreme.325

1 in
1

1− erf

(
d√
2

) days (6)326

An n−year event with this definition refers then to a temperature event occur-327

ring once in every n “year”, where “year” is defined as the number of days covered by328

the hot Gaussian component. For example, we can assume that a symmetrical bimodal329

distribution results in 180 days of cold weather and 180 days of hot weather in a nor-330

mal 365-day calendar year. For such a symmetric case, a 10-year event would then be331

a temperature event that occurs once in every 1800 days (10 years×180days
year ). Since we332

cannot assume a symmetric distribution for grid cells of each model, we calculated the333

number of days covered by the hot Gaussian component using the component weights334

and dataset size.335

–11–



manuscript submitted to JGR: Atmospheres

Let D denote the number of days in L years. Then, a “year” in the historical pe-336

riod, | N (µhistorical
hot , σhistorical

hot ) | is defined as337

| N (µhistorical
hot , σhistorical

hot ) |= ωhistorical
hot D

L
(7)338

where µhistorical
hot is the mean, σhistorical

hot is the standard deviation and ωhistorical
hot is the339

weight of hot Gaussian component. The expected frequency of n-year events in the his-340

torical period, fhistorical
n , is then calculated by using the length of a year,341

fhistorical
n = n× | N (µhistorical

hot , σhistorical
hot ) | n = 1, 5, 10, 20 (8)342

The standard deviation distance of range, dhistoricaln , for an extreme event in the histor-343

ical period can be calculated by using Equation 6,344

dhistoricaln = erf−1

(
1− 1

fhistorical
n

)√
2 (9)345

where erf−1 is inverse error function. Now, we can calculate a temperature threshold,346

τhistoricaln , for an n-year event in the historical period.347

τhistoricaln = µhistorical
hot + dhistoricaln σhistorical

hot (10)348

Using this temperature threshold from the historical period, we calculate the standard349

deviation distance of the temperature threshold of n-year event in the future, dfuturen ,350

by using the mean µfuture
hot , and standard deviation σfuture

hot from the hot Gaussian com-351

ponent of the future distribution.352

dfuturen =
τhistoricaln − µfuture

hot

σfuture
hot

(11)353

ffuture
ṅ =

1

1− erf

(
dfuturen√

2

) (12)354

(13)355
356

Finally, the new value of the return period in the future ṅ, i.e. ṅ-year event, is calcu-357

lated by using Equation 8358

ṅ =
ffuture
ṅ

|N (µfuture
hot , σfuture

hot )|
(14)359

where N (µfuture
hot , σfuture

hot )| is length of a “year” in the future period.360

With this method, we can also analyse if and how much the Gaussian components361

will shift in the future relative to the historical period. We defined ∆T , as the difference362

in differences between the means of cold and hot Gaussian components as shown in Equa-363

tion 15:364

∆T = δTcold − δThot (15)365

δTcold = µfuture
cold − µhistorical

cold (16)366

δThot = µfuture
hot − µhistorical

hot (17)367
368

In Figure 3 this change in hot and cold Gaussian means is schematically illustrated. As-369

suming the future means of Gaussian components are higher than the historical periods,370

δTcold and δThot will always be positive. Therefore, a negative ∆T means that the peaks371

are diverging in the future: the hot Gaussian moves toward warmer temperatures faster372

than the cold Gaussian, which increases the frequency of hot extremes and induces an373

overall warmer climate. A positive ∆T means that the peaks are converging: the cold374

Gaussian moves closer to the hot Gaussian, which increases the number of days with warmer375

temperatures in the colder mode.376
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3 Results377

First, we checked the change in the percentage of modalities from the present to378

the future time periods. For this, we analyzed the modality of the temperature data from379

each individual grid cell of an IPCC land region by counting the number of grid cells with380

each modality. We found that the percentages of grid cells with bimodal distributions381

stay almost the same under different warming levels. As some of the CMIP6 datasets382

do not exceed certain warming levels, the number of datasets are not identical for the383

historical and future period and therefore affect the change in percentages. We analysed384

modalities of grid cells under different GWL for all SSP scenarios but we only present385

SSP5-8.5 results here, as the SSP5-8.5 scenario had data from 29 CMIP6 models and the386

GWL are scenario independent. Globally, almost 90% of all grid cells follow a bimodal387

distribution as shown in Figure 4 for the historical period, Figure 5 for the reanalysis388

data and Figure 6 for GWL 3.0◦C for different regions grouped by continents (See Sup-389

plementary Material Figure S5 to S7 for other warming levels). East Antarctica (EAN)390

region is not included in the analysis because it is composed of many grid cells near the391

pole, causing numerical problems. Global averages and the number of datasets are shown392

in the white box in the upper centre part of each figure. In the historical period, the grid393

cells in tropical and sub-tropical regions have slightly higher percentages of unimodal dis-394

tributions compared to higher latitude regions. However, regions still mostly follow a bi-395

modal distribution as shown in Figure 4. The multi-model mean percentage of unimodal396

distributions does not exceed 50% of grid cells in any of the regions, except in N.W.South-397

America (NWS) and South-American-Monsoon (SAM) regions where 52.5% and 51.2%398

of the grid cells follow a unimodal distribution, respectively, in the historical period. The399

higher percentage of unimodal distributions in lower latitudes is consistent with trop-400

ical climate features, where hot temperatures are observed all year round and the an-401

nual temperature range is small (Richter, 2016; Beck et al., 2018). This climate type is402

therefore expected to likely experience a temperature distribution close to a single Gaus-403

sian. All grid cells (99.9%) in CMIP6 models follow a bimodal distribution in the Mediter-404

ranean (MED) region in the historical period and under all future periods. In polar re-405

gions, more than 90% of the grid cells follow a bimodal distribution in the historical pe-406

riod. The percentage of grid cells with unimodal distributions in polar regions slightly407

increases under future global warming levels.408

As previously mentioned in Section 2.2, large values of ∆T (see Equation 15) will409

cause the temperature distribution to change its modality for future GWL periods with410

respect to the historical base period of 1980-2010. We analysed all regional grids for all411

CMIP6 models for the modality changes under GWL 1.5◦C, 2◦C, 3◦C, and 4◦C. Figure412

7 shows the percentage of changes in grid cell distribution modalities under GWL3.0◦C.413

Globally, the percentage of grids changing from a unimodal (bimodal) distribution in the414

historical period to a bimodal (unimodal) distribution in the future periods is between415

2.98% (2.41%) and 5.99% (3.99%) for different scenarios and GWL as shown in Table416

2. The change from unimodal to bimodal distribution in the future period is most preva-417

lent in regions where the highest percentage of unimodality was observed in the histor-418

ical period, as shown in Figure 4. This suggests that regions that were previously char-419

acterized by more consistent temperatures (as indicated by a unimodal temperature dis-420

tribution) may experience more variability in temperature in the future. As our anal-421

ysis uses the mean and standard deviation of the same component from the historical422

and future daily maximum temperature distributions, we only used the grid cells which423

have the same modality in the historical and future periods. We disregarded the grid cells424

with changing modalities, i.e. unimodal to bimodal or vice versa, as this will affect the425

mean and standard deviation, and hence the return period analysis.426
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Figure 6. Same as Figure 4 but for future SSP5-8.5 scenario under GWL 3.0◦C.
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Figure 7. Percentage of changes in grid cell modalities relative to 1980-2010 distribution

shape for SSP5-8.5 under GWL3.0◦C. Each cell represents a region of a CMIP6 model and is

divided into 4 quadrants. Each quadrant of squares, qij , uses index notation, where i represents

the modality in the historical period and j represents the modality in the future period, 1 for a

unimodal distribution and 2 for a bimodal distribution. The top-left quadrant, q11, shows the

percentage of grid cells with unimodal distribution both in the historical and the future periods,

i.e. unimodal to unimodal (UU). The top-right quadrant, q12, shows the percentage of grid cells

that change from unimodal distribution in the historical period to bimodal distribution in the

future (UB). The bottom-left quadrant, q21, shows bimodal to unimodal (BU). The bottom-right

quadrant, q22, shows bimodal to bimodal distribution (BB). The colour of the quadrants shows

the percentage of grid cells. For several models, East Antarctica (EAN) region is not included in

the analysis because it is composed of many grid cells near the pole, causing numerical problems.

We also analysed the movements of the Gaussian components relative to each other427

using the ∆T definition from Equation 15 in grid cells with a bimodal distribution. Fig-428

ure 8 shows the ∆T results for all analysed regions for SSP5-8.5 under 3.0◦C warming429

(see Supplementary Material Figure S8 to S10 for other warming levels). Changes in dis-430

tribution peaks are smaller for the lower warming levels. This is consistent with the fact431

that the time periods for exceeding warming levels are very close to the historical pe-432

riod as shown in Figure 1. For the future 3.0◦C warming scenario, we observed that the433

mean temperatures are increasing in all regions. Temperature distributions for the Eu-434

ropean regions have negative ∆T values, -0.46 degrees on average. This will cause al-435

ready bimodal peaks in the historical period to separate further from each other in the436

future, while the whole distribution moves towards higher temperatures. Divergence of437

peaks will result in more extreme hot temperatures in Europe, as the hot Gaussian moves438

faster. This result is in agreement with findings from the IPCC AR6 report, in which439

temperatures in Europe are reported to increase faster than the rest of the globe (IPCC,440

2021). Polar regions, Northern America and parts of Northern Asia have positive ∆T441

values, i.e. converging peaks in grid cells with bimodal distributions. The distribution442

shape shifts to warmer temperatures and approaches a unimodal distribution as the cold443

Gaussian part of the distribution moves toward the warmer temperatures faster than the444
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Table 2. Global average percentage of grid cells with varying distribution modality between

the historical and future periods.

EXP GWL Unimodal→Unimodal Unimodal→Bimodal Bimodal→Unimodal Bimodal→Bimodal

SSP1-2.6 1.5◦C 11.22% 2.98% 2.41% 83.40%
SSP1-2.6 2.0◦C 10.29% 3.65% 2.56% 83.51%
SSP2-4.5 1.5◦C 10.96% 2.98% 2.43% 83.63%
SSP2-4.5 2.0◦C 10.24% 3.70% 2.84% 83.21%
SSP2-4.5 3.0◦C 8.77% 4.75% 3.18% 83.29%
SSP2-4.5 4.0◦C 7.17% 5.99% 3.75% 83.08%
SSP3-7.0 1.5◦C 10.79% 3.12% 2.54% 83.55%
SSP3-7.0 2.0◦C 10.15% 3.76% 3.01% 83.08%
SSP3-7.0 3.0◦C 8.92% 4.79% 3.56% 82.73%
SSP3-7.0 4.0◦C 7.81% 5.50% 3.89% 82.80%
SSP5-8.5 1.5◦C 11.03% 3.04% 2.47% 83.46%
SSP5-8.5 2.0◦C 10.32% 3.75% 3.17% 82.76%
SSP5-8.5 3.0◦C 9.16% 4.91% 3.90% 82.03%
SSP5-8.5 4.0◦C 8.20% 5.57% 3.99% 82.24%

hot Gaussian part. This convergence is also consistent with the slight increase in the per-445

centage of unimodal distribution in polar regions as shown in Figure 6. This will cause446

polar regions to have more days with warmer temperatures also in the colder mode while447

also having an overall warmer climate. The convergence of peaks in three polar regions448

(EAN, WAN, GIC) and three northern regions (RAR, NEN and NWN) becomes clear449

when the regions are sorted by the mean temperature of cold Gaussian component as450

shown in Figure 9. High ∆T values in polar regions are also supported by previous stud-451

ies reporting that Arctic regions are warming faster than the global average (Taylor et452

al., 2022). The lowest ∆T values are in MED and SAM regions, -0.97 and -1.25 degrees453

respectively, which will cause both bimodal peaks to diverge from each other while both454

are moving towards warmer temperatures. Regions in Oceania, Central- and parts of South-455

America have ∆T values close to zero, i.e. the cold and hot Gaussian peaks shifts to-456

ward the warmer temperatures at the same rate. This will cause these regions to have457

warmer cold and hot periods under future global warming levels compared to the his-458

torical period. When all regions are considered, we observe that the extreme tempera-459

ture events will increase everywhere, as the mean temperatures increase in all regions460

compared to the historical distributions. The fact that the peaks are converging only in461

cold climate regions while diverging in other regions shows that shifts in the Gaussian462

components with respect to each other are essential for extreme temperature event anal-463

yses as these changes affect the overall distribution shape and extent.464

After analysing the distribution shapes and peak movements, we calculated the re-465

turn periods -the average time between the occurrences of a certain event- of 1-year, 5-466

year, 10-year and 20-year events using only the grid cells with constant modalities, i.e.467

unimodal or bimodal both for the historical and future periods, as described in Equa-468

tion 14. As we did not analyse the extremes in blocks such as season or a full year, but469

the overall extremes in the region’s temperature distribution, we used the number of data470

points under the Gaussian component as the length of a year defined in Equation 7. For471

example, globally a 10-year event was a temperature event that occurs once in every 1880472

days (10 years×188days
year ) (for bimodal distributions) in the historical period, but it will473

occur once in every 564, 311, 122 and 72 days under GWL 1.5◦CC, 2.0◦C, 3.0◦C and 4.0◦C474

scenarios, as shown in the plot showing global results in Figure 10, respectively. In other475

words, historical 10-year events will be 3-year, 1.65-year, 0.65-year and 0.3-year events476

under the future GWL 1.5◦C, 2.0◦C, 3.0◦C and 4.0◦C scenarios, respectively. After cal-477

culating the frequency of extreme events using the temperature distributions in each grid478

cell individually for an IPCC land region, we averaged the results for the whole region479

for a single model. The global map with box plots in Figure 10 shows multi-model 10-480
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Figure 8. Multi-model peak mean change of region temperature distributions from bimodal

grid cells for SSP5-8.5 under GWL3.0◦C. Blue and red dots are peak means for the historical and

future periods, respectively, and are plotted on the left y-axis. Green bars describe the change in

the peak mean temperature, ∆T , and are plotted on the right y-axis. The upward shift in both

blue and red dots represents overall warming (see Supplementary Material Figure S8 to S10 for

other warming levels).

year event frequencies of each region for SSP5-8.5 scenario under different GWL, where481

blue, green, pink and red boxes represent 1.5◦C, 2.0◦C, 3.0◦C and 4.0◦C, respectively.482

Results for 1-year, 5-year, and 20-year events are left out for simplicity and presented483

in the Supplementary Material Figure S15 to S28. The length of a “year” in each region484

that is used for return period calculations, i.e. the number of days in 10 years, is shown485

on the top right corner of each sub-plot in Figure 10.486

As shown in Figure 10, return periods of extreme temperature events are getting487

shorter for all regions under all GWL scenarios as the median of each box is smaller than488

the base period. The frequency of extreme events is higher in lower latitudes compared489

to higher latitudes. For example, the return periods are getting prominently shorter in490

regions around the equator -where a higher percentage of unimodal grid cells was observed-491

compared to the other regions. Furthermore, CMIP6 models show narrower boxes and492

shorter whiskers in lower latitudes compared to wider boxes and longer whiskers in higher493

latitudes for all analyzed GWL. Among all analysed regions, the Caribbean (CAR) re-494

gion has the highest increase in the frequency of a 10-year event, from once in 1910 days495

for the historical period to once in every 93.0, 24.9, 4.2 and 1.8 days under GWL 1.5,496

2, 3, and 4◦C, respectively. Regions around the equator (namely CAR, NSA, NWS, NES,497

SEA, SCA, SAM, MDG, WAF, and SEAF regions) are the top 10 regions with the high-498

est increase in the frequency of extreme events under all GWL. The frequency of a tem-499

perature event equivalent to a 10-year event (historically once in every 1610 days) in the500

Mediterranean (MED) region increases to once in 367.7, 184.2, 62.8 and 27.1 days in the501

future under GWL 1.5, 2, 3, and 4◦C, respectively. Within the European continent, the502

West&Central Europe (WCE) region has a higher increase in the frequency of extreme503

events compared to the Eastern Europe (EEU) and the North Eastern Europe (NEU)504

regions, where the latter two regions are among the regions with the least increase in ex-505
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Figure 9. Multi-model peak mean change of region temperature distributions sorted by cold

Gaussian mean temperatures for SSP5-8.5 under GWL 3.0◦C. Blue and red dots are peak means

for the historical and future periods, respectively, and are plotted on the left y-axis. Green bars

describe the change in the peak mean temperatures, ∆T , and are plotted on the right y-axis.

The colder regions, three polar regions (EAN, WAN, GIC) and three northern regions (RAR,

NEN and NWN), have positive ∆T values and their absolute values are higher than the other

regions. The upward shift in blue dots shows that the temperature of cold days is getting warmer

and this increase is faster in polar regions compared to the rest of the world (see Supplementary

Material Figure S11 to S13 for other warming levels).

treme temperature event frequency. The smallest increase in the frequency of hot extremes506

is observed in the Western Antarctica (WAN) region, where the return periods of 10-year507

events will decrease from once in 1830 days to once in 1062.12, 844.7, 541.9 and 339.8508

days under GWL 1.5, 2, 3, and 4◦C, respectively. High latitude regions, such as WAN,509

NEU, EAN, NWN, ESB, GIC, RAR, SSA, TIB, and NEN regions are the 10 regions with510

the smallest decrease in return periods of extreme hot temperature events. Some of these511

regions are polar regions with positive ∆T values as shown in Figure 9. This will cause512

more days with warmer temperatures in the colder mode of these regions while having513

an increase in hot extremes.514

4 Summary and Discussion515

Detection of extreme events is important to mitigate their impact on natural and516

anthropogenic systems. Future projections suggest that the mean and standard devia-517

tions of maximum surface temperature will increase. This change in the shape of max-518

imum surface temperature distributions increases the intensity and frequency of extreme519

events in the future. However, not only the shift to warmer temperatures but also the520

modality of temperature distribution affects the parameters of the entire distribution which521

is important to calculate the return periods as shown in this study.522

GMM are a promising method for calculating the return periods of extreme events,523

and additionally determining the shape of the entire distribution for daily maximum tem-524

perature data. Some studies used seasonal periods to analyse extreme events (Walt &525

Fitchett, 2021; Prodhomme et al., 2022), however, onsets and length of seasons are pre-526
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dicted to change with climate change (Wang et al., 2021). Therefore, the definition of527

current seasonal periods will not necessarily be valid for future climates. One can uti-528

lize GMM to determine the hot Gaussian component of a region to define the length of529

the analysis period instead of using fixed seasonal definitions. Furthermore, one loses most530

of the data with current extreme event indices. GEV distributions are a better fit for531

longer block sizes than for shorter blocks like daily data. If the available dataset is short,532

the longer block sizes will produce fewer data which can increase the variability in pa-533

rameter estimation (Huang et al., 2016; Wang et al., 2016). If there is more than one ex-534

tremely hot day in the block (month, season or year), e.g. several consecutive days, block535

maxima methods consider only the hottest, and hence only one day in a block, while GMM536

considers all days hotter than the threshold. Assuming that a heat wave lasts usually537

days to a few weeks, a substantial number of hot days might not be seen by block max-538

ima methods as long as they fall into the same block. However, since the Gaussian com-539

ponents of GMM are not bounded, it is important to only calculate the return periods540

of extreme events equal to or less than the study period when applying GMM. Addition-541

ally, we only used grid cells which have the same number of Gaussian components in their542

temperature distribution, i.e. unimodal or bimodal distribution, both for the historical543

and future periods. Grid cells with changing distribution shapes, e.g. transforming from544

a bimodal distribution in the historical period to a unimodal distribution in the future545

or vice versa, were found in less than 10% of the grid cell for each GWL as shown in Ta-546

ble 2, and were disregarded in the analysis as calculating the temperature thresholds be-547

comes problematic with the abrupt change in means and standard deviations. Finally,548

GMM can provide information on different climate features in different regions such as549

cold and hot periods, and their changes.550

For the first time, the IPCC AR6 Report includes a new dedicated chapter on weather551

and climate extreme events (IPCC, 2021). This emphasizes the importance of robust meth-552

ods of extreme event detection to be able to mitigate the impact of such events. IPCC553

AR6 reports that the return periods of 10-year events will increase around the world,554

with the highest changes projected to happen in some mid-latitude and semi-arid regions.555

Our findings are in agreement with these results. Furthermore, IPCC AR6 projects the556

warming rate in mid-latitudes to be higher than the average global warming rate. This557

will introduce the highest increase in the temperature of the hottest days. For example,558

almost all grid cells in the Mediterranean region follow a bimodal distribution, and the559

peaks of bimodal distribution will diverge in the future. This might explain why the Mediter-560

ranean region is identified as one of the most responsive regions to climate change and561

a hot spot of climate extremes (IPCC, 2021). Similarly, Arctic regions are projected to562

have the highest increase in temperature of the coldest days (IPCC, 2021; C. Li et al.,563

2021). Our results are also consistent with these increases as shown in Figure 8, where564

diverging peaks in mid-latitudes will shift the hot Gaussian part of temperature distri-565

butions to the higher temperature ranges. This shift in the Gaussian components of tem-566

perature distribution will cause those land regions to have warmer temperature extremes567

and can explain the higher average warming rate than the global average. Likewise, con-568

verging peaks in polar regions as shown in Figure 8 will move the cold Gaussian part to-569

ward warmer temperatures, thereby introducing higher warming on the coldest days.570

According to our analyses, 10-year events will increase almost 3-fold under GWL571

1.5◦C compared to the historical period for all SSP scenarios as shown in Figure 11 when572

looking at the whole globe. This means a temperature event that occurs once in every573

10 years (1880 days) will occur 3.3 times in every 10 years under GWL 1.5◦C. 10-year574

extreme temperature events will become even more frequent globally under GWL 2◦C,575

3◦C and 4◦C; 6.0, 15.3, and 32.7 times in every 10 years, respectively. In other words,576

current 10-year events will be 3.0-year, 1.65-year, 0.65-year and 0.3-year events in the577

future under GWL 1.5◦C, 2◦C, 3◦C and 4◦C, respectively. Our results show a higher in-578

crease compared to the IPCC AR6 report, where the frequency of 10-year events is pro-579

jected to increase approximately 3, 4, 5.5 and 9-fold under GWL 1.5◦C, 2◦C, 3◦C and580
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4◦C, respectively (IPCC, 2021), using a block maxima method for determining the ex-581

treme events. The higher increase in our method compared to IPCC AR6 can most likely582

be explained by the fact that GMM considers all days hotter than the threshold, while583

the block maxima method only uses the maximum of a block. Another important point584

deduced from the analyses of different regions for several CMIP6 models is that the en-585

semble of analyzed CMIP6 models shows coherent results for regions as shown in the re-586

gional box plots in Figure 10. Most of the individual model results fall within the first587

and third quartile, and only a few models fall outside this range. The higher number of588

outlier points in the global box plot in Figure 10, and also shown for different SSP sce-589

narios in Figure 11, are caused by the differences between regional return periods. All590

SSP scenarios show similar results with each other as the return periods are calculated591

for GWL which have the same forcing on climate.592

1.
5

(2
5) 2.
0

(1
4) 3.
0

(0
)

4.
0

(0
)0

300

600

900

1200

1500

a)

1.
5

(2
7) 2.
0

(2
7) 3.
0

(1
2) 4.
0

(2
)0

300

600

900

1200

1500

b)

1.
5

(2
5) 2.
0

(2
5) 3.
0

(2
3) 4.
0

(1
1)

0

300

600

900

1200

1500

c)

1.
5

(2
9) 2.
0

(2
9) 3.
0

(2
9) 4.
0

(1
8)

0

300

600

900

1200

1500

d)

Oc
cu

rre
nc

e 
(d

ay
s)

GWL ( C)

Figure 11. Global multi-model median of event frequencies for 10-year temperature events

under 1.5, 2, 3 and 4◦C warming levels for a) SSP1-2.6, b) SSP2-4.5, c) SSP3-7.0 and d) SSP5-

8.5 scenarios. The orange lines inside the boxes show the CMIP6 multi-model median, and the

boxes extend between the first quartile (Q1) to the third quartile (Q3) of the data, i.e. inter-

quartile range (IQR). The vertical lines, i.e. whiskers, stretch out 1.5 IQR from the box. The

circles represent the models outside of the interquartile range, i.e. outliers. The length of the hot

period used for return period calculations, i.e. number of days in 10 years, is shown in the top

right corner of each plot. The number of datasets is given in parenthesises. All plots show similar

results for different SSP scenarios as the GWL are scenario-independent.

Return periods of extreme events become shorter in every region, which means that593

the frequency of extreme temperature events increases. This will become larger with in-594
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creasing global warming levels. Some climate models have already exceeded GWL 1.5◦C595

with respect to the 1850-1900 period as shown in Figure 1. This fact further emphasises596

the importance of robust methods to detect extreme events. Even though there is a de-597

lay in taking the necessary precautions to reduce the speed of the warming of the cli-598

mate, as time goes by, tomorrow’s projections become today’s reality.599

Code and data availability600

The recipes to extract regional data from CMIP6 models using ESMValTool, python601

scripts to analyse extreme events and to produce all figures of this manuscript are ac-602

cessible in the following GitHub repository: https://github.com/EyringMLClimateGroup/603

pacal23jgr GaussianMixtureModels Extremes. The regional output files amount to604

hundreds of GB.605

The latest release of ESMValTool is publicly at https://github.com/ESMValGroup/606

ESMValTool (Andela et al., 2022).607
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(2011). The hot summer of 2010: Redrawing the temperature record map of640

europe. Science, 332 (6026), 220-224. doi: 10.1126/science.1201224641

Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., &642

–22–



manuscript submitted to JGR: Atmospheres

Wood, E. F. (2018). Present and future köppen-geiger climate classi-643

fication maps at 1-km resolution. Scientific Data, 5 (1), 180214. doi:644

10.1038/sdata.2018.214645

Ben Alaya, M. A., Zwiers, F., & Zhang, X. (2020). An evaluation of block-646

maximum-based estimation of very long return period precipitation ex-647

tremes with a large ensemble climate simulation. Journal of Climate, 33 (16),648

6957–6970. doi: 10.1175/JCLI-D-19-0011.1649

Benestad, R. (2004). Record-values, nonstationarity tests and extreme value dis-650

tributions. Global and Planetary Change, 44 (1–4), 11–26. doi: 10.1016/651

j.gloplacha.2004.06.002652
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