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3. Figures S1 - S5

Text S1. Validation of cloud-bulk SLF metric. We use new cloud products (Guzman

et al., 2017) to study the CALIOP’s ability to sample Arctic clouds (Fig. S1). On the

annual mean, opaque clouds make up 56% of cloudy scenes and are sampled through an

average depth of 1.17km. While more opaque clouds are present in the summer and fall,

the sampling depth never falls below 1km, indicating that the cloud-bulk metric samples

a distinct thermodynamic regime below the supercooled liquid layer for all seasons.

Text S2. Calculation of observated and modelled SLF metrics. Observed SLF is

calculated as the ratio of the number of liquid cloud top pixels to the sum of ice plus liquid

cloud top pixels following the methods of Bruno, Hoose, Storelvmo, Coopman, and Stengel

(2021). Modelled SLF is calculated as the ratio of cloud liquid surface area density to

the sum of liquid and ice surface area densities using the methods of Tan, Storelvmo, and

Zelinka (2016). Observations are binned into 1◦ × 1◦ gridcells for comparison with model

output. Improved comparability of observed and modelled SLF metrics would require the

creation of additional GOCCP and COSP2 output fields.

Text S3. Description of limit on secondary ice nucleation. The ice number

tendency variable from secondary nucleation processes (”nsacwi”) is limited to 106kg−1

per microphysics timestep (5 minutes) if it exceeds this value after the Hallet-Mossop

secondary ice scheme runs. We only set a cap on the number production, which otherwise

would have no limit, unlike the mass term that is subject to cloud mass conservation. We

choose a very high cap in order to prevent errors from re-implementing the Hallet-Mossop

parameterization that was effectively removed from the model due to the ice number

error. Sensitivity tests without the secondary ice limit showed negligible changes in SLF,
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confirming the dominant contribution of ice from heterogeneous processes when the model

error is removed.

Text S4. Tuning Methods. The rate of ice and snow growth via the WBF process is

highly-dependent on in-cloud conditions (updraft speed, concentration of cloud droplets

and ice crystals) (Korolev, 2007). Previous studies reduced the efficiency of the WBF

process in CAM5 by factors up to 10 to increase cloud liquid (Tan et al., 2016; Huang et

al., 2021). We perform an identical modification in CAM6 to modify the WBF rate.

Tan et al. (2016) also modified the fraction of dust aerosols active as ice nuclei, pre-

senting results with multipliers of 0.79 and 0.19. We perform a similar modification

by scaling the aerosol concentration variables that are fed into the Hoose heteroge-

neous ice nucleation scheme (”total aer num”, ”coated aer num”, ”uncoated aer num”,

”total interstitial aer num” ,”total cloudborne aer num”) (Hoose et al., 2008). We ini-

tially tested WBF rate multipliers between 0.1 and 10, and INP multipliers between 0.01

and 100. WBF multipliers significantly greater than 1 have not been previously used,

and we found that values greater than 2 significantly reduced SLF in both metrics. INP

multipliers varying over several orders of magnitude are reasonable, since observations

exhibit high variability (DeMott et al., 2010) and our model variants respond differently

to changes in these parameters.

Text S5. Evaluation of Ice Crystal Concentrations. We wish to evaluate whether

our simulations have ice crystal concentrations that are reasonably consistent with obser-

vations. Observations of INP concentrations from the M-PACE field experiment (Prenni

et al., 2009) provide one of the few records of INP concentrations for low- and mid-level

Arctic clouds. We note that while there is not necessarily a 1-to-1 relationship between
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INP concentrations and ice crystal number concentration, INP concentrations are a useful

indication of what ice crystal number concentrations are reasonable. Prenni et al. (2009)

report a mean INP concentration of 0.7L−1 and a maximum INP concentration of 60L−1.

Prenni et al. (2009) note that INPs greater than 1.5µm were not measured, excluding

some INPs from analysis. Ice crystal concentration in our fitted model simulations fall

near the values reported by Prenni et al. (2009), indicating that ice crystals are reason-

ably reproduced by the models. The authors note that a strict comparison between our

model output and observations from M-PACE would require specific knowledge of the

cloud conditions during the field experiment and targeted modelling experiments beyond

the scope of this study.
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Run name
Total Cloud
Bias (%)

Liquid Cloud
Bias (%)

Ice Cloud
Bias (%)

Undefined
Cloud Bias (%)

Shortwave
CRE Bias
(W/m2)

Longwave
CRE Bias
(W/m2)

CAM6-Oslo -2.0 -0.7 0.7 -1.8 -3.5 -0.1
CAM6 2.1 11.2 -7.9 -0.8 -4.0 -0.8

CAM6-OsloIce -5.8 -8.2 6.1 -3.4 -2.9 0.3
CAM6-Oslo Fit 1 -3.6 -2.2 1.1 -2.2 -3.0 -0.6

CAM6-OsloIce Fit 2 -2.0 -0.9 1.6 -2.4 -3.7 0.4
CAM6-OsloIce Fit 3 -0.3 -1.3 3.6 -2.3 -5.1 1.8

CAM6 Fit 4 -5.1 5.4 -8.1 -2.0 -3.3 -1.9
CAM6-Olso(1.25,1) -2.8 -1.5 1.0 -2.0 -3.1 -0.4
CAM6-Olso(1,10) -2.8 -1.4 0.8 -1.9 -3.4 -0.3

CAM6-OsloIce(0.2,1) -2.1 -6.4 7.6 -3.0 -5.5 2.5
CAM6-OsloIce(0.5,1) -4.2 -6.8 6.1 -3.1 -4.1 1.2
CAM6-OsloIce(1,0.05) -4.3 -3.3 2.1 -2.8 -2.2 -0.7
CAM6-OsloIce(1,0.1) -4.9 -4.3 2.6 -2.9 -2.2 -0.8

Table S1. Annual model cloud biases for the region 66◦N-82◦N. Cloud cover biases are

calculated relative to CALIOP GOCCP observations. Surface cloud radiative effect (CRE) biases

are calculated relative to CERES-EBAF observations using a positive downward sign convention.
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Figure S1. Arctic maps (66–90◦N) of a) Thin Cloud Fraction from CALIOP, b) Opaque Cloud

Fraction from CALIOP, c) Opaque Fraction (opaque cloud fraction / total cloud fraction) from

CALIOP, and d) Cloud sampling depth from CALIOP. Cloud sampling depth is computed as

the difference between cloud height and opacity height using cloud opacity products developed

in Guzman et al. (2017). Mean values are computed as the area-weighted average of the plotted

region.
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Figure S2. North Pole maps (60–82◦N) of cloud cover bias by CALIOP phase designation.
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Figure S3. Monthly values for the fraction of total cloud made up of low-level liquid phase

clouds (low-level liquid cloud fraction / total cloud fraction). Observations are taken from the

CALIOP GOCCP cloud product. Model values are computed using variables from the COSP

satellite simulator package.
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Figure S4. Longwave cloud feedback as a function of the change in low-level liquid cloud

fraction between present day and +4K simulations by month.
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Figure S5. Supercooled liquid fraction by isotherm for cloud-top and cloud-bulk metrics for

present-day base model simulations and +4K base model simulations. Error bars on CALIOP

SLF values correspond to one standard deviation. All values represent an area-weighted aver-

age from 66◦-82◦N.
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