Reference
Alvarado, S., Mak, T., Liu, S., Storey, K. B., & Szyf, M. (2015). Dynamic changes in global and gene specific DNA methylation during hibernation in adult thirteen-lined ground squirrels, Ictidomys tridecemlineatusJournal of Experimental Biology, 218 (11), 1787-1795. https://doi.org/10.1242/jeb.116046
Beal, A. P., Kiszka, J. J., Wells, R. S., & Eirin-Lopez, J. M. (2019). The bottlenose dolphin epigenetic aging tool (BEAT): A molecular age estimation tool for small Ccetaceans. Frontiers in Marine Science, 6 , 561. https://doi.org/10.3389/fmars.2019.00561
Bekaert, B., Kamalandua, A., Zapico, S. C., Van De Voorde, W., & Decorte, R. (2015). Improved age determination of blood and teeth samples using a selected set of DNA methylation markers. Epigenetics, 10 (10), 922-930. https://doi.org/10.1080/15592294.2015.1080413
Biggar, Y., & Storey, K. B. (2014). Global DNA modifications suppress transcription in brown adipose tissue during hibernation. Cryobiology, 69 (2), 333-338. https://doi.org/10.1016/j.cryobiol.2014.08.008
Blanchard, B. M., & Knight, R. R. (1991). Movements of yellowstone grizzly bears. Biological Conservation, 58 (1), 41-67. https://doi.org/10.1016/0006-3207(91)90044-A
Bocklandt, S., Lin, W., Sehl, M. E., Sánchez, F. J., Sinsheimer, J. S., Horvath, S., & Vilain, E. (2011). Epigenetic predictor of age. PLoS ONE, 6 (6), e14821. https://doi.org/10.1371/journal.pone.0014821
Bogdanović, O., & Veenstra, G. J. C. (2009). DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma, 118 (5), 549-565. https://doi.org/10.1007/s00412-009-0221-9
Bombieri, G., Naves, J., Penteriani, V., Selva, N., Fernández-Gil, A., López-Bao, J. V., . . . Delgado, M. M. (2019). Brown bear attacks on humans: a worldwide perspective. Scientific Reports, 9 (1), 8573. https://doi.org/10.1038/s41598-019-44341-w
Busse, S., Steiner, J., Micheel, J., Dobrowolny, H., Mawrin, C., Krause, T. J., . . . Busse, M. (2014). Age-related increase of VGF-expression in T lymphocytes. Aging, 6 (6), 440-453. https://doi.org/10.18632/aging.100656
Can, Ö. E., D’Cruze, N., Garshelis, D. L., Beecham, J., & Macdonald, D. W. (2014). Resolving human-bear conflict: A global survey of countries, experts, and key factors. Conservation Letters, 7 (6), 501-513. https://doi.org/10.1111/conl.12117
Clutton-Brock, T. H., & Isvaran, K. (2007). Sex differences in ageing in natural populations of vertebrates. Proceedings of the Royal Society B: Biological Sciences, 274 (1629), 3097-3104. https://doi.org/10.1098/rspb.2007.1138
Colchero, F., Jones, R., Owen, Conde, D. A., Hodgson, D., Zajitschek, F., Schmidt, B. R., . . . Gaillard, J. M. (2019). The diversity of population responses to environmental change. Ecology Letters, 22 (2), 342-353. https://doi.org/10.1111/ele.13195
Costello, C. M., Inman, K. H., Jones, D. E., Inman, R. M., Thompson, B. C., & Quigley, H. B. (2004). Reliability of the cementum annuli technique for estimating age of black bears in New Mexico. Wildlife Society Bulletin, 32 (1), 169-176. https://doi.org/10.2193/0091-7648(2004)32[169:ROTCAT]2.0.CO;2
Day, K., Waite, L. L., Thalacker-Mercer, A., West, A., Bamman, M. M., Brooks, J. D., . . . Absher, D. (2013). Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biology, 14 (9), R102. https://doi.org/10.1186/gb-2013-14-9-r102
De Paoli-Iseppi, R., Deagle, B. E., McMahon, C. R., Hindell, M. A., Dickinson, J. L., & Jarman, S. N. (2017). Measuring animal age with DNA methylation: From humans to wild animals. Frontiers in genetics, 8 , 106. https://doi.org/10.3389/fgene.2017.00106. (Accession No. 28878806)
De Paoli‐Iseppi, R., Deagle, B. E., Polanowski, A. M., Mcmahon, C. R., Dickinson, J. L., Hindell, M. A., & Jarman, S. N. (2019). Age estimation in a long‐lived seabird (Ardenna tenuirostris ) using DNA methylation‐based biomarkers. Molecular Ecology Resources, 19 (2), 411-425. https://doi.org/10.1111/1755-0998.12981
Fan, H., Xie, Q., Zhang, Z., Wang, J., Chen, X., & Qiu, P. (2022). Chronological age prediction: Developmental evaluation of DNA methylation-based machine learning models. Front Bioeng Biotechnol, 9 , 819991. https://doi.org/10.3389/fbioe.2021.819991
Florath, I., Butterbach, K., Muller, H., Bewerunge-Hudler, M., & Brenner, H. (2014). Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Human Molecular Genetics, 23 (5), 1186-1201. https://doi.org/10.1093/hmg/ddt531
Friebe, A., Evans, A. L., Arnemo, J. M., Blanc, S., Brunberg, S., Fleissner, G., . . . Zedrosser, A. (2014). Factors affecting date of implantation, parturition, and den entry estimated from activity and body temperature in free-ranging brown bears. PLoS ONE, 9 (7), e101410. https://doi.org/10.1371/journal.pone.0101410
Gaillard, J.-M., & Lemaître, J.-F. (2017). The Williams’ legacy: A critical reappraisal of his nine predictions about the evolution of senescence. Evolution, 71 (12), 2768-2785. https://doi.org/10.1111/evo.13379
Gaillard, J. M., & Lemaître, J. F. (2020). An integrative view of senescence in nature. Functional Ecology, 34 (1), 4-16. https://doi.org/10.1111/1365-2435.13506
González‐Bernardo, E., Russo, L. F., Valderrábano, E., Fernández, Á., & Penteriani, V. (2020). Denning in brown bears. Ecology and Evolution, 10 (13), 6844-6862. https://doi.org/10.1002/ece3.6372
Hao, T., Guo, J., Liu, J., Wang, J., Liu, Z., Cheng, X., . . . Zhang, G. (2021). Predicting human age by detecting DNA methylation status in hair. ELECTROPHORESIS, 42 (11), 1255-1261. https://doi.org/10.1002/elps.202000349
Harshyne, W., A., Diefenbach, D. R., Alt, G. L., & Matson, G. M. (1998). Analysis of error from cementum-annuli age estimates of known-age Pennsylvania black bears. The Journal of Wildlife Management, 62 (4), 1281-1291. https://doi.org/10.2307/3801992
Hong, S. R., Jung, S.-E., Lee, E., Park, M. J., Yang, W.-I., & Lee, H. Y. (2017). DNA methylation-based age prediction from saliva: high age predictability by combination of 7 CpG markers. 29 , 118-125. https://doi.org/10.1016/j.fsigen.2017.04.006
Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14 (10), R115. https://doi.org/10.1186/gb-2013-14-10-r115
Hägg, S., & Jylhävä, J. (2021). Sex differences in biological aging with a focus on human studies. eLife, 10 , e63425. https://doi.org/10.7554/eLife.63425
Interagency Grizzly Bear Committee. (1987) Grizzly Bear Compendium. The National Wildlife Federation.
Ito, G., Yoshimura, K., & Momoi, Y. (2017). Analysis of DNA methylation of potential age-related methylation sites in canine peripheral blood leukocytes. Journal of Veterinary Medical Science, 79 (4), 745-750. https://doi.org/10.1292/jvms.16-0341
Ito, H., Udono, T., Hirata, S., & Inoue-Murayama, M. (2018). Estimation of chimpanzee age based on DNA methylation. Scientific Reports, 8 (1), 9998. https://doi.org/10.1038/s41598-018-28318-9
Jimbo, M., Ishinazaka, T., Shirane, Y., Umemura, Y., Yamanaka, M., Uno, H., . . . Shimozuru, M. (2022). Diet selection and asocial learning: Natal habitat influence on lifelong foraging strategies in solitary large mammals. Ecosphere, 13 (7). https://doi.org/10.1002/ecs2.4105
Jones, M. J., Goodman, S. J., & Kobor, M. S. (2015). DNA methylation and healthy human aging. Aging Cell, 14 (6), 924-932. https://doi.org/10.1111/acel.12349
Kimura, D. K., Mandapat, R. R., & Oxford, S. L. (1979). Method, validity, and variability in the age determination of yellowtail rockfish (Sebastes flavidus ), using otoliths. Journal of the Fisheries Research Board of Canada, 36 , 377-383. https://doi.org/10.1139/f79-057
Koch, C. M., & Wagner, W. (2011). Epigenetic-aging-signature to determine age in different tissues. Aging, 3 (10), 1018-1027. https://doi.org/10.18632/aging.100395
Laws, R. M. (1952). A new method of age determination for mammals. Nature, 169 (4310), 972-973. https://doi.org/10.1038/169972b0
Lee, H. Y., Jung, S.-E., Oh, Y. N., Choi, A., Yang, W. I., & Shin, K.-J. (2015). Epigenetic age signatures in the forensically relevant body fluid of semen: a preliminary study. Forensic science international. Genetics, 19 , 28-34. https://doi.org/10.1016/j.fsigen.2015.05.014
Lemaître, J.-F., Gaillard, J.-M., Lackey, L. B., Clauss, M., & Müller, D. W. H. (2013). Comparing free-ranging and captive populations reveals intra-specific variation in aging rates in large herbivores. Experimental Gerontology, 48 (2), 162-167. https://doi.org/10.1016/j.exger.2012.12.004
Lemaître, J. F., Rey, B., Gaillard, J. M., Régis, C., Gilot‐Fromont, E., Débias, F., . . . Horvath, S. (2022). DNA methylation as a tool to explore ageing in wild roe deer populations. Molecular Ecology Resources, 22 (3), 1002-1015. https://doi.org/10.1111/1755-0998.13533
Lowe, R., Barton, C., Jenkins, C. A., Ernst, C., Forman, O., Fernandez-Twinn, D. S., . . . Rakyan, V. K. (2018). Ageing-associated DNA methylation dynamics are a molecular readout of lifespan variation among mammalian species. Genome Biology, 19 (1), 22. https://doi.org/10.1186/s13059-018-1397-1
Lowe, R., Danson, A. F., Rakyan, V. K., Yildizoglu, S., Saldmann, F., Viltard, M., . . . Faulkes, C. G. (2020). DNA methylation clocks as a predictor for ageing and age estimation in naked mole-rats, Heterocephalus glaber. Aging, 12 (5), 4394-4406. https://doi.org/10.18632/aging.102892
Mano, T., & Tsubota, T. (2002). Reproductive characteristics of brown bears on the Oshima Peninsula, Hokkaido, Japan. Journal of Mammalogy, 83 (4), 1026-1034. https://doi.org/10.1644/1545-1542(2002)083<1026:RCOBBO>2.0.CO;2
Marks, S., A., & Erickson, A. W. (1966). Age determination in the black bear. The Journal of Wildlife Management, 30 (2), 389-410. https://doi.org/10.2307/3797827
Matson, G. M. L. J., Van Daele, L., Goodwin, E., Aumiller, L., Reynolds, H., & Hristienko, H. (1993). A laboratory manual for cementum age determination of Alaska brown bear first premolar teeth. Alaska Department of Fish and Game and Matson’s Laboratory.
Mattson, D. J., & Merrill, T. (2002). Extirpations of grizzly bears in the contiguous United States, 1850 –2000. Conservation Biology, 16 (4), 1123-1136. https://doi.org/10.1046/j.1523-1739.2002.00414.x
Mayne, B., Mustin, W., Baboolal, V., Casella, F., Ballorain, K., Barret, M., . . . Berry, O. (2022). Age prediction of green turtles with an epigenetic clock. Molecular Ecology Resources, 22(6), 2275-2284. https://doi.org/10.1111/1755-0998.13621
Mclaughlin, C. R., Matula, G. J., Cross, R. A., Halteman, W. H., Caron, M. A., & Morris, K. I. (1990). Precision and accuracy of estimating age of Maine black bears by cementum annuli. Bears: Their Biology and Management, 8 , 415-419. https://doi.org/10.2307/3872945
McLellan, B. N. (2011). Implications of a high-energy and low-protein diet on the body composition, fitness, and competitive abilities of black (Ursus americanus)  and grizzly (Ursus arctos ) bears. Canadian Journal of Zoology, 89 (6), 546-558. https://doi.org/10.1139/z11-026
Miller, S. D. (1990). Population management of bears in North America. Bears: Their Biology and Management, 8 , 357-373. https://doi.org/10.2307/3872940
Monaghan, P., Charmantier, A., Nussey, D. H., & Ricklefs, R. E. (2008). The evolutionary ecology of senescence. Functional Ecology, 22 (3), 371-378. https://doi.org/10.1111/j.1365-2435.2008.01418.x
Moore, L. D., Le, T., & Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology, 38 (1), 23-38. https://doi.org/10.1038/npp.2012.112
Morris, P. (1972). A review of mammalian age determination methods. Mammal Review, 2 (3), 69-104. https://doi.org/10.1111/j.1365-2907.1972.tb00160.x
Mundy, K. R. D., & Fuller, W. A. (1964). Age Determination in the Grizzly Bear. The Journal of Wildlife Management, 28 (4), 863-866. https://doi.org/10.2307/3798810
Müller, D. W. H., Gaillard, J.-M., Bingaman Lackey, L., Hatt, J.-M., & Clauss, M. (2010). Comparing life expectancy of three deer species between captive and wild populations. European Journal of Wildlife Research, 56 (2), 205-208. https://doi.org/10.1007/s10344-009-0342-8
Naves, J., Fernández-Gil, A., Rodríguez, C., & Delibes, M. (2006). Brown bear food habits at the border of its range: A long-term study. Journal of Mammalogy, 87 (5), 899-908. https://doi.org/10.1644/05-MAMM-A-318R2.1
Nishiwaki, M., Hibiya, T., & Ohsumi, S. (1958). Age study of sperm whale based on reading of tooth laminations. Scientific reports of the Whales Research Institute13 , 135–153.
Nussey, D. H., Froy, H., Lemaitre, J.-F., Gaillard, J.-M., & Austad, S. N. (2013). Senescence in natural populations of animals: Widespread evidence and its implications for bio-gerontology. Ageing Research Reviews, 12 (1), 214-225. https://doi.org/10.1016/j.arr.2012.07.004
Oli, M. K., & Armitage, K. B. (2004). Yellow‐bellied marmot population dynamics: demographic mechanisms of growth and decline. Ecology, 85 (9), 2446-2455. https://doi.org/10.1890/03-0513
Payne, J. A., Stevenson, T. J., & Donaldson, L. F. (1996). Molecular characterization of a putative K-Cl cotransporter in rat brain: A neuronal-specific isoform. Journal of Biological Chemistry, 271 (27), 16245-16252. https://doi.org/10.1074/jbc.271.27.16245
Petkovich, D. A., Podolskiy, D. I., Lobanov, A. V., Lee, S.-G., Miller, R. A., & Gladyshev, V. N. (2017). Using DNA methylation profiling to evaluate biological age and longevity interventions. Cell Metabolism, 25 (4), 954-960.e6. https://doi.org/10.1016/j.cmet.2017.03.016
Pinho, G. M., Martin, J. G. A., Farrell, C., Haghani, A., Zoller, J. A., Zhang, J., . . . Horvath, S. (2022). Hibernation slows epigenetic ageing in yellow-bellied marmots. Nature Ecology & Evolution, 6 (4), 418-426. https://doi.org/10.1038/s41559-022-01679-1
Polanowski, A. M., Robbins, J., Chandler, D., & Jarman, S. N. (2014). Epigenetic estimation of age in humpback whales. Molecular Ecology Resources, 14 (5), 976-987. https://doi.org/10.1111/1755-0998.12247
Purves P, E. (1955). The wax plug in the external auditory meatus of the Mysticeti. Discovery Rep., 27 , 293-302.
Qi, H., Kinoshita, K., Mori, T., Matsumoto, K., Matsui, Y., & Inoue-Murayama, M. (2021). Age estimation using methylation-sensitive high-resolution melting (MS-HRM) in both healthy felines and those with chronic kidney disease. Scientific Reports, 11 (1), 1-10. https://doi.org/10.1038/s41598-021-99424-4
Raj, K., Szladovits, B., Haghani, A., Zoller, J. A., Li, C. Z., Black, P., . . . Horvath, S. (2021). Epigenetic clock and methylation studies in cats. GeroScience, 43 (5), 2363-2378. https://doi.org/10.1007/s11357-021-00445-8
Robert, A., Chantepie, S., Pavard, S., Sarrazin, F., & Teplitsky, C. (2015). Actuarial senescence can increase the risk of extinction of mammal populations. Ecological Applications, 25 (1), 116-124. https://doi.org/10.1890/14-0221.1
Rolandsen, C. M., Solberg, E. J., Heim, M., Holmstrøm, F., Solem, M. I., & Sæther, B.-E. (2008). Accuracy and repeatability of moose (Alces alces ) age as estimated from dental cement layers. European Journal of Wildlife Research, 54 (1), 6-14. https://doi.org/10.1007/s10344-007-0100-8
Rose, N. R., & Klose, R. J. (2014). Understanding the relationship between DNA methylation and histone lysine methylation. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1839 (12), 1362-1372. https://doi.org/10.1016/j.bbagrm.2014.02.007
Samblas, M., Milagro, F. I., & Martínez, A. (2019). DNA methylation markers in obesity, metabolic syndrome, and weight loss. Epigenetics, 14 (5), 421-444. https://doi.org/10.1080/15592294.2019.1595297
Scheffer, V. B. (1950). Growth layers on the teeth of Pinnipedia as an indication of age. Science, 112 (2907), 309-311. https://doi.org/10.1126/science.112.2907.309-a
Scheffer, V. B., & Myrick, J., Albert C. (1980). A review of studies to 1970 of growth layers in the teeth of marine mammals [Special issue]. Reports of the International Whaling Commission3 , 51-63.
Schwartz, C. C., Fortin, J. K., Teisberg, J. E., Haroldson, M. A., Servheen, C., Robbins, C. T., & Van Manen, F. T. (2014). Body and diet composition of sympatric black and grizzly bears in the Greater Yellowstone Ecosystem. The Journal of Wildlife Management, 78 (1), 68-78. https://doi.org/10.1002/jwmg.633
Schwender, K., Holländer, O., Klopfleisch, S., Eveslage, M., Danzer, M., Pfeiffer, H., & Vennemann, M. (2021). Development of two age estimation models for buccal swab samples based on 3 CpG sites analyzed with pyrosequencing and minisequencing. Forensic Science International: Genetics, 53 , 102521. https://doi.org/10.1016/j.fsigen.2021.102521
Servheen, C., & Gunther, K. A. (2022). Conservation and management of the culture of bears. Ecology and Evolution, 12 (4), e8840. https://doi.org/10.1002/ece3.8840
Shimozuru, M., Yamanaka, M., Nakanishi, M., Moriwaki, J., Mori, F., Tsujino, M., . . . Tsubota, T. (2017). Reproductive parameters and cub survival of brown bears in the Rusha area of the Shiretoko Peninsula, Hokkaido, Japan. PLOS ONE, 12 (4), e0176251. https://doi.org/10.1371/journal.pone.0176251
Shirane, Y., Jimbo, M., Yamanaka, M., Nakanishi, M., Mori, F., Ishinazaka, T., . . . Shimozuru, M. (2021). Dining from the coast to the summit: Salmon and pine nuts determine the summer body condition of female brown bears on the Shiretoko Peninsula. Ecology and Evolution, 11 (10), 5204-5219. https://doi.org/10.1002/ece3.7410
Shirane, Y., Mori, F., Yamanaka, M., Nakanishi, M., Ishinazaka, T., Mano, T., . . . Shimozuru, M. (2020). Development of a noninvasive photograph-based method for the evaluation of body condition in free-ranging brown bears. PeerJ, 8 , e9982. https://doi.org/10.7717/peerj.9982
Shirane, Y., Shimozuru, M., Yamanaka, M., Tsuruga, H., Nakanishi, M., Ishinazaka, T., . . . Tsubota, T. (2019). Sex-biased dispersal and inbreeding avoidance in Hokkaido brown bears. Journal of Mammalogy, 100 (4), 1317-1326. https://doi.org/10.1093/jmammal/gyz097
Stoneberg, R., P., & Jonkel, C. J. (1966). Age determination of black bears by cementum layers. The Journal of Wildlife Management, 30 (2), 411-414. https://doi.org/10.2307/3797828
Stubbs, T. M., Bonder, M. J., Stark, A.-K., Krueger, F., Von Meyenn, F., Stegle, O., & Reik, W. (2017). Multi-tissue DNA methylation age predictor in mouse. Genome Biology, 18 (1), 1-14. https://doi.org/10.1186/s13059-017-1203-5
Sullivan, I. R., Adams, D. M., Greville, L. J. S., Faure, P. A., & Wilkinson, G. S. (2022). Big brown bats experience slower epigenetic ageing during hibernation. Proceedings of the Royal Society B : Biological Sciences, 289 (1980), 20220635. https://doi.org/10.1098/rspb.2022.0635
Tan, W. S. D., Lee, J. J., Satish, R. L., & Ang, E.-T. (2012). Detectability of secretagogin in human erythrocytes. Neuroscience Letters, 526 (1), 59-62. https://doi.org/10.1016/j.neulet.2012.08.006
Thomas, D. C. (1977). Metachromatic staining of dental cementum for mammalian age determination. The Journal of Wildlife Management, 41 (2), 207-210. https://doi.org/10.2307/3800596
Thompson, M. J., Vonholdt, B., Horvath, S., & Pellegrini, M. (2017). An epigenetic aging clock for dogs and wolves. Aging, 9 (3), 1055-1068. https://doi.org/10.18632/aging.101211
Tidière, M., Gaillard, J.-M., Berger, V., Müller, D. W. H., Bingaman Lackey, L., Gimenez, O., . . . Lemaître, J.-F. (2016). Comparative analyses of longevity and senescence reveal variable survival benefits of living in zoos across mammals. Scientific Reports, 6 (1), 36361. https://doi.org/10.1038/srep36361
Tidière, M., Müller, P., Sliwa, A., Siberchicot, A., & Douay, G. (2021). Sex‐specific actuarial and reproductive senescence in zoo‐housed tiger (Panthera tigris ): The importance of sub‐species for conservation. Zoo Biology, 40 (4), 320-329. https://doi.org/10.1002/zoo.21610
Tochigi, K., Tamatani, H., Kozakai, C., Inagaki, A., Naganuma, T., Myojo, H., . . . Koike, S. (2018). Reproductive histories of Asian black bears can be determined by cementum annuli width. Mammal Study, 43 (4), 261-268. https://doi.org/10.3106/ms2018-0016
Turbill, C., Bieber, C., & Ruf, T. (2011). Hibernation is associated with increased survival and the evolution of slow life histories among mammals. Proceedings of the Royal Society B: Biological Sciences, 278 (1723), 3355-3363. https://doi.org/10.1098/rspb.2011.0190
Tøien, Ø., Blake, J., Edgar, D. M., Grahn, D. A., Heller, H. C., & Barnes, B. M. (2011). Hibernation in black bears: Independence of metabolic suppression from body temperature. Science (New York, N.Y.), 331 (6019), 906-909. https://doi.org/10.1126/science.1199435
Wang, T., Tsui, B., Kreisberg, J. F., Robertson, N. A., Gross, A. M., Yu, M. K., . . . Ideker, T. (2017). Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biology, 18 (1), 57. https://doi.org/10.1186/s13059-017-1186-2
Wilkinson, G. S., & Adams, D. M. (2019). Recurrent evolution of extreme longevity in bats. Biology Letters, 15 (4), 20180860. https://doi.org/10.1098/rsbl.2018.0860
Wilkinson, G. S., & South, J. M. (2002). Life history, ecology and longevity in bats. Aging Cell, 1 (2), 124-131. https://doi.org/10.1046/j.1474-9728.2002.00020.x
Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11 (4), 398-411. https://doi.org/10.2307/2406060
Xu, C., Qu, H., Wang, G., Xie, B., Shi, Y., Yang, Y., . . . Feng, L. (2015). A novel strategy for forensic age prediction by DNA methylation and support vector regression model. Scientific Reports, 5 (1), 17788. https://doi.org/10.1038/srep17788
Yamazaki, J., Meagawa, S., Jelinek, J., Yokoyama, S., Nagata, N., Yuki, M., & Takiguchi, M. (2021). Obese status is associated with accelerated DNA methylation change in peripheral blood of senior dogs. Research in Veterinary Science, 139 , 193-199. https://doi.org/10.1016/j.rvsc.2021.07.024
Zedrosser, A., Dahle, B., Swenson, J. E., & Gerstl, N. (2001). Status and management of the brown bear in Europe. Ursus, 12 , 9-20.