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Introduction

The following supplementary materials are included below:

• Text S1: Methodology for a physical model of cnoidal waves in poromechanics

• Figure S1: Varied perturbation distributions in the center of the compressive speci-

men for different stress peaks by adjusting the parameter s in Eq. (S11).

• Figure S2: Evolution of perturbation at five iteration steps for the five peaks case by

the adaptive stabilized finite element method (ASFEM).
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Text S1. Methodology for a physical model of cnoidal waves in poromechanics

We derive a 1-D formulation for cnoidal waves based on the general theory of plastic-

ity (Hill, 1962) and poromechanics (Coussy, 2004). Hill’s approach simplifies a generalized

2-D problem into an equivalent 1-D one. Poromechanis enables us to study the funda-

mental competition between fluid flow and mechanical deformation. In analogy to the

stress state of materials in compressive geosystems, we consider a homogeneous material

of length H under a constant compression at its boundary in the x direction, as Figure 1

shows in the main manuscript. We assume a perturbation p′n greater than the yield stress

p′y exists in the center of the compressed specimen. The periodic boundary conditions

are imposed at the two ends, mimicking one unit in a geological setting. In addition,

we assume all material properties are constant for mathematical simplicity, such as solid

viscosity and permeability.

We solve this poromechanics problem under the framework of overstress viscoplasticity

by Perzyna (1966). The effective stress in the specimen is p = p′ + pf as defined in

Terzaghi’s theory, where p is the mean stress with positive in compression and pf is the

pore pressure. The momentum balance equation reads as

∇p′ = −∇pf (S1)

For the conservation of mass, we should consider the internal mass transfer between the

solid and fluid phases because the chemical reaction is likely to occur in the diagenetic

window. The general reaction formation for the dissolution/precipitation can be expressed

as

AB(s) −−⇀↽−− A(s) +B(aq) (S2)
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As for the quartz veins formation in the diagenetic reaction, AB and A are smectite

and illite, and B denotes the aqueous quartz.

In a binary solid-fluid mixture system, we define the partial mass densities ρs := ϕsρs

and ρf := ϕfρf for the solid and fluid phases, respectively, with ϕs and ϕf the volume

fraction of the solid and fluid phase, ρs and ρf the solid skeleton and fluid density. Note

that ϕs + ϕf = 1 in the bi-phasic setting. The mass balance equations for both solid and

fluid phases read as
dρs

dt
+ ρs∇ · v = −j

dρf

dt
+ ρf∇ · vf = j

(S3)

where j is the internal mass transfer by the diagenetic reaction in the fluid-rock interaction,

v and vf are the solid and fluid velocities, respectively. We drop the subscript ’s’ for the

solid velocity since it is the reference velocity.

Adding Eq. (S3) together and noting that the bi-phasic setting of ϕs +ϕf = 1, we have

∇ · v +∇ · v̄ = j

(
1

ρf
− 1

ρs

)
(S4)

where v̄ := ϕf (vf − v) is the Darcy flux, denoting the relative volumetric rate of fluid

flow to the matrix. We have the following relationship between the relative rate and the

compaction rate and Darcy’s law for laminar flow

v̄ = − k

µf

∇pf (S5)

where k is the permeability, µf is the fluid viscosity.

Furthermore, we define the volumetric strain rate for the solid ε̇v := ∇ · v in

Eq. (S4), which contains two components: a reversible elastic part ε̇ev and an irreversible

(visco)plastic part ε̇pv (Perzyna, 1966). The former ε̇ev is related to the mean effective
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stress rate by the elastic rate constitutive equation, whereas a typical power law rheology

expresses the latter ε̇pv (Kohlstedt et al., 1995). Therefore, the total volumetric strain rate

can be written as

ε̇v = ε̇ev + ε̇pv = − ṗ′

Ke
− ε̇n

[
p̄

p̄n

]m
(S6)

where p′ and ṗ′ are the effective stress and its rate, Ke is the elastic bulk modulus, ε̇n is

the reference loading strain rate corresponding to the perturbation stress p′n, p̄ := p′ − p′Y

and p̄n := p′n − p′Y are the effective and reference overstresses in which p′Y is the yield

stress, and m is the rate sensitivity exponent and has a value above 1 for geomaterials in

general. The negative signs are consistent with positive stresses in compression.

Introducing the following dimensionless parameters:

σ :=
p̄

p̄n
, τ :=

kKe

µfH2
t, x∗ :=

x

H
, (S7)

And assuming the rate of fluid production j follows an Arrhenius relationship with a

dependence on the mean pressure of the activation enthalpy, we have pressure-enhance

precipitation form for j as

j = −Aeβσ (S8)

where A is a coefficient, and β is a chemo-mechanical parameter representing the interac-

tion between the mass transfer rate and the external loading.

Substituting Eq. (S5)–(S8) into Eq. (S4), we have the dimensionless formulation as

∂σ

∂τ
=

∂2σ

∂x∗2 − λσm + ηeβσ, (S9)

in which λ :=
µf ε̇n
kp̄n

H2 and η :=
AµfH

2

kp̄n

(
1
ρf

− 1
ρs

)
. Dropping the left-hand side term of

the asterisk and only considering the steady-state case in our study, we obtain the final
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dimensionless formulation for static-state cnoidal waves:

∂2σ

∂x∗2 − λσm + ηeβσ = 0 (S10)

We solve the above equation using the adaptive stabilized finite element method (AS-

FEM), to capture the stress concentration phenomenon. This is because the ASFEM can

overcome the spurious oscillations in the classical FEM for this high nonlinear problem.

The detailed discretization and formulation for the ASFEM refer to Cier, Poulet, Rojas,

Veveakis, and Calo (2021). We perform our simulations in FEniCS and set the material

properties as η = 4.54× 10−9 and β = 10. We assume that the guess perturbation uIG is

located in the center of the specimen as

uIG =
2.5 sinxπ

sin(π/2)
exp

(
−0.5(x− 0.5)2

s2

)
(S11)

where s is a constant adjusting the size of perturbation and the symbol u denotes σ − 1.

This is because this replacement allows transferring the inhomogeneous (σ = 1) into

homogeneous (u = 0) Dirichlet boundary conditions (Cier et al., 2021). We adopt this

representation, although we assign the periodic boundary conditions at the two ends of

the specimen. The specimen is initially divided into 100 elements and it can be adaptively

refined with the peak evolution.
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Figure S1. Varied perturbation distributions in the center of the compressive specimen for

different stress peaks by adjusting the parameter s in Eq. (S11).
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Figure S2. Evolution of perturbation at five iteration steps for the five peaks case by the

adaptively stabilized finite element method (ASFEM).
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