Characterization
Morphological information was obtained by a transmission electron microscope (TEM, JEM-2100, JEOL, Tokyo, Japan). High-resolution transmission electron microscopy (HRTEM) measurements at different magnifications were conducted on the JEOL-F200 transmission electron microscope operating at 200 kV. Raman spectrum was recorded using a laser confocal micro-Raman spectroscopy (InVia-Reflex, Renishaw, London, Britain). Fourier transform infrared (FT-IR) spectroscopy was collected using a Nexus 870 FTI-R spectrometer. The X-ray photoelectron spectroscopy (XPS) was obtained with a 3 ESCALAB250 XPS using Al Kα radiation (1486.6 eV). Ultraviolet-visible (UV-Vis) spectra were measured using a UV-1800PC spectrophotometer (Shanghai meipuda instrument co., LTD, China). fluorescence spectra were obtained on a Hitachi FL-7100 (Hitachi high technologies corporation Tokyo Japan). The HORIBA FLSP920 system was used to obtain the absolute quantum yield (QY) in the calibration sphere. The hydrodynamic diameters of EDTA-CDs and UPy-CDs were measured in concentrated and dilute aqueous solutions using dynamic light scattering (DLS). Zeta potential analysis was performed on a Zetasizer analyzer (Nano ZS90, Malvern Instruments Ltd.). The decomposition temperature thermogravimetric analysis (TGA) was performed on a Discovery TGA 5500 thermogravimetric analyzer under a nitrogen atmosphere from room temperature to 800 oC with a heating rate of 5 oC/min.
Supporting Information
The supporting information for this article is available on the WWW under https://doi.org/10.1002/cjoc.2021xxxxx.
Acknowledgement
This work was financially supported by the National Natural Science Foundations of China (Grant Nos. 52172033, 51772001, 22005280,), the Anhui Province Key Research and Development Plan Project International Science and Technology Cooperation Special Project (No. 202004b11020015). We gratefully acknowledge financial support from the National Key R&D Program of China (Grant No. YFA1600202). We acknowledge the support of the Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China and the Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, P. R. China. We also acknowledge the support of the Key Laboratory of Environment-Friendly Polymer Materials of Anhui Province, Hefei, China.
References
  1. Yan, X.; Feng, W.; Zheng, B.; Huang, F. Stimuli-responsive Supramolecular Polymeric Materials. Chem. Soc. Rev .2012 , 41 , 6042–6065.
  2. Peng, H.; Zhu, W.; Guo, W.; Li, Q.; Ma, S.;Bucher, C.; Liu, B.; Ji, X.; Huang, F.; Sessler, J. L. Supramolecular Polymers:Recent Advances Based on The Types of Underlying Interactions. Progress in Polymer Science . 2023 , 137 , 101635.
  3. Si, Q.; Feng, Y.; Yang, W.; Fu, L.; Yan, Q.; Dong, L.; Long, P.; Feng, W. Controllable and Stable Deformation of a Self-Healing Photo-Responsive Supramolecular Assembly for an Optically Actuated Manipulator Arm. ACS Applied Materials & Interfaces .2018 10 , 29909-29917
  4. Liu, Z.; Guo W.; Wang, W.; Guo, Z.; Yao, L.; Xue, Y.; Liu, Q.; Zhang, Q. Healable Strain Sensor Based on Tough and Eco-Friendly Biomimetic Supramolecular Waterborne Polyurethane. ACS Applied Materials & Interfaces 2022 14, 6016-6027.
  5. Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Raker, G. K.; Scrivens, W. A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc . 2004 ,126 , 12736–12737.
  6. Xue, S.; Li, P.; Sun, L.; An, l.; Qu, D.; Wang, X.; Sun, Z. The Formation Process and Mechanism of Carbon Dots Prepared from Aromatic Compounds as Precursors: A Review. Small . 2023, 2206180.
  7. Dordevic L, Arcudi F, Cacioppo M, Prato M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol . 2022 , 17 , 112-130.
  8. Döring, A.; Ushakova, E.; Rogach, A. L. Chiral carbon dots: synthesis, optical properties, and emerging applications. Light Sci Appl.2022 , 11 , 75.
  9. Chen, Z.; Liu, Yang.; Kang, Z. Accounts of Chemical Research .2022 , 55 , 3110-3124.
  10. Xu, J.; Liang Q.; Li, Z.; Osipov, V. U.; Lin, Y.; Ge, B.; Zhu, J.; B, H. Rational Synthesis of Solid-State Ultraviolet B Emitting Carbon Dots via Acetic Acid-Promoted Fractions of sp3 Bonding Strategy.Adv. Mater .2022 , 34 , 2200011.
  11. Zhu, Z.; Ge, K.; Li, Z.; Hu, J.; Cheng, P.; Bi, H. Nickel-Doped Carbon Dots as an Efficient and Stable Electrocatalyst for Urea Oxidation.Small . 2022 , 2205234.
  12. Wang, H.; Zhang, M.; Wei, K.; Zhao, Y.; Nie, H.; Ma, Y.; Zhou, Y.; Huang, H.; Liu, Y.; Shao, M.; Kang, Z. Pyrrolic nitrogen dominated the carbon dot mimic oxidase activity. Carbon. 2021 , 179, 692-700.
  13. Zheng, M.; Jia, H.; Zhao, B.; Zhang, C.; Dang, Q.; Ma, H.; Xu, K.; Tan, Z. Gram-Scale Room-Temperature Synthesis of Solid-State Fluorescent Carbon Nanodots for Bright Electroluminescent Light Emitting Diodes. Small 2023 , 2206715.
  14. Liu, J.; Kong, T.; Xiong, H. Mulberry-Leaves-Derived Red-Emissive Carbon Dots for Feeding Silkworms to Produce Brightly Fluorescent Silk. Adv. Mater . 2022 , 34 , 2200152.
  15. Song, T.; Huang, Z.; Zhang, X.; Ni, J.; Xiong, H. Nitrogen-Doped and Sulfonated Carbon Dots as a Multifunctional Additive to Realize Highly Reversible Aqueous Zinc-Ion Batteries. Small .2023 , 2205558.
  16. Yang, D.; Qu, D.; An, L.; Zong, X.; Sun, Z. A metal-free carbon dots for wastewater treatment by visible light active photo-Fenton-like reaction in the broad pH range. Chinese Chemical Letters.2021 , 32, 2292-2296.
  17. Fu, R.; Song, H.; Liu, X.; Zhang, Y.; Xiao, G.; Zou, B.; Waterhouse, G.I.N.; Lu, S. Disulfide crosslinking-induced aggregation: Towards solid-state fluorescent carbon dots with vastly different emission colors. Chin. J. Chem . 2023.
  18. Deng, Y.; Zhao, D.; Chen, X.; Wang, F.; Song, H.; Shen, D. Long lifetime pure organic phosphorescence based on water soluble carbon dots. Chem. Commun ., 2013 , 49 , 5751.
  19. Jiang, K.; Gao, X.; Feng, X.; Wang, Y.; Li, Z.; Lin, H. Carbon Dots with Dual-Emissive, Robust, and Aggregation-Induced Room-Temperature Phosphorescence Characteristics. Angew. Chem. Int. Ed. 2020 ,59 , 1263-1269.
  20. Song, S.; Liu, K.; Cao, Q.; Mao, X.; Zhao, W.; Wang, Y.; Liang, Y.; Zang, J.; Luo, Q.; Dong, L.; Shan, C. Ultraviolet Phosphorescent Carbon Nanodots. Light Sci Appl . 2022 ,11 , 146.
  21. Xia, C.; Zhu, S.; Zhang, S.; Zeng, Q.; Tao, S.; Tian, X.; Li, Y.; Yang, B. Carbonized Polymer Dots with Tunable Room-Temperature Phosphorescence Lifetime and Wavelength. ACS Appl. Mater. Interfaces . 2020 ,12 , 38593–38601.
  22. Ding, Y.; Wang, X.; Tang, M.; Qiu, B. Tailored Fabrication of Carbon Dot Composites with Full-Color Ultralong Room-Temperature Phosphorescence for Multidimensional Encryption.Adv. Sci. 2022 , 9 , 2103833.
  23. Sun, Y.; Zhang, X.; Zhuang, J.; Zhang, H.; Hu, C.; Zheng, M.; Lei, B.; Liu, Y. The room temperature afterglow mechanism in carbon dots: Current state and further guidance perspective. Carbon.2020 , 165, 306-316.
  24. Cao, Q.; Liu, K.; Liang, Y.; Song, S.; Deng, Y.; Mao, X.; Wang, Y.; Zhao, W.; Lou, Q.; Shan, C. Brighten Triplet Excitons of Carbon Nanodots for Multicolor Phosphorescence Films. Nano Letters.2022 , 22 , 4097-4105.
  25. Zhu, J.; Hu, J.; Hu, Q.; Zhang, X.; Ushakova, E. V., Liu, K.; Wang, S.; Chen, X.; Shan, C.; Rogach, A. L.; Bai, X. White Light Afterglow in Carbon Dots Achieved via Synergy between the Room-Temperature Phosphorescence and the Delayed Fluorescence. Small ,2022 , 18 , 2105415.
  26. Shi, H.; Wu, Y.; Xu, J.; Shi, H.; An, Z. Recent Advances of Carbon Dots with Afterglow Emission. Small . 2023 , 2207104.
  27. Wang, K.; Qu, l.; Yang, C. Long-Lived Dynamic Room Temperature Phosphorescence from Carbon Dots Based Materials. Small .2023 , 2206429.
  28. Wu, X.; Yu, F.; Han, Y.; Jiang, L.; Li, Z.; Zhu, J.; Xu, Q.; Tedesco, A. C.; Zhuang, J.; Bi, H. Enhanced Chemodynamic and Photoluminescence Efficiencies of Fe-O4 Coordinated Carbon Dots via the Core–Shell Synergistic Effect. Nanoscale , 2023 , 15 , 376-386.
  29. Wang, W.; Zhang, W.; Liu, Z.; Xue, Y.; Lei, X.; Gong, G.; Zhang, Q. Towards a tough reprocessable and self-healable acrylonitrile-butadiene rubber based on strong hydrogen bonding interactions. J. Mater. Chem. C . 2021 , 9 , 6241-6250.
  30. Tian, X.; Yin, B. Unconventional Preparation Strategies, and Applications Beyond Photoluminescence. Small 2019 ,15 , 1901803.
  31. Yuan, F.; Wang, Z.; Li, X.; Li, Y.; Tan, Z.; Fan, L.; Yang, S. Bright Multicolor Bandgap Fluorescent Carbon Quantum Dots for Electroluminescent Light-Emitting Diodes. Adv. Mater . 2017 , 29 , 1604436.
  32. Bogdanov, K.; Fedorov, A.; Osipov, V.; Enoki, T.; Takai, K.; Hayashi, T.; Ermakov, V.; Moshkalev, S.; Baranov, A. Annealing-Induced Structural Changes of Carbon Onions: High-resolution Transmission Electron Microscopy and Raman studies. Carbon . 2014 ,73 ,78-86.
  33. Bao, L.; Liu, C.;Zhang, Z.; Peng, D. Photoluminescence-Tunable Carbon Nanodots: Surface-State Energy-Gap Tuning. Adv. Mater .2015 , 27 , 1663-1667.
  34. Liu, J.; Lu, S.; Tang, Q.; Zhang, K.;Yu, W.; Sun, H.; Yang, B.One-step hydrothermal synthesis of photoluminescent carbon nanodots with selective antibacterial activity against Porphyromonas gingivalis.Nanoscale . 2017 , 9 , 7135-7142.
  35. Zhang, X.; Li, G.; Wang, J.; Chu, J.; Wang, F.; Hu, Z.; Song, Z. Revisiting the Structure and Electrochemical Performance of Poly(o-phenylenediamine) as an Organic Cathode Material. ACS Appl. Mater. Interfaces . 2022 , 14 , 27968–27978.
  36. Dong, C.; Xu, M.; Huang, J.; Li, F.; Wei, P.; Tedesco, A. C.; Bi, H. Dynamic Thermosensitive Solid-State Photoluminescent Carbonized Polymer Dots as Temperature-Responsive Switches for Sensor Applications. ACS Appl. Nano Mater. 2020 , 3 , 10560–10564.
  37. Hua, X.; Bao, Y.; Wu, F. Fluorescent Carbon Quantum Dots with Intrinsic Nucleolus-Targeting Capability for Nucleolus Imaging and Enhanced Cytosolic and Nuclear Drug Delivery. ACS Appl. Mater. Interfaces . 2018 , 10, 10664–10677.
  38. Hu, S.; Trinchi, A.; Atkin, P. Cole, I. Tunable Photoluminescence Across the Entire Visible Spectrum from Carbon Dots Excited by White Light. Angew. Chem. Int. Ed .2015 , 54, 2970-2974.
  39. Zhi, B.; Yao, X.; Wu, M.; Mensch, A.; Cui, Y.; Deng, J.; Duchimaza-Heredia, J. J.; Trerayapiwat, K. J.; Niehaus, T.; Nishimoto, Y.; Frank, B. P.; Zhang, Y.; Lewis, R. E.; Kappel,E. A.; Hamers, R. J.; Fairbrother, H. D.; Orr, G.; Murphy, C.J.; Cui, Q.; Haynes, C. L. Multicolor polymeric carbon dots: synthesis, separation and polyamide-supported molecular fluorescence. Chem. Sci . 2021 ,12 , 2441-2455.
  40. Mao, Y.; Duan, H.; Xu, B.;Zhang, L.; Hu, Y.; Zhao, C.; Wang, Z.; Chen, L.; Yang, Y. Lithium Storage in Nitrogen-Rich Mesoporous Carbon Materials. Energy Environ. Sci. 2012 ,5 , 7950-7955.
  41. Wang, W.; Zhang, W.; Liu, Z.; Xue, Y.; Lei, X.; Gong, G.; Zhang, Q. Towards A Tough Reprocessable and Self-Healable Acrylonitrile-Hutadiene Rubber Based on Strong Hydrogen Honding Interactions. J. Mater. Chem. C. 2021 , 9 , 6241-6250.
  42. Tang, L.; Ji, R.; Li, X.; Bai, G.; Liu, C.; Hao, J.; Liu, J.; Jiang, H.; Teng, K. S.; Yang, Z.; Lau, S. Deep Ultraviolet to Near-Infrared Emission and Photoresponse in Layered N-Doped Graphene Quantum Dots. ACS Nano . 2014 , 8 , 6312–6320.
  43. Getachew, G.; Hsiao, H. C.; Wibrianto, A.; Rasal, A. S.; Dirersa, W. B.; Huang, C.; Rao, N. V.; Chen, J. H.; Chang, J. High performance carbon dots based prodrug Platform: Image-Guided photodynamic and chemotherapy with On-Demand drug release upon laser irradiation. J.Colloid Interface Sci . 2023 ,633 , 396-410.
  44. Li, Q.; Zhou, M.; Yang, M.; Yang, Q.; Zhang, Z.; Shi, J. Induction of Long-Lived Room Temperature Phosphorescence of Carbon Dots by Water in Hydrogen-Bonded Matrices. Nat Commun . 2018 , 9 , 734.
  45. Tan, J.; Ye, Y.; Ren, X.; Zhao, W.; Yue, Dong. High pH-Induced Efficient Room-Temperature Phosphorescence from Carbon Dots in Hydrogen-Bonded Matrices. J. Mater. Chem. C. 2018 , 6, 7890-7895.