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Abstract 7 

The  coupling and coordinated relationship between the ecological environment and carbon emissions 8 
is critical to the sustained development of human society. The remote sensing eco-index (RSEI) model 9 
has been applied to the assessment and monitoring of ecological environment quality, but RSEI neglects 10 
air pollution, and thus this study introduced aerosol optical depth (AOD) into the index system and 11 
constructed a novel ARSEI to evaluate the ecological environment quality and analyze the spatial-12 
temporal changes in ARSEI and energy-related carbon emission (ECE) at the county level in China. 13 
Additionally, we further investigate the local relationship between ARSEI and ECE in China by using 14 
the coupled coordination model (CCD). The outcomes showed that: (1) Compared with the RSEI, the 15 
ARSEI widened the gap in ecological quality between the east and the west along the Heihe-Tengchong 16 
line; (2) ARSEI value was significantly increased in 24.70% of areas in China, mainly in the Northeast 17 
Plain, Loess Plateau, and Tarim Basin. ARSEI value was significantly decreased in 5.35% of areas in 18 
China, mainly in the Qinghai-Tibetan Plateau, the northern part of the Tianshan Mountains, eastern 19 
coastal cities, and central urban agglomerations; (3) ECE dispersed from east to the west from 2000 to 20 
2017, with an average annual increase of > 0.3 megatons in 354 counties, densely distributed in the 21 
eastern coastal urban agglomerations, Loess Plateau, and sporadically distributed in some central and 22 
western cities in China; (4) CCD distribution showed a "west-low-east-high" pattern, with an upward 23 
trend in CCD value in the majority of surveyed counties (2,241), and a downward trend in some counties 24 
(171) in southwest, south, and central China. Based on these results, recommendations are proposed at 25 
the county and above levels for coordinated and sustainable development of urban economy and ecology.  26 
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1. Introduction 29 

 Climate change and anthropogenic interference activities pose a major challenge to the environment 30 
and people around the world (Custer and Dini-Andreote, 2022). Carbon emissions, mainly from fossil 31 
fuel combustion, affect the natural environment of the earth’s surface (Wise et al., 2009), exacerbate 32 
global warming, increase the frequency of extreme weather, and even lead to continuous ecological 33 
deterioration such as land degradation, air pollution, and desertification (Liu et al., 2022; Liu et al., 2019). 34 
Since 2006, China has become the world's largest producer of carbon dioxide due to its rapid economic 35 
development (Teng, 2015), accounting for one-third of the global total by 2021 (IEA, 2021). Fortunately, 36 
China has been committed to the construction of emission reduction, and the emission reduction speed 37 
is an important factor in limiting global warming to 1.5ºC. The ecological environment can interact with 38 
carbon emissions(An et al., 2023a; Chen et al., 2020b) and a good ecological environment can bear more 39 
carbon emissions (Lv et al., 2019). Quantifying the relationship between the ecological environment and 40 
carbon emissions will promote the sustained development of human society. 41 

Remote sensing technology overcomes the limitation of data collection and analysis scale, and the 42 
cloud computing platform (Such as Google Earth Engine) makes large-scale ecological quality 43 
monitoring possible (Jin and Shi, 2022; Liu et al., 2023). Remote sensing eco-index (RSEI) model 44 
proposed by Xu (Yu et al., 2022b) in 2013 can quickly and objectively evaluate the ecological quality 45 
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status of a large region by integrating multiple ecological indicators through principal component 46 
analysis (PCA), and RSEI has been successfully applied to many countries and regions (Fan et al., 2020; 47 
Yang et al., 2022; Ye, 2022; Zhang et al., 2022a). The RSEI model indicators include normalized 48 
difference vegetation index (NDVI), humidity (WET), land surface temperature (LST), normalized 49 
difference bare soil index (NDBSI), but in RSEI model, only natural environmental conditions on the 50 
earth surface are taken into consideration, with the air pollution problems caused by dense population 51 
and industrial production neglected (He et al., 2017), and the assessment of urban air quality is lacking 52 
in this model. The carbon emission in this study refers to energy-related carbon emission (ECE), 53 
accounting for 88% of total carbon emission in China in 2021, bringing about a series of pollution 54 
problems and increasing human health risks. In this study, we introduced aerosol optical depth (AOD) 55 
index(Xin et al., 2023; Yang et al., 2021), which is highly related with air pollution, into the RSEI model, 56 
thus forming a novel remote sensing ecological index (ARSEI). 57 

Coupling impacts refers to the interaction between two or more systems (Lenzen et al., 2016). 58 
Ecological environment and carbon emissions can interact, and thus they have coupling effects. 59 
Specifically, large amounts of carbon emissions can pose threats to the natural environment and human 60 
society, such as the pollution of the atmosphere, soil, and water resources, and the heat island effect. 61 
However, good vegetation conditions can absorb CO2 in the air, and slow and control the rise of CO2 and 62 
temperature to some extent (Le Quere et al., 2018). Land use and urban planning (such as planning of 63 
the river network, transportation, and housing) will affect population density and industrial layout. The 64 
direct interaction between the ecological environment and carbon emission in the region is known as the 65 
local coupling of the two. The coupling coordination degree model (CCD) has been widely used to 66 
evaluate the coupled impacts between urbanization and the ecological system (Cai et al., 2021; Tang et 67 
al., 2022; Wang et al., 2019) and to investigate the coupling relationship between social factors and 68 
ecological environment (Fan et al., 2019), but the studies on the local coupled impacts between carbon 69 
emission and ecological environment need to be further conducted to provide directional carbon emission 70 
reduction measures for the region development. Currently, the main related research is performed at the 71 
provincial and municipal levels (An et al., 2023a; Chen et al., 2020b). However, China's investment and 72 
financial subsidies in ecological protection are at the county level (Huang et al., 2018). Therefore, this 73 
study referred to the research on county-level energy-related carbon emission (ECE) by Chen et al. (Chen 74 
et al., 2020a), which can further evaluate the development of carbon emissions from the county-level and 75 
regional city perspectives, and the CCD model provides insights into local coupling between ECE and 76 
ARSEI. 77 

Therefore, in this study, we constructed an ARSEI model to evaluate China's ecological environmental 78 
quality from 2000 to 2022 and analyze its spatial-temporal change characteristics. We used the CCD 79 
model to reveal the coupling and coordinated development relationship between ARSEI and county-level 80 
carbon emissions and their trends in China from 2000 to 2017. The main objectives of this research are 81 
to (1) improve RSEI model by introducing aerosol (AOD) so as to realize the assessment of China's 82 
ecological environment quality at the pixel scale, and (2) to compute CCD values between ARSEI and 83 
ECE based on the concept of localized coupling. Finally, this study provides decision-making basis for 84 
the regional environmental protection, the coordinated sustainable development of the city, and the 85 
governance of the country. 86 

2. Materials and methods 87 

2.1. Study area 88 

The Heihe-Tengchong line divides China into two different geographical regions (east and west). The 89 
west is high in terrain and small in population, while the east is low in terrain and large in population, 90 
and the east better developed economically than the west. Figure 1 shows that China is divided into six 91 
geographic regions, namely, northeast, northwest, north, east, southwest, and central-south. 92 

 93 



 94 

Fig. 1. Location of the study area 95 

2.2. Data preparation and preprocessing 96 

The novel remotely sensed ecological index ARSEI model constructed in this study involved five 97 
components, namely, normalized difference vegetation index (NDVI), humidity (WET), land surface 98 
temperature (LST), normalized difference bare soil index (NDBSI), and aerosol optical depth (AOD). In 99 
order to minimize the disturbance due to the inconsistency of imagery collection time, we acquired four 100 
remote sensing image datasets (MOD09A1, MOD11A2, MOD13A1, and MCD19A2) in the 2000-2022 101 
growing seasons (July-September) from the GEE platform (Long et al., 2023). In this study, dataset 102 
MOD09A1 was used to calculate WET and NDBSI. Dataset MOD11A2 daytime band with better data 103 
quality was used to obtain LST. Dataset MOD13A1 was employed to provide NDVI. Dataset MCD19A2 104 
provided AOD. The corrected normalized water index (MNDWI) was used for water removal in the 105 
research area. In addition, we de-clouded the ground reflectance data based on MODIS quality control 106 
(QC) files to eliminate low-quality pixels so as to improve the image quality (Xu and Shen, 2013), and 107 
used median synthesis to improve the data reconstruction performance. The county-level energy-related 108 
carbon emission data (NCE) were derived from the research by (Chen et al., 2020a) with data accuracy 109 
of up to > 95%. The county-level carbon emission data were collected from 2000 to 2017. The temporal 110 
and spatial resolutions of each data source are listed in Table 1. 111 
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Table1. Data sources 126 

Data 

Spatial 

resolution 

Temporal 

resolution Time range Data sources 

MOD09A1 500m 8d 

2000-2022 growing 

season (July-September) Google Earth Engine 

MOD11A2 1000m 8d 

2000-2022 growing 

season (July-September) Google Earth Engine 

MOD13A1 500m 16d 

2000-2022 growing 

season (July-September) Google Earth Engine 

MCD19A2 1000m 1d 

2000-2022 growing 

season (July-September) Google Earth Engine 

Carbon 

Emissions Data County Year 2000-2017 

https://doi.org/10.6084/m9.figshare.c

.5136302.v2 

Land Use Data 30m year 2000-2021 

https://doi.org/10.5281/zenodo.4417

810 

Meteorological 

Data — day 2000-2021 National Meteorological Service 

Statistics — — 2000-2021 Ecological Bulletin 

2.3. Calculation of ARSEI values 127 

RSEI model is constructed based on four indexes (NDVI, WET, NDBSI, and LST) that are closely 128 
related to the ecological environment and human activities (Hu and Xu, 2018), and the RSEI model data 129 
are easily accessible and currently widely used in the research on ecological environment evaluation 130 
(Aizizi et al., 2023; Xiong et al., 2021; Yang et al., 2023). We introduced the AOD index into RSEI to 131 
construct the ARSEI model (Zhang et al., 2023a). The calculation formula for each index is shown in 132 
Table 2. 133 

Table2. Calculation formulae for NDVI, WET, LST, NDBSI, and MNDWI. 134 

Indicator Formula Details 

NDVI (𝐵𝑛𝑖𝑟 − 𝐵𝑟𝑒𝑑)/(𝐵𝑛𝑖𝑟 + 𝐵𝑟𝑒𝑑) 𝐵𝑛𝑖𝑟 and 𝐵𝑟𝑒𝑑 represent near infrared 

bands (NIR) and red bands in 

MOD13A1dataset. 

WET 0.1147 𝐵𝑟𝑒𝑑 00.2489 𝐵𝑛𝑖𝑟1 + 0.2408𝐵𝑏𝑙𝑢𝑒 + 0.3132𝐵𝑔𝑟𝑒𝑒𝑛 −

0.3122𝐵𝑛𝑖𝑟2 − 0.6416𝐵𝑠𝑟1 − 0.5087𝐵𝑠𝑟2 

𝐵𝑟𝑒𝑑 , 𝐵𝑏𝑙𝑢𝑒 , 𝐵𝑔𝑟𝑒𝑒𝑛 , 𝐵𝑛𝑖𝑟1, 𝐵𝑛𝑖𝑟2, 

𝐵𝑠𝑟1, and 𝐵𝑠𝑟2 represent red, blue, green, 

NIR1, NIR2, shortwave IR1, shortwave IR2 

bands in MOD09A1 dataset, respectively 

LST 0.02𝐵1 − 273.15 𝐵1represents the LST band in the 

MOD11A2 dataset 

NDBSI SI=
(𝐵𝑠𝑟1+𝐵𝑟𝑒𝑑)−(𝐵𝑏𝑙𝑢𝑒+𝐵𝑛𝑖𝑟)

(𝐵𝑠𝑟1+𝐵𝑟𝑒𝑑)+(𝐵𝑏𝑙𝑢𝑒+𝐵𝑛𝑖𝑟)
 

IBI=
2𝐵𝑠𝑟1(𝐵𝑠𝑟1+𝐵𝑛𝑖𝑟)−[

𝐵𝑛𝑖𝑟
(𝐵𝑟𝑒𝑑+𝐵𝑛𝑖𝑟)

+
𝐵𝑔𝑟𝑒𝑒𝑛

(𝐵𝑠𝑟1+𝐵𝑔𝑟𝑒𝑒𝑛)
]

2𝐵𝑠𝑟1(𝐵𝑠𝑟1+𝐵𝑛𝑖𝑟)+[
𝐵𝑛𝑖𝑟

(𝐵𝑟𝑒𝑑+𝐵𝑛𝑖𝑟)
+

𝐵𝑔𝑟𝑒𝑒𝑛

(𝐵𝑠𝑟1+𝐵𝑔𝑟𝑒𝑒𝑛)
]
 

NDBSI=(SI0IBI)/2 

SI and IBI represent soil index and index-

based built-up index, respectively 

MNDWI (𝐵𝑔𝑟𝑒𝑒𝑛 − 𝐵𝑠𝑤𝑖𝑟1)/(𝐵𝑔𝑟𝑒𝑒𝑛 + 𝐵𝑠𝑤𝑖𝑟1) 𝐵𝑔𝑟𝑒𝑒𝑛 and 𝐵𝑠𝑤𝑖𝑟1 represent green band 

and shortwave IR1 band in MOD09A1dataset, 

respectively. 

AOD Optical_Depth_047 band of the MCD19A2 product  

𝐴𝑅𝑆𝐸𝐼0 = 𝑓(𝑁𝐷𝑉𝐼 , 𝑊𝐸𝑇, 𝑁𝐷𝐵𝑆𝐼, 𝐿𝑆𝑇, 𝐴𝑂𝐷)                (1) 135 

𝐴𝑅𝑆𝐸𝐼 =  
𝐴𝑅𝑆𝐸𝐼0−𝐴𝑅𝑆𝐸𝐼0𝑚𝑖𝑛

𝐴𝑅𝑆𝐸𝐼0𝑚𝑎𝑥−𝐴𝑅𝑆𝐸𝐼0𝑚𝑖𝑛
                         (2) 136 

Due to the inconsistency of the dimensions of the five indexes, the normalization processing was 137 

https://doi.org/10.5281/zenodo.4417810
https://doi.org/10.5281/zenodo.4417810


performed before the principal component analysis, and these indexes were resampled to unify the spatial 138 
resolution (1000m). 𝐴𝑅𝑆𝐸𝐼0  is the first primary component of the five indexes, and f is the 139 
normalization processing of the five indexes. The ARSEI was obtained by normalizing 𝐴𝑅𝑆𝐸𝐼0. The 140 
range of the final ARSEI value was between 0 and 1. The closer to 1 the ARSEI, the higher the ecological 141 
environment quality. The ARSEI was categorized into five levels including Level 1 (Poor), 0-0.2; Level 142 
2 (Fair), 0.2-0.4; Level 3 (Moderate), 0.4-0.6; Level 4 (Good), 0.6-0.8 and Level 5 (Excellent), 0.8-1.0 143 
(Xiong et al., 2021). 144 

2.4. Trend analysis 145 

The temporal and spatial distribution and variation characteristics of the ecological environment 146 
quality in China from 2000 to 2022 were analyzed by Theil-Sen median trend method combined with 147 
Mann-Kendall (MK) test. This method was more robust than the traditional linear regression method 148 
since it could avoid the interference of outliers, and thus it has been widely used in the time-series 149 
analysis of data. The calculation method of Theil-Sen value (𝛽) was as follows: 150 

𝛽 = 𝑀𝑒𝑑𝑖𝑎𝑛
𝐴𝑅𝑆𝐸𝐼𝑗−𝐴𝑅𝑆𝐸𝐼𝑖

𝑗−𝑖
, 2000 ≤ 𝑖 ≤ 𝑗 ≤ 2022                    (3) 151 

Where 𝑖  and 𝑗  are the time series years of ARSEI; and 𝐴𝑅𝑆𝐸𝐼𝑖   and 𝐴𝑅𝑆𝐸𝐼𝑗 denote the ARSEI 152 
value in the 𝑖𝑡ℎ  year and the𝑗𝑡ℎ year, respectively. 153 

The MK test used Z-value for significance test with a significance level of α. ARSEI variation at time 154 
series was considered as significant when |Z|>Z1-α/2. In this study, α was set as 0.05, indicating that the 155 
time series was significant at the 95% confidence level, the corresponding Z value in the formula was 156 
1.96 (Tang et al., 2023). Referring to the research by Long et al. (Long et al., 2023), we combined the 157 
Theil-Sen median and Z-value were used to categorize ARSEI trends into five classifications, as shown 158 
in Table 3. 159 

Table3 Classification criteria for ARSEI change trends 160 

Classification criteria ARSEI change trends 

β< -0.0005 and ∣Z∣>1.96 Significant degradation 

β< -0.0005 and ∣Z∣≤1.96 Slight degradation 

-0.0005 ≤ β ≤ 0.0005 Basically stable 

β> 0.0005 and ∣Z∣≤1.96 Slight improvement 

β> 0.0005 and ∣Z∣>1.96 Significant improvement 

2.5  Spatial autocorrelation analysis 161 

Spatial autocorrelation analysis is to study the correlation of the same attributes which are very close. 162 
In this study, Moran's I index (Getis and Ord, 1992) and Lisa index (An et al., 2023b) were used to show 163 
the spatial autocorrelation between ARSEI and ECE. Moran's I index ranges from -1 to 1, with Moran's 164 
I < 0 denoting a negative correlation, Moran's I = 0 representing an uncorrelation, and Moran's I > 0 165 
denoting a positive correlation. The Lisa index represented different aggregation patterns within the same 166 
region, including four types: LL (low-low aggregation), HH (high-high aggregation), HL (low value 167 
aggregation around high values), and LH (high value aggregation around low-values) types. 168 

2.6 CCD model 169 

We used the CCD model to explore the local coupling relationship between ARSEI and energy-related 170 
carbon emission (ECE) in China. The CCD model was expressed in formula as below: 171 

𝐶 = {
𝑈ⅹE

⌊(𝑈+𝐸)/2⌋2}
1

2                            (4) 172 

Where C is the coupling degree between ARSEI and ECE, the value of C is in the range of 0-1, U is 173 
ECE, and E is ARSEI. 174 

In order to avoid the problem of "false coordination", that is, U and E are low, C is high on the contrary, 175 
the CCD model is improved to consider the coupling degree. (Xu et al., 2021): 176 



𝐷 = √𝐶ⅹT                            (5) 177 

   T =αU0βE                            (6) 178 

Where D represents the degree of coordination between the two systems; T represents the contribution 179 
of both systems. Since U and E are equally important in this study, it is set to 0.5. To further analyze the 180 
level of coupling coordination between ARSEI and ECE, we divided their CCD values into five 181 
categories：severe incoordination (0-0.2)，(0.2-0.4) slight incoordination，(0.4-0.6) bare coordination，182 
(0.6-0.8) slight coordination，(0.8-1) high coordination. 183 

3. Results 184 

3.1 Ecological environment quality in China 185 

3.1.1 Rationality analysis of ARSEI model 186 

The principal component (PCA) analysis results of the five indexes of ARSEI model from 2000 to 187 
2022 showed that the eigenvalue contribution of the PCA1 was as high as 87.11% (in 2015), and as low 188 
as 83.57% (in 2020) (Table 4). The multi-year average contribution of PCA1 was above 80%, indicating 189 
that PCA1 concentrated the five ecological index information to the largest degree. In PCA1, the 190 
characteristic loads NDVI and WET are positive, while LST, NDBSI and AOD are negative, which 191 
accords with the actual situation, indicating that PCA1 provided a reasonable interpretation of each 192 
ecological index. Therefore, it was reasonable to construct ARSEI model based on PCA1 to estimate the 193 
ecological environment quality in China. 194 

Table 4 Principal component analysis of ARSEI model 195 

Year Loading value of each index  Eigenvalue PCA1 

contribution(%) NDVI WET NBDSI LST AOD 

2000 0.6151 0.3445 -0.609 -0.3602 -0.0494 0.1939 86.89 

2005 0.6369 0.3728 -0.5676 -0.351 -0.1002 0.1867 85.19 

2010 0.6591 0.338 -0.5817 -0.3266 -0.0786 0.1412 85.44 

2015 0.6159 0.3388 -0.6126 -0.3612 -0.0134 0.1782 87.11 

2020 0.661 0.2983 -0.6214 -0.2813 -0.0939 0.1413 83.57 

3.1.2 Spatial-temporal distribution of ARSEI values in China 196 

Fig. 2 showed the spatial-temporal distribution of ARSEI values in China from 2000-2022. The Heihe-197 
Tengchong line roughly divided China's ARSEI values into two different geographic regions (the east 198 
and the west). The overall ARSEI values in the east (ranging from 0.6 to 1.0) were higher than those in 199 
the west (ranging from 0.0 to 0.4). The areas with long-term ARSEI values ranging from 0.0 to 0.2 were 200 
mainly located in Xinjiang, Inner Mongolia, Qinghai, and Gansu Provinces, and the areas with long-term 201 
ARSEI values in the range of 0.8~1.0 were mainly concentrated in the northeast forestry region, the 202 
plains and hilly regions in central and south China and east China. 203 



 204 

Fig. 2. Spatial distribution of the ecological environmental quality in China (ARSEI values) in 2000 (a), 2010 (b), 2017 (c), 205 
2022 (d). 206 

We investigated the ARSEI values in China from 2000 to 2022. As shown in Fig. 3(a), the 207 
proportion of the area of regions with ARSEI levels (representing 5 different ecological qualities from 208 
poor to excellent) exhibited different degrees of variation. The largest area proportion of the regions rated 209 
as excellent level (multi-year average ARSEI value) was 26.00%, followed by area proportions of regions 210 
rated as poor, fair, good, and moderate (17.37%, 17.20%, 16.48%, and 12.95%). The area proportions of 211 
the regions rated as excellent level (ARSEI value ranging from 0.8 to 1.0) increased from 18.15% in 212 
2000 to 32.52% in 2021. The ARSEI values of the six major regions in China exhibited significant 213 
regional differences. The interannual ARSEI value changes in China and in its six regions  are shown 214 
in Figure 3b. The multi-year average ARSEI value in China was 0.549, with a minimum value of 0.515 215 
in 2000 and a maximum value of 0.574 in 2021. Generally, China’s ARSEI value exhibited an upward 216 
trend with an average annual growth of 0.0012 (R2 = 0.409). Northeast China had the largest average 217 
ARSEI value (0.837), rated as excellent level. Northwest China had the smallest average ARSEI value 218 
(0.250), rated as poor level. The average value of ARSEI in central, eastern, southwestern, and northern 219 
China was 0.787, 0.781, 0.569, and 0.490, respectively. The ARSEI value of northeast, northern, 220 
northwestern, and central China displayed an upward tendency in the period of 2000-2022.221 

 222 

Fig. 3. Percentage of area of the regions with ARSEI levels (representing 5 different ecological qualities from poor to 223 
excellent) in China during 2000-2022 (a), and average ARSEI values in China, Northeast China, North China, Northwest China, 224 
Southwest China, South Central China, and East China (b). 225 

3.1.3 Dynamic change trends of the ecological environment quality in China 226 

The trend of China's ARSEI value change and the spatial distribution of its coefficient of variation 227 
(CV) was shown in Fig. 4. Table 5 showed that 24.70% of area in China exhibited a significant 228 
improvement in ARSEI value over the past 22 years, mainly distributed in North China (6.47%)and 229 
Northwest China (7.31%). Spatially, the ARSEI values of the Northeast Plain, Loess Plateau, and Tarim 230 
Basin showed a significant improvement trend. The ARSEI values of 5.35% of area in China was 231 
significantly degraded, mainly distributed in East China (1.87%) and Southwest China (1.3%). From a 232 
spatial perspective, the ARSEI values of the Qinghai-Tibet Plateau showed a significant degradation 233 



trend. In addition, the ARSEI values of some regions with faster economic development such as Beijing-234 
Tianjin-Hebei, the Yangtze River Delta, and some urban agglomerations in central and northern China 235 
displayed a significant degradation trend. In terms of the spatial coefficient of variation, the change 236 
degree of the ARSEI value was greater in the west than in the east, and the regions with large coefficients 237 
of variation were mainly spread in Inner Mongolia, Gansu, Xinjiang, and Qinghai provinces in China. 238 

 239 

 240 

Fig. 4. Spatial distribution of ARSEI values (representing the ecological environmental quality) in China from 2000 to 2022 241 
(a) and spatial distribution of their coefficients of variation (b). 242 

Table5 Statistical results of ARSEI change trends in China from 2000-2022 243 

Geographic Zoning Northeast North Northwest Southwest Central South Eastern China 

Significant degradation Area(km2) 9625 39288 80152 169629 69465 117768 485927 

Percentage(%) 0.11 0.43 0.88 1.87 0.76 1.3 5.35 

Slight degradation Area(km2) 103647 155558 528226 866992 130209 127450 1912082 

Percentage(%) 1.14 1.71 5.81 9.54 1.43 1.4 21.03 

Basically stable Area(km2) 157946 228515 857320 349755 135774 147652 1876962 

Percentage(%) 1.74 2.51 9.43 3.85 1.49 1.62 20.64 

Slight improvement Area(km2) 204401 497202 793260 469418 342775 261929 2568985 

Percentage(%) 2.25 5.47 8.73 5.17 3.77 2.88 28.27 

Significant improvement Area(km2) 309562 588080 663996 208194 314170 159683 2243685 

Percentage(%) 3.41 6.47 7.31 2.29 3.46 1.76 24.70 

3.2 Spatial-temporal distribution of ECE in China 244 

As shown in Fig. 5, the total energy carbon emissions of mainland China increased from 3.16*109 245 
tons to 9.51*109 tons from 2000 to 2017, with an average annual growth of 0.44*109 tons (R2=0.93) with 246 
the overall upward trend was obvious. A faster growth rate was observed from 2000 to 2011, and the 247 
growth rate slowed down after 2011. 248 



 249 

Fig. 5. Total energy-related carbon emissions (ECE) in China during 2000-2017 250 

Fig. 6 showed that the low ECE values (0.00-1.00 million tons) were widely distributed in 2000, with 251 
1,599 counties emitting no more than 1 megaton and 166 counties emitting more than 3 megatons, and 252 
the high ECE values (>3 million tons) were mainly spread in the eastern coastal provinces of China and 253 
in central-south China and north China, with sporadic distributions in northwest China and southwest 254 
China. In addition, overall ECE increased significantly from 2000 to 2010, with only 692 counties 255 
exhibiting low ECE and 955 counties displaying high ECE in 2010, and high-ECE areas were densely 256 
populated in the east coast, northeastern and northern regions of China. With the deepening of reform 257 
and opening up and the promotion of western development, and the acceleration of the process of 258 
urbanization, the counties with high-ECE increased spread from east to west, and the number of high-259 
ECE counties was significantly increased in the central and western China. The increase trend of ECE 260 
slowed down from 2010 to 2017, which was consistent with the dynamics of temporal change (Fig 2). 261 
Furthermore, ECE increased in all counties in China from 2000-2017, but the degree of increase varied. 262 
From 2000 to 2017, 1239 counties exhibited an average annual increase in ECE of less than 0.1 megaton, 263 
and these counties were mainly located in the central and western parts of China. A total of 354 counties 264 
had an average annual increase of more than 0.3 megaton from 2000 to 2017, mainly densely spread in 265 
the eastern coastal areas such as the Yangtze River Delta and the Pearl River Delta as well as northern 266 
China plains, and the northeast China, Loess Plateau, western China also had scattered distribution. 267 



 268 

Fig. 6. China county-level energy-related carbon emissions (ECE) in 2000 (a), 2010 (b), and 2017 (c), and the carbon 269 
emission change slopes from 2000-2017 (d). (unit: in millions of tons) Note: Data for Taiwan, Tibet, Hong Kong and Macau are 270 
insufficient 271 

3.3 Coupling relationship between ecological environment quality and carbon emissions 272 

3.3.1 Spatial distribution of CCD values 273 

Fig. 7 showed the coupled coordination degree (CCD) of the ecological environment and carbon 274 
emissions and its changes in Chinese counties from 2000 to 2017. The overall coordination level in the 275 
eastern region is higher than that in the western region, and the study area has an upward trend. 276 
Specifically, counties with slight coordination increased from 570 in 2000 to 911 in 2017, and counties 277 
with high coordination increased from 29 in 2000 to 79 in 2017. Spatially, most counties in the Northwest 278 
had a low coordination degree (<0.2), which might be attributed to high soil dryness, low vegetation 279 
cover, and high surface temperatures in the Northwest. The severe incoordination in the southeastern 280 
coastal counties and some counties in the Yangtze River Basin might be due to high carbon emissions, 281 
high urbanization, large construction area, and large water body area. Northeastern and central had high 282 
coupling coordination degree (>0.6). The 2241 counties (out of 2274 counties) exhibited an increased 283 
CCD, and 171 counties displayed a decreased CCD, with an obvious regional difference. The Loess 284 
Plateau at the border of Inner Mongolia and Shaanxi Province had the largest increase in local coupling 285 
coordination degree (>0.03), indicating that the ecological quality in this region was significantly 286 
improved (Fig. 7). The coupling coordination degree in some counties in Xinjiang and the south China 287 
was also increased rapidly. Some counties in the Yangtze River Basin, and in some counties in Sichuan, 288 
Guangdong, Guangxi, and Yunnan Provinces showed a decreased coupling coordination, which might 289 
be related to the decline in ecological quality and the increase in carbon emissions in these places (Fig. 290 
3 and 7). 291 



 292 

Fig. 7. Spatial distribution of the coupling coordination (CCD values) between energy-related carbon emissions and 293 
ecological environment quality in China in 2000 (a), 2010 (b), and 2017 (c) and the change trend from 2000 to 2017 (d). 294 

3.3.2 Spatial clustering characteristics of CCD 295 

In this study, local autocorrelation method was used to study the spatial clustering characteristics of 296 
county CCD in 2000, 2010 and 2017. Fig. 8 shows that Moran I value is greater than 0.50 every year, 297 
and the dispersion is mainly distributed in the first quadrant and the third quadrant, which shows that the 298 
spatial distribution of CCD value has strong clustering, that is, strong clustering. The regions with 299 
high/low CCD values tend to cluster. CCD distribution presents a pattern of "low in the west and high in 300 
the east". LL-type (low-low) counties are mainly distributed in northwest and southwest China, while 301 
HH-type (high-high) counties are mainly distributed in northeast and north China. After 2010, HH-type 302 
counties appeared in southern Inner Mongolia. (P < 0.05, significance distribution in Fig. 8) 303 



 304 

Fig. 8. Local Moran scatter plot (at the top of the figure), local autocorrelation clustering (in the middle of the figure), and 305 
significance test (at the bottom of the figure) of CCD distribution for Chinese counties in 2000, 2010, and 2017. 306 

4. Discussion 307 

4.1. Difference between RSEI model and ARSEI model 308 

 309 

 310 

Fig. 9. Distribution of RSEI index (A), ARSEI index (B), and AOD index in 2017 (C). 311 



In recent decades, China's rapid economic development and urbanization have brought about air 312 
pollution, which has brought high risks to human health and seriously threatened the coordinated 313 
development of the ecosystem (Wu et al., 2018). The RSEI model has been proposed to evaluate 314 
ecological environmental quality, but this model neglected the evaluation of air pollution. The previous 315 
study has indicated that the RSEI value is lower than the county-level ecological quality index (EQI) 316 
value in China obtained during the same period (Xu et al., 2021). Many scholars have utilized AOD to 317 
invert the ground particle content (Shin et al., 2020; Wei et al., 2020; Zhang et al., 2020). In the research, 318 
the aerosol optical density (AOD) index reflecting the air quality was introduced into the RSEI model to 319 
obtain the ARSEI model, which exhibited a stronger adaptability than the RSEI model. Specifically, the 320 
ARSEI value was higher than the RSEI value, which was more obvious in the eastern regions (Fig. 9 A 321 
and B). In addition, the gap in ecological environment quality between the east and west of the Heihe-322 
Tengchong line was widened, and the gap in ecological environment quality in localized areas was also 323 
widened. For example, the gap in ecological environment quality between the north and south of the 324 
Tianshan mountain range became bigger. The natural environment in the northern part of the Tianshan 325 
Mountains was better than that in the southern part (Wang et al., 2022b), and the AOD value in the 326 
southern part of the Tianshan Mountains was higher than that in the northern part (Fig. 9C). The negative 327 
correlation between AOD and ARSEI in the ARSEI model resulted in higher ARSEI value in the northern 328 
part of the Tianshan Mountains. Therefore, it can be concluded that AOD is mainly responsible for the 329 
widened gap in ARSEI values on both sides of the Heihe-Tengchong line and in localized areas. 330 

4.2. Factors influencing spatiotemporal variation of ARSEI 331 

Factors affecting the ecological environment can be categorized into natural and anthropogenic factors 332 
(Jiang et al., 2021; Wang et al., 2022a). Natural factors include climate change (Sun et al., 2023), 333 
vegetation growth, natural disasters, and others, and anthropogenic factors consist of land use change 334 
(Yu et al., 2022a), urbanization (Cai et al., 2021), and ecological restoration projects (Mueller et al., 335 
2014). The causes of ecological environment quality changes vary from region to region.  336 

Our results of ARESI trend analysis indicated that the significant degradation of China’s ecological 337 
environment quality mainly occurred in the northern Tianshan mountain range, the northern part of the 338 
Greater Khingan Mountains in Northeast China, the Qinghai-Tibet Plateau, the North China Plain, the 339 
Yangtze River delta, and some central urban agglomerations. The reasons for the deterioration of the 340 
ecological environment are divided into three categories: (1) Poor natural conditions cause ARSEI 341 
decline (Zhao et al., 2022). For example, the plateau ecosystem of the Qinghai-Tibetan Plateau is fragile 342 
and sensitive to climate change. In the eastern part of this plateau, permafrost is widespread, vegetation 343 
is scarce, and thus it is difficult to recover naturally once the ecosystem is damaged (Liang and Song, 344 
2022); (2) The combination of poor natural conditions and human activities leads to a decline in ARSEI. 345 
For example, in the northern Tianshan Mountains, the rapid development of inland urban agglomerations 346 
with arid climate (Aizizi et al., 2023) consumes a large amount of water resources and interferes with the 347 
growth of vegetation (Yu et al., 2023), thus resulting in ecological degradation in the region; (3) Despite 348 
good natural conditions, dense population and economic development lead to a decline in ARSEI. For 349 
example, with the development of urbanization and industrialization along the southeastern coast and in 350 
central China (Yu et al., 2022a; Zhang et al., 2022b), the vegetation has been converted to construction 351 
land in large quantities, and the development and consumption of a large number of resources cause air 352 
pollution.  353 

The positive influences of climatic and anthropogenic factors on the ecological environment quality 354 
cannot be ignored. The reasons for the improvement of the ecological environment fall into two 355 
categories. (1) Climate change contributes to ARSEI improvement. For example, the improvements in 356 
the ecology of the desert areas of the Tarim Basin and the desert-oasis intertwined zone are mainly due 357 
to a warmer and wetter climate (Wang et al., 2022b); the rainfall has increased; and the glacier snowmelt 358 
has supplemented the ecological water; (2) Ecological restoration projects have the positive effects on 359 
ARSEI improvement. For example, the northeast region in China is affected by the "Three Norths" 360 
protection forest (Li et al., 2022) and cropland protection policy (Li et al., 2022). The comprehensive 361 
impacts of climate change, extreme weather events and human activities on environmental change need 362 
to be further studied. (Hao, 2022). 363 

4.3. Regional coordinated development — Enlightenment from the Loess Plateau 364 

The Loess Plateau is located in the semi-arid area in the north-central part of China, with limited water 365 



resources and scarce vegetation, which is a key ecological fragile area. It is worth noting that carbon 366 
emissions are increasing in some counties in the northwest of the Loess Plateau (northern Shaanxi, 367 
Ningxia, and southern Inner Mongolia), but the ecological environment is improving in this region, but 368 
coupling coordination degree is also on the rise. The previous study has pointed out that the ecological 369 
risk in the west of Loess Plateau is higher than that in its east (An et al., 2023a), and that the high 370 
ecological risk is concentrated in the northwest of this plateau, which is related to the energy and chemical 371 
industry and the concentration of industry in this region, and industrial carbon emissions are the dominant 372 
sources of carbon emissions in the northwestern counties of the Loess Plateau. At the county level, 20% 373 
of the area in typical energy counties concentrates 80% of the carbon emissions (Long et al., 2022), but 374 
the hilly and gully regions of these counties have been actively implementing the ecological restoration 375 
programs such as "greening at the sacrifice of food production" (Chang et al., 2011), “returning farmland 376 
to the forest”, and “vegetation restoration” (Song et al., 2022), mine rehabilitation (Bi et al., 2023; Mi et 377 
al., 2019), and sediment governance, and these programs have successfully reduced the risk of soil 378 
erosion and landslides and enhanced ecosystem carbon sequestration capacity, which are the primary 379 
reasons why the Loess Plateau ecosystem has improved and CCD is on the rise. Therefore, the Loess 380 
Plateau is a model of coordinated ecological and economic development in arid and fragile areas. 381 

4.4 Coordinated development recommendations 382 

Based on the investigation results of China's ARSEI, carbon emissions, and their coupling 383 
coordination degree, we puts forward some suggestions on the harmonious and sustainable development 384 
of urban economy and ecology in view of the regional development differences. 385 

In response to the incoordination between the ecological environment and carbon emissions in the 386 
west (Xinjiang, Qinghai, Inner Mongolia, Yunnan, and Guizhou provinces), the relevant departments 387 
should increase investment in ecological environmental protection and management. Xinjiang is located 388 
in an arid zone, whose ecosystems are sensitive to climate change, and ecological restoration policies 389 
should focus on climate change and its impact on water resources. Although oasis agriculture improves 390 
the ecological environment of desert areas, the high consumption of water resources inhibits its rapid 391 
development (Jiang et al., 2021). Anthropogenic factors are the principal factors influencing changes in 392 
oasis migration, and the population density and industrial and agricultural production have negative 393 
effects on the ecological environment. Therefore, prohibiting the predatory exploitation of water sources, 394 
actively implementing water-saving irrigation, constructing protective forest systems (Zhang et al., 395 
2023b), and vigorously developing tertiary industries are effective strategies to promote ecologically 396 
sustainable development. 397 

To address the incoordination between the ecological environment and carbon emissions in the east 398 
(central urban agglomerations, southwestern regions, coastal cities), the relevant departments should take 399 
into account the coordinated management of ecological environment and energy industry. In ecologically 400 
fragile areas in Sichuan, Yunnan, and Guizhou provinces, management departments should promote 401 
vegetation restoration (Li et al., 2023), reduce soil erosion and landslide risks (Xu et al., 2023), and 402 
encourage conservation farming (Jia et al., 2019) and crop rotation management as well as the 403 
development of eco-tourism and clean energy industries. In some urban agglomerations with high carbon 404 
emissions, measures such as urban greening (Yin et al., 2022), land use layout optimization, and natural 405 
water body restoration (such as wetland and urban river restorations) should be taken to improve the 406 
microclimate of the urban environment (Finaeva, 2017). Additionally, industrial structure optimization, 407 
and low-carbon innovation (Cai et al., 2021), industrialization proportion adjustment, low-consumption 408 
high-return renewable resource development should be performed in urban agglomerations (Li et al., 409 
2023b), which is greatly beneficial for urban carbon emission reduction. 410 

5. Conclusion 411 

Based on the GEE platform and remotely sensed data from multiple sources, ARSEI model was 412 
constructed to study the temporal and spatial dynamic changes of ecological environment quality in 413 
China. In addition, we characterize the spatial and temporal distribution of energy-related carbon (ECE) 414 
emissions at the county level in China. Finally, we used the coupling coordination degree model (CCD) 415 
to further examine the local coupling coordination relationship between China's ARSEI value and ECE. 416 
The results indicate that China's ARSEI has obvious geographic differences, and the Heihe-Tengchong 417 
line roughly divides China's ARSEI into two different geographic regions (the East and the West). The 418 
east exhibits a higher ARSEI value, with ARSEI in most regions ranging from 0.6 to 1.0, while the west 419 



displays a relatively lower ARSEI, with ARSEI in most regions ranging from 0.0 and 0.4. Over the past 420 
22 years, China's regional ecological environment quality has been significantly improved in 24.70% of 421 
the area, mainly concentrated in northern and northwestern China. The ecological environment quality 422 
in 5.35% of China’s area has been significantly degraded, mainly in east China and southwest China. In 423 
addition, CCD has a strong spatial aggregation effect, and the distribution of CCD shows a pattern of 424 
"west-low-east-high". LL (low-low) -type counties are mainly spread in northwest and southwest China, 425 
while HH (high-high)-type counties are mainly located in northeast and north China, and after 2010, HH-426 
type counties appeared in southern Inner Mongolia. The CCD of most counties (2241) exhibited an 427 
increasing trend, while that of some counties (171) in southwest China, south China, and central China 428 
showed a decreasing trend. Finally, given the low CCD value in western (Xinjiang, Qinghai, Inner 429 
Mongolia, Yunnan, Guizhou provinces) and eastern (urban agglomeration, southwest region, coastal 430 
cities), we put forward suggestions to promote regional ecological sustainable development and emission 431 
reduction according to local conditions. 432 
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