Characterization
Morphological information was obtained by a transmission electron
microscope (TEM, JEM-2100, JEOL, Tokyo, Japan). High-resolution
transmission electron microscopy (HRTEM) measurements at different
magnifications were conducted on the JEOL-F200 transmission electron
microscope operating at 200 kV. Raman spectrum was recorded using a
laser confocal micro-Raman spectroscopy (InVia-Reflex, Renishaw, London,
Britain). Fourier transform infrared (FT-IR) spectroscopy was collected
using a Nexus 870 FTI-R spectrometer. The X-ray photoelectron
spectroscopy (XPS) was obtained with a 3 ESCALAB250 XPS using Al Kα
radiation (1486.6 eV). Ultraviolet-visible (UV-Vis) spectra were
measured using a UV-1800PC spectrophotometer (Shanghai meipuda
instrument co., LTD, China). fluorescence spectra were obtained on a
Hitachi FL-7100 (Hitachi high technologies corporation Tokyo Japan). The
HORIBA FLSP920 system was used to obtain the absolute quantum yield (QY)
in the calibration sphere. The hydrodynamic diameters of EDTA-CDs and
UPy-CDs were measured in concentrated and dilute aqueous solutions using
dynamic light scattering (DLS). Zeta potential analysis was performed on
a Zetasizer analyzer (Nano ZS90, Malvern Instruments Ltd.). The
decomposition temperature thermogravimetric analysis (TGA) was performed
on a Discovery TGA 5500 thermogravimetric analyzer under a nitrogen
atmosphere from room temperature to 800 oC with a
heating rate of 5 oC/min.
Supporting Information
The supporting information for this article is available on the WWW
under https://doi.org/10.1002/cjoc.2021xxxxx.
Acknowledgement
This work was financially supported by the National Natural Science
Foundations of China (Grant Nos. 52172033, 51772001, 22005280,), the
Anhui Province Key Research and Development Plan Project International
Science and Technology Cooperation Special Project (No.
202004b11020015). We gratefully acknowledge financial support from the
National Key R&D Program of China (Grant No. YFA1600202). We
acknowledge the support of the Key Laboratory of Structure and
Functional Regulation of Hybrid Materials of Ministry of Education,
Anhui University, Hefei, Anhui 230601, China and the Key Laboratory of
Functional Inorganic Material Chemistry of Anhui Province, Anhui
University, Hefei 230601, P. R. China. We also acknowledge the support
of the Key Laboratory of Environment-Friendly Polymer Materials of Anhui
Province, Hefei, China.
References
- Yan, X.; Feng, W.; Zheng, B.; Huang, F. Stimuli-responsive
Supramolecular Polymeric Materials. Chem. Soc. Rev .2012 , 41 , 6042–6065.
- Peng, H.; Zhu, W.; Guo, W.; Li, Q.; Ma, S.;Bucher, C.; Liu, B.; Ji,
X.; Huang, F.; Sessler, J. L. Supramolecular Polymers:Recent Advances
Based on The Types of Underlying Interactions. Progress in
Polymer Science . 2023 , 137 , 101635.
- Si, Q.; Feng, Y.; Yang, W.; Fu, L.; Yan, Q.; Dong, L.; Long, P.; Feng,
W. Controllable and Stable Deformation of a Self-Healing
Photo-Responsive Supramolecular Assembly for an Optically Actuated
Manipulator Arm. ACS Applied Materials &
Interfaces .2018 10 , 29909-29917
- Liu, Z.; Guo W.; Wang, W.; Guo, Z.; Yao, L.; Xue, Y.; Liu, Q.; Zhang,
Q. Healable Strain Sensor Based on Tough and Eco-Friendly Biomimetic
Supramolecular Waterborne Polyurethane. ACS Applied Materials &
Interfaces 2022 14, 6016-6027.
- Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Raker, G. K.; Scrivens, W. A.
Electrophoretic Analysis and Purification of Fluorescent Single-Walled
Carbon Nanotube Fragments. J. Am. Chem. Soc . 2004 ,126 , 12736–12737.
- Xue, S.; Li, P.; Sun, L.; An, l.; Qu, D.; Wang, X.; Sun, Z. The
Formation Process and Mechanism of Carbon Dots Prepared from Aromatic
Compounds as Precursors: A Review. Small . 2023, 2206180.
- Dordevic L, Arcudi F, Cacioppo M, Prato M. A multifunctional chemical
toolbox to engineer carbon dots for biomedical and energy
applications. Nat. Nanotechnol . 2022 , 17 ,
112-130.
- Döring, A.; Ushakova, E.; Rogach, A. L. Chiral carbon dots: synthesis,
optical properties, and emerging applications. Light Sci Appl.2022 , 11 , 75.
- Chen, Z.; Liu, Yang.; Kang, Z. Accounts of Chemical Research .2022 , 55 , 3110-3124.
- Xu, J.; Liang Q.; Li, Z.; Osipov, V. U.; Lin, Y.; Ge, B.; Zhu, J.; B,
H. Rational Synthesis of Solid-State Ultraviolet B Emitting Carbon
Dots via Acetic Acid-Promoted Fractions of sp3 Bonding Strategy.Adv. Mater .2022 , 34 , 2200011.
- Zhu, Z.; Ge, K.; Li, Z.; Hu, J.; Cheng, P.; Bi, H. Nickel-Doped Carbon
Dots as an Efficient and Stable Electrocatalyst for Urea Oxidation.Small . 2022 , 2205234.
- Wang, H.; Zhang, M.; Wei, K.; Zhao, Y.; Nie, H.; Ma, Y.; Zhou, Y.;
Huang, H.; Liu, Y.; Shao, M.; Kang, Z. Pyrrolic nitrogen dominated the
carbon dot mimic oxidase activity. Carbon. 2021 , 179,
692-700.
- Zheng, M.; Jia, H.; Zhao, B.; Zhang, C.; Dang, Q.; Ma, H.; Xu, K.;
Tan, Z. Gram-Scale Room-Temperature Synthesis of Solid-State
Fluorescent Carbon Nanodots for Bright Electroluminescent Light
Emitting Diodes. Small 2023 , 2206715.
- Liu, J.; Kong, T.; Xiong, H. Mulberry-Leaves-Derived Red-Emissive
Carbon Dots for Feeding Silkworms to Produce Brightly Fluorescent
Silk. Adv. Mater . 2022 , 34 , 2200152.
- Song, T.; Huang, Z.; Zhang, X.; Ni, J.; Xiong, H. Nitrogen-Doped and
Sulfonated Carbon Dots as a Multifunctional Additive to Realize Highly
Reversible Aqueous Zinc-Ion Batteries. Small .2023 , 2205558.
- Yang, D.; Qu, D.; An, L.; Zong, X.; Sun, Z. A metal-free carbon dots
for wastewater treatment by visible light active photo-Fenton-like
reaction in the broad pH range. Chinese Chemical Letters.2021 , 32, 2292-2296.
- Fu, R.; Song, H.; Liu, X.; Zhang, Y.; Xiao, G.; Zou, B.; Waterhouse,
G.I.N.; Lu, S. Disulfide crosslinking-induced aggregation: Towards
solid-state fluorescent carbon dots with vastly different emission
colors. Chin. J. Chem . 2023.
- Deng, Y.; Zhao, D.; Chen, X.; Wang, F.; Song, H.; Shen, D. Long
lifetime pure organic phosphorescence based on water soluble carbon
dots. Chem. Commun ., 2013 , 49 , 5751.
- Jiang, K.; Gao, X.; Feng, X.; Wang, Y.; Li, Z.; Lin, H. Carbon Dots
with Dual-Emissive, Robust, and Aggregation-Induced Room-Temperature
Phosphorescence Characteristics. Angew. Chem. Int.
Ed. 2020 ,59 , 1263-1269.
- Song, S.; Liu, K.; Cao, Q.; Mao, X.; Zhao, W.; Wang, Y.; Liang, Y.;
Zang, J.; Luo, Q.; Dong, L.; Shan, C.
Ultraviolet
Phosphorescent Carbon Nanodots. Light Sci Appl . 2022 ,11 , 146.
- Xia, C.; Zhu, S.; Zhang, S.; Zeng, Q.; Tao, S.; Tian, X.; Li, Y.;
Yang, B.
Carbonized
Polymer Dots with Tunable Room-Temperature Phosphorescence Lifetime
and Wavelength. ACS Appl. Mater. Interfaces . 2020 ,12 , 38593–38601.
- Ding, Y.; Wang, X.; Tang, M.; Qiu, B.
Tailored
Fabrication of Carbon Dot Composites with Full-Color Ultralong
Room-Temperature Phosphorescence for Multidimensional Encryption.Adv. Sci. 2022 , 9 , 2103833.
- Sun, Y.; Zhang, X.; Zhuang, J.; Zhang, H.; Hu, C.; Zheng, M.; Lei, B.;
Liu, Y. The room temperature afterglow mechanism in carbon dots:
Current state and further guidance perspective. Carbon.2020 , 165, 306-316.
- Cao, Q.; Liu, K.; Liang, Y.; Song, S.; Deng, Y.; Mao, X.; Wang, Y.;
Zhao, W.; Lou, Q.; Shan, C. Brighten Triplet Excitons of Carbon
Nanodots for Multicolor Phosphorescence Films. Nano Letters.2022 , 22 , 4097-4105.
- Zhu, J.; Hu, J.; Hu, Q.; Zhang, X.; Ushakova, E. V., Liu, K.; Wang,
S.; Chen, X.; Shan, C.; Rogach, A. L.; Bai, X. White Light Afterglow
in Carbon Dots Achieved via Synergy between the Room-Temperature
Phosphorescence and the Delayed Fluorescence. Small ,2022 , 18 , 2105415.
- Shi, H.; Wu, Y.; Xu, J.; Shi, H.; An, Z. Recent Advances of Carbon
Dots with Afterglow Emission. Small . 2023 , 2207104.
- Wang, K.; Qu, l.; Yang, C. Long-Lived Dynamic Room Temperature
Phosphorescence from Carbon Dots Based Materials. Small .2023 , 2206429.
- Wu, X.; Yu, F.; Han, Y.; Jiang, L.; Li, Z.; Zhu, J.; Xu, Q.; Tedesco,
A. C.; Zhuang, J.; Bi, H.
Enhanced
Chemodynamic and Photoluminescence Efficiencies of
Fe-O4 Coordinated Carbon Dots via the Core–Shell
Synergistic Effect. Nanoscale , 2023 , 15 ,
376-386.
- Wang, W.; Zhang, W.; Liu, Z.; Xue, Y.; Lei, X.; Gong, G.; Zhang, Q.
Towards a tough reprocessable and self-healable
acrylonitrile-butadiene rubber based on strong hydrogen bonding
interactions. J. Mater. Chem. C . 2021 , 9 ,
6241-6250.
- Tian, X.; Yin, B. Unconventional Preparation Strategies, and
Applications Beyond Photoluminescence. Small 2019 ,15 , 1901803.
- Yuan, F.; Wang, Z.; Li, X.; Li, Y.; Tan, Z.; Fan, L.; Yang, S.
Bright Multicolor
Bandgap Fluorescent Carbon Quantum Dots for Electroluminescent
Light-Emitting Diodes. Adv. Mater . 2017 , 29 ,
1604436.
- Bogdanov, K.; Fedorov, A.; Osipov, V.; Enoki, T.; Takai, K.; Hayashi,
T.; Ermakov, V.; Moshkalev, S.; Baranov, A.
Annealing-Induced
Structural Changes of Carbon Onions: High-resolution Transmission
Electron Microscopy and Raman studies. Carbon . 2014 ,73 ,78-86.
- Bao, L.; Liu, C.;Zhang, Z.; Peng, D. Photoluminescence-Tunable Carbon
Nanodots: Surface-State Energy-Gap Tuning. Adv. Mater .2015 , 27 , 1663-1667.
- Liu, J.; Lu, S.; Tang, Q.; Zhang, K.;Yu, W.; Sun, H.; Yang,
B.One-step
hydrothermal synthesis of photoluminescent carbon nanodots with
selective antibacterial activity against Porphyromonas gingivalis.Nanoscale . 2017 , 9 , 7135-7142.
- Zhang, X.; Li, G.; Wang, J.; Chu, J.; Wang, F.; Hu, Z.; Song, Z.
Revisiting
the Structure and Electrochemical Performance of
Poly(o-phenylenediamine) as an Organic Cathode Material. ACS
Appl. Mater. Interfaces . 2022 , 14 , 27968–27978.
- Dong, C.; Xu, M.; Huang, J.; Li, F.; Wei, P.; Tedesco, A. C.; Bi, H.
Dynamic Thermosensitive Solid-State Photoluminescent Carbonized
Polymer Dots as Temperature-Responsive Switches for Sensor
Applications. ACS Appl. Nano Mater. 2020 , 3 ,
10560–10564.
- Hua, X.; Bao, Y.; Wu, F. Fluorescent Carbon Quantum Dots with
Intrinsic Nucleolus-Targeting Capability for Nucleolus Imaging and
Enhanced Cytosolic and Nuclear Drug Delivery. ACS Appl. Mater.
Interfaces . 2018 , 10, 10664–10677.
- Hu, S.; Trinchi, A.; Atkin, P. Cole, I. Tunable Photoluminescence
Across the Entire Visible Spectrum from Carbon Dots Excited by White
Light. Angew. Chem. Int. Ed .2015 , 54, 2970-2974.
- Zhi, B.; Yao, X.; Wu, M.; Mensch, A.; Cui, Y.; Deng, J.;
Duchimaza-Heredia, J. J.; Trerayapiwat, K. J.; Niehaus, T.; Nishimoto,
Y.; Frank, B. P.; Zhang, Y.; Lewis, R. E.; Kappel,E. A.; Hamers, R.
J.; Fairbrother, H. D.; Orr, G.; Murphy, C.J.; Cui, Q.; Haynes, C. L.
Multicolor
polymeric carbon dots: synthesis, separation and polyamide-supported
molecular fluorescence. Chem. Sci . 2021 ,12 ,
2441-2455.
- Mao, Y.; Duan, H.; Xu, B.;Zhang, L.; Hu, Y.; Zhao, C.; Wang, Z.; Chen,
L.; Yang, Y. Lithium Storage in Nitrogen-Rich Mesoporous Carbon
Materials. Energy Environ. Sci. 2012 ,5 , 7950-7955.
- Wang, W.; Zhang, W.; Liu, Z.; Xue, Y.; Lei, X.; Gong, G.; Zhang, Q.
Towards A Tough Reprocessable and Self-Healable
Acrylonitrile-Hutadiene Rubber Based on Strong Hydrogen Honding
Interactions. J. Mater. Chem. C. 2021 , 9 , 6241-6250.
- Tang, L.; Ji, R.; Li, X.; Bai, G.; Liu, C.; Hao, J.; Liu, J.; Jiang,
H.; Teng, K. S.; Yang, Z.; Lau, S.
Deep Ultraviolet to
Near-Infrared Emission and Photoresponse in Layered N-Doped Graphene
Quantum Dots. ACS Nano . 2014 , 8 , 6312–6320.
- Getachew, G.; Hsiao, H. C.; Wibrianto, A.; Rasal, A. S.; Dirersa, W.
B.; Huang, C.; Rao, N. V.; Chen, J. H.; Chang, J.
High
performance carbon dots based prodrug Platform: Image-Guided
photodynamic and chemotherapy with On-Demand drug release upon laser
irradiation. J.Colloid Interface Sci . 2023 ,633 , 396-410.
- Li, Q.; Zhou, M.; Yang, M.; Yang, Q.; Zhang, Z.; Shi, J. Induction of
Long-Lived Room Temperature Phosphorescence of Carbon Dots by Water in
Hydrogen-Bonded Matrices. Nat Commun . 2018 , 9 ,
734.
- Tan, J.; Ye, Y.; Ren, X.; Zhao, W.; Yue, Dong. High pH-Induced
Efficient Room-Temperature Phosphorescence from Carbon Dots in
Hydrogen-Bonded Matrices. J. Mater. Chem. C. 2018 , 6,
7890-7895.