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Abstract25

Evapotranspiration (ET ) is a key process in the hydrological cycle that can help mit-26

igate urban heat. ET depends on the surface cover, as the surface affects the partition-27

ing of precipitation between runoff and evapotranspiration. In urban neighborhoods, this28

surface cover is highly heterogeneous. The resulting neighborhood-scale ET is observed29

with eddy-covariance systems. However, these observations represent the signal from wind-30

and stability-dependent footprints resulting in a continuously changing surface cover com-31

position. This continuous change prevents quantitative analysis of the separate types.32

Here, we disentangle this neighborhood-scale ET at two urban sites in Berlin attribut-33

ing the ET dynamics to the four major surface cover types in the footprint: impervi-34

ous surfaces, low vegetation, high vegetation, and open water. Starting from the surface,35

we reconstruct ET based on patch-scale observations and conceptual models. Alterna-36

tively, we start with the eddy-covariance observations and attribute ET to the surface37

cover types solving a system of equations for four eddy-covariance systems with different38

footprints. Although starting at the surface yields more robust results, both approaches39

indicate that vegetation is responsible for more ET than proportional to its surface frac-40

tion, and evaporation from impervious surfaces although less cannot be neglected. We41

confirm the intuitive relation between ET and the surface cover fractions based on a wide42

range of surface compositions.43

Plain Language Summary44

Different types of surfaces, like grass, trees, pavement, and open water, affect how45

rainwater is divided between evaporation and runoff. In cities with lots of pavement and46

buildings, more water runs off than in natural areas leaving less water for evaporation.47

Measurement towers have been observing the evaporation from whole neighborhoods,48

but separating the effects of different surfaces is hard. In our study, we figure out how49

much each surface type contributes to evaporation with two methods: one starting from50

the separate surfaces and rebuilding the neighborhood evaporation, and the other start-51

ing with the neighborhood evaporation and breaking it down into evaporation from each52

surface. Both ways showed that plants evaporate more than proportionally to their sur-53

face area, but even built surfaces like pavement evaporate. Our findings confirm that more54

plants lead to more evaporation, but built surfaces cannot be ignored. This information55

can help urban planners create cities that manage water better, making cities nicer places56

to live.57

1 Introduction58

How precipitation is partitioned between runoff and evapotranspiration (ET ) plays59

an important role in the urban climate and is governed by the surface cover composi-60

tion (Paul & Meyer, 2001; Oke et al., 2017). In cities, the abundant impervious surfaces61

prevent infiltration and promote surface runoff leaving less water available for ET than62

pervious areas (Fletcher et al., 2013; McGrane, 2016; Jongen et al., 2022). On the other63

hand, urban vegetation has the opposite effect increasing infiltration and ET (Peters et64

al., 2011; Gunawardena et al., 2017). While all vegetation favors ET compared to im-65

pervious surfaces, an isotope-based study revealed the vegetation type also affects in-66

filtration and ET patterns (Kuhlemann et al., 2021). The combination of surface covers67

thus controls the water partitioning and consequently ET dynamics.68

Promoting green surface covers by planting vegetation can increase ET using more69

of the available energy (Wang & Shu, 2020). Like vegetation, open water is suggested70

to potentially cool its surroundings by evaporation when implemented appropriately (Solcerova71

et al., 2019; Jacobs et al., 2020), although warming can also occur due to the high ther-72

mal inertia (Theeuwes et al., 2013; Steeneveld et al., 2014). The energy needed for the73

additional ET cannot heat the air mitigating heat and the associated health risks (Oke,74
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1982; Heaviside et al., 2017; Ward & Grimmond, 2017). However, how surface cover com-75

position at the patch level (∼ 101−102 m of a single surface cover type) translates to76

the neighborhood scale (∼ 103 m) is largely unknown until now. To answer this ques-77

tion, we need to quantify how surface cover impacts the partitioning of incoming water78

fluxes (Bonneau et al., 2018) and how this affects the partitioning on the larger, neigh-79

borhood scale. Ultimately, the neighborhood scale is where the effect of the surface covers80

on ET needs to be understood. In time, this understanding will support the manage-81

ment of the cooling benefits and urban water demands.82

At the neighborhood scale, eddy-covariance (EC) systems observe the ET of the83

combined surface cover types in their footprint (Feigenwinter et al., 2012). We refer to84

this as ET , since these observations show the combined signal of contributions from the85

present surface cover types and thus include evaporation, transpiration, and anthropogenic86

fluxes. Even though the heterogeneous urban surface results in spatially variable ET (Qin87

et al., 2022), the observed ET represents the weighted average flux in the footprint, as88

the EC systems are typically installed at a height where the heterogeneous surface flux89

sources are blended (Oke et al., 2017). Apart from this height, the footprint varies tem-90

porally depending on the wind speed and direction, and atmospheric stability (Kljun et91

al., 2015). Previous research demonstrated it is possible to upscale patch-scale ET ob-92

servations to the neighborhood-scale EC observations weighed by surface cover in the93

footprint climatology at a relatively homogeneous urban site (Peters et al., 2011). How-94

ever, hour-to-hour variation in the footprint contains useful information to understand95

ET . This time-dependent surface information has been applied to improve the model96

performance of urban ET machine learning models (Vulova et al., 2021). Thus, for the97

more common heterogeneous urban sites, the footprint is crucial information to disen-98

tangle the neighborhood-scale ET and attribute it to the different surface cover types.99

EC footprints can be estimated with a variety of models. Large-eddy simulations100

(LES) or Lagrangian stochastic particle dispersion models (LPD) fully model the air-101

flow to find the source area (LES: Leclerc et al. (1997); Wang and Davis (2008); LPD:102

Kljun et al. (2002); Hsieh et al. (2003); LES and LPD combined: Hellsten et al. (2015);103

Auvinen et al. (2017)). These models are both labor-intensive and computationally ex-104

pensive, which limits their applicability to relatively short case studies (Vesala et al., 2008).105

To analyze longer time series, faster footprint models have been developed with an an-106

alytical approach relying on the surface-layer theory (e.g. Schuepp et al., 1990; Schmid107

& Oke, 1990; Kormann & Meixner, 2001). Their validity is restricted to certain turbu-108

lence intensities or stratifications. More recently, Kljun et al. (2015) developed a two-109

dimensional footprint parameterization that takes away these limitations. Their model110

yields robust results for most boundary layer conditions at any observation height within111

the surface layer. This model enables the identification of the flux’s source area for a long112

time series with a wide range of atmospheric conditions. Therefore, this model is suit-113

able to study the influence of the changing footprints on ET .114

To study the influence of surface cover on ET , Peters et al. (2011) have described115

the seasonal patterns in urban ET from major plant-functional types (trees and turf grass).116

These two vegetation types explain the majority of ET variation. They also find that117

the surface fraction of a vegetation type is the most important factor determining its con-118

tribution to total ET underlining the importance of the EC footprint. They assume im-119

pervious surface evaporation can be neglected, while other studies show this assumption120

may not be valid (Ramamurthy & Bou-Zeid, 2014; Chen et al., 2023). Below, we will121

test the assumption by including evaporation from impervious surfaces. Moreover, while122

their analysis is focused on the seasonal timescale, we will consider the hourly timescale.123

The hourly ET dynamics play a key role in the urban climate experienced by urban cit-124

izens. As a verification, Peters et al. (2011) compared the sum of their ET components125

against EC observations, in essence reconstructing the ET signal from the bottom up.126
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Very few cities have observations of all relevant hydrometeorological states and fluxes127

across a range of surface covers. Berlin is a notable exception. In Berlin, meteorologi-128

cal observations are performed as part of two observatories: the Urban Climate Obser-129

vatory operated by the Chair of Climatology at the Technische Universität Berlin (https://uco.berlin/en,130

Scherer et al., 2019) and the Steglitz Urban Ecohydrological Observatory from the IGB131

Leibniz-Institute of Freshwater Ecology and Inland Fisheries (Kuhlemann et al., 2020,132

2021). Additionally, campaigns have added to this observation infrastructure, for exam-133

ple, with drone-based observations (Vulova et al., 2019) or with ground-based remote sens-134

ing (Zeeman et al., 2023). The elaborate observation infrastructure has resulted in nu-135

merous studies focusing on Berlin (e.g. Meier & Scherer, 2012; Fenner et al., 2014, 2023),136

of which many focused on ET . Kuhlemann et al. (2021) show based on soil isotopes that137

ET differs depending on the vegetation type with more interception but less soil evap-138

oration for higher vegetation types. Subsequently, these isotope observations provide the139

means to evaluate modeled water partitioning quantifying yearly ET fluxes for different140

vegetation types (Gillefalk et al., 2021, 2022). Another modeling study applied a physics-141

based model to study hourly ET (Duarte Rocha et al., 2022), which after validation was142

combined with remotely-sensed vegetation characteristics to map ET for all of Berlin143

(Rocha et al., 2022). Vulova et al. (2021) achieved similar modeling skill with machine144

learning trained on meteorological and remote sensing data. Because of the research in-145

frastructure and the extensive literature, Berlin offers a unique setting to study the link146

between the surface cover and ET .147

While the evaporation dynamics from various surface cover types have been inves-148

tigated previously, few studies have addressed these issues across a range of surface cover149

types. These studies show that surface cover types have very different evaporation dy-150

namics. Four main surface cover types can be distinguished: impervious surface, low vegetation,151

high vegetation, and open water. Impervious surfaces only evaporate when wet directly152

after rainfall resulting in highly dynamic evaporation (Wouters et al., 2015). In contrast,153

vegetation can draw water from the soil sustaining ET long after rainfall (Teuling et al.,154

2006; Boese et al., 2019). Amongst vegetation, differences are seen with higher average155

ET for higher vegetation with its higher leaf area density than for lower vegetation (Gillefalk156

et al., 2021). Sufficiently deep open water has more constant evaporation given the abun-157

dant water and high heat storage capacity that can provide energy in the absence of so-158

lar radiation (Jansen et al., 2022). The term ET is used for vegetation because the com-159

bined signal from transpiration, interception, and soil evaporation is considered. Over160

impervious and open water surfaces, only evaporation occurs so the term evaporation161

is used. We hypothesize these behaviors are combined at the neighborhood scale, as ob-162

served with EC, dependent on their relative contribution to the surface.163

In this study, we aim to estimate the ET contribution of different surface cover types164

in the footprint profiting from the diverse observations in Berlin. With this, we will show165

how the footprint varies over time, how ET behaves for each surface cover type, the re-166

lation between the surface cover and neighborhood ET , and the contribution of each sur-167

face cover type to neighborhood ET . To study the contribution of each surface cover type168

to ET , we take both a bottom-up and a top-down approach to attribute the EC-observed169

ET to the four dominant surface cover types. For the bottom-up approach, we recon-170

struct the EC signal by summing the estimated ET contribution of each surface cover171

type weighed by its contribution to the footprint. In this approach, the ET contribu-172

tion of each type is mimicked with conceptual models and small-scale observations. The173

top-down approach is based on a system of equations, in which each equation describes174

the surface cover composition of one EC system and its resulting flux. The resulting flux175

can be attributed to the surface cover types by solving the system of equations. We aim176

to reveal how the surface cover type influences neighborhood ET behavior and to indi-177

cate how altering surface cover may affect urban climate. Understanding the relation-178

ship between urban surface cover and ET can inform future climate-resilient urban de-179

sign.180
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2 Study sites181

This study examines observations from the capital and largest city of Germany, Berlin,182

which has a population of 3.7 million spread over 891 km2 (Amt für Statistik Berlin-Brandenburg,183

2019). Situated in the east of Germany, the climate is temperate oceanic (Cfb) (Kottek184

et al., 2006). The closest weather station from the German Weather Service (DWD, Berlin-185

Tempelhof) recorded a long-term (1991-2020) mean annual rainfall of 585 mm and mean186

air temperature of 10.2 ◦C (DWD, 2021b). Here, we study the warm months (April un-187

til October) of the relatively dry year of 2019 with 492 mm of precipitation, in which an188

intense observation campaign was organized (Vulova et al., 2019). The warm months are189

studied as most ET occurs during this time.190

Two sites in Berlin are studied here: a suburban one and one close to the city cen-191

ter. The first, suburban site is an urban research garden located in the southwest of the192

city at the Rothenburgstraße (ROTH, 52.457◦N, 13.315◦E, Figure 1a, (Vulova et al., 2021)).193

This site is an ICOS (Integrated Carbon Observation System) Associated Ecosystem Sta-194

tion (DE-BeR). Its surroundings within 1 km consist of 47% impervious surface, 19%195

low vegetation, 34% high vegetation, and no open water (see Sec. 3.1). At ROTH, a 40-196

meter tower holds three EC systems (IRGASON, Campbell Scientific) at 2, 30, and 40197

meters. For all EC systems in this study, the resolution is 30 minutes. The observations198

are quality controlled according to the literature and only high-quality data (flag 0) is199

used (Foken et al., 2004). Additionally, sap flow was observed at six trees with FLGS-200

TDP XM1000 sap velocity logger systems (Dynamax Inc, Houston, USA), and soil mois-201

ture content was measured in two locations below high vegetation at three depths: 10-202

15, 40-50, and 90-100 cm (CS650 reflectometers, Campbell Scientific) (Kuhlemann et al.,203

2020). Finally, the leaf area index was measured monthly over three transects through204

high vegetation (LAI-2200, LI-COR, Lincoln, USA) (Vulova et al., 2019). Along each205

transect, leaf area index measurements were conducted at 1-meter intervals to capture206

the canopy variability, while walking in the same direction each time for standardiza-207

tion. A tripod on a balcony served as a reference for the above-canopy light conditions208

measuring every 10 seconds.209

The second site is close to the city center at the TU Berlin Campus Charlotten-210

burg (TUCC, 52.512◦N, 13.328◦E, Figure 1b, (Vulova et al., 2019; Jin et al., 2021)). Its211

surroundings within 1 km are more impervious than at ROTH: 62% impervious surface,212

8% low vegetation, 26% high vegetation, and 3% open water (see Sec. 3.1). On the roof213

of TU Berlin (building height 46 meters), observations are made with a ceilometer (Lufft214

CHM 15k) and an EC system (IRGASON, Campbell Scientific). The EC system is at-215

tached to a 10-meter tower reaching 56 meters above ground level.216

3 Methods217

3.1 Surface cover classification218

The surface cover needs to be classified to link the surface in the EC footprint to219

the neighborhood-scale ET observed with the EC system. Given the surface fraction cov-220

ered by each surface cover type, the ET can be reconstructed from the evaporation dy-221

namics of the different surface cover types (bottom-up, Figure 2a) or attributed to the222

surface cover types by linear decomposition (top-down, Figure 2b). For this study, we223

classify the surface into four different surface cover types: impervious surface, low vegetation,224

high vegetation, and open water. For this purpose, we combine information from four225

geospatial datasets from Berlin Open Data and the Berlin Digital Environmental Atlas:226

• Building height : raster dataset at a 1-meter spatial resolution of all buildings in227

Berlin (Senate Department for Urban Development, Building and Housing, 2012).228
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Figure 1. Map of Berlin indicating the location of the (a) ROTH and (b) TUCC study sites

with their surroundings classified in the four surface cover types distinguished in this study with

the 1-km radius (dashed black line) around the EC towers (red dots). The coordinate reference

system is WGS 84 UTM/33N EPSG: 32633)

• Vegetation height : raster dataset at a 1-meter spatial resolution of all vegetation229

including trees, bushes, and grass in Berlin (Senate Department for Urban Devel-230

opment, Building and Housing, 2012)231

• Biotope types: vector dataset describing the biotope type of all vegetation in Berlin232

according to the 7483 biotope types described by Zimmermann et al. (2015) (Senate233

Department for Urban Development, Building and Housing, 2013)234

• Streets: vector dataset with all road segments in Berlin (Senate Department for235

the Environment, Mobility, Consumer and Climate Protection Berlin, 2014)236

Around each EC tower, we classified the surface covers with a buffer of 0.025 de-237

grees latitude and 0.05 degrees longitude in both directions, equivalent to 2.8 and 3.4238

kilometers. In total, this gives an area of 5.6 by 6.8 kilometers. We selected this buffer,239

as for 90% of the footprints this area includes the entire footprint calculated in this study240

(see Sec. 3.2). For only 0.5% of the time, the buffer contains less than 80% of the foot-241

print. All datasets are clipped to this area. Vector datasets are resampled to rasters at242

a 1-meter resolution to ensure compatibility with the raster datasets.243

At the start of the classification, all described vegetated land biotopes are assigned244

to vegetation and all water biotopes to open water. The impervious surface is determined245

based on all areas in the street data and all areas that have an assigned building height.246

The vegetation is split into low and high vegetation depending on the height with a thresh-247

old of 0.5 meters following Kuhlemann et al. (2021). The exact threshold has minimal248

influence as only a negligible fraction of the vegetation has a height between 0.3 and 1.0249

meters.250

3.2 Footprint modeling251

Footprints were calculated to determine the source area of the turbulent fluxes for252

all timesteps. We selected the flux footprint model from Kljun et al. (2015), which is fre-253

quently applied in urban environments (e.g. Stagakis et al., 2019; Nicolini et al., 2022;254

Karl et al., 2023). This footprint model provides two-dimensional grids with relative flux255

contribution. The model requires the measurement height, friction velocity, boundary-256

layer height, Obukhov length, wind direction, and mean and standard deviation of the257

wind speed. For all wind variables, EC observations are used, while the boundary-layer258

height is derived from ceilometer observations at the TUCC site. The Obukhov length259
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b)a)

Figure 2. Conceptual drawing of the bottom-up (a) and top-down (b) approach. The arrows

start at the data sources and end at the results of the approaches. Footprints determine the

contribution for each surface cover type (not shown).

in m (L) is calculated according to:260

L = − u3∗θ̄v

κg(w′θ′v)s
(1)261

where u∗ the surface friction velocity in m s−1, θ̄v the mean virtual potential temper-262

ature in K, κ the von Kármán constant of 0.4, g the gravitational acceleration of 9.81263

m s−2, and (w′θ′v)s the kinematic virtual potential temperature flux in K m s−1 at the264

observation height.265

As the model results in contours per 10% and the 100%-contribution contour is in-266

finite, the resulting footprint grids are limited to the 90%-contribution contour. Part of267

the footprint is not taken into account when the footprint extends beyond the classified268

area (Section 3.1). This last step had minimal influence, as the classified area is considerably269

larger than the typically considered representative area within a radius of either 0.5 or270

1 kilometer (Lipson et al., 2022). In the end, the surface fractions are calculated as the271

footprint contribution per surface cover type taking into account the weight of each pixel.272

3.3 Bottom-up273

The bottom-up approach attributes ET to the different surface cover types by de-274

termining evaporation dynamics for each type (Figure 2a). Consequently, the EC ob-275

servations are hypothesized to be reconstructed when these dynamics are weighed with276

the footprint contribution of the surface cover types. For the impervious surfaces, open277

water, and high vegetation interception, evaporation dynamics are estimated based on278

conceptual models. For the low vegetation and the high vegetation transpiration, obser-279

vations capture the dynamics. We assume the evaporation dynamics per surface cover280

type to be similar for ROTH and TUCC, as previous research found their forcing is com-281

parable and can be used interchangeably to predict ET with the same accuracy (Duarte Rocha282

et al., 2022). Negative ET observations are omitted, as the conceptual models are not283

capable of predicting negative fluxes. This filter has a very limited impact on the results,284
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as it excludes only 384 of the 17780 30-minute time intervals. The results are analyzed285

at two timescales, midday and daily, as these consider different aspects of ET . Midday286

is defined from 11:00 until 15:00 local (10:00-14:00 UTC) time with every half hour con-287

sidered separately. During these hours, incoming radiation driving ET is highest. Con-288

sidering multiple hours minimizes the sampling noise due to the stochastic nature of tur-289

bulence even at half-hourly timescales. The daily timescale is relevant for water resources290

management.291

Impervious surface292

Evaporation from impervious surfaces is modeled according to Wouters et al. (2015).293

Their parameterization includes two processes to mimic the water on an impervious sur-294

face: rainfall and evaporation. The impervious surface is characterized by the maximum295

water storage (wm) in mm m−2 and the maximum wet/evaporative fraction (δm). These296

parameters were determined for Berlin based on 3D-LIDAR scans and found to be 1.03297

mm m−2 and 13.53% (Haacke, 2022). The evaporative fraction decreases following a power298

law with an exponent of − 2
3 depending on the water storage, which follows from the as-299

sumption that interception storage capacity linearly depends on the storage depth. Wa-300

ter gain from rainfall is reduced in efficiency when closer to the water storage described301

by:302

w(t+ ∆t) = wm

(
1 − ln(1 − (1 − e(1−

w(t)
wm

))e−
r0∆t

wm )
)

(2)303

where, w is the water storage in mm, t time in s, ∆t length of the time step in s,304

and r0 the rainfall intensity in mm s−1. The formulation assumes constant rainfall dur-305

ing a time step. The evaporation is described by:306

w(t+ ∆t) =

(
w(t)

1
3 − δmEp∆t

3w
2
3
m

)3

(3)307

where Ep is the potential evaporation. The Ep is calculated according to Penman308

(1956), further described in Eq. 4. The meteorological forcing has a resolution of 30 min-309

utes, but the conceptual model is run numerically at a 30-second time step to ensure a310

numerically robust solution with linearly interpolated meteorological forcing.311

High vegetation312

The ET from high vegetation consists of transpiration and interception. The tran-313

spiration is derived from observations of the soil moisture content and sap flow as de-314

scribed in Kuhlemann et al. (2021). Soil moisture content observations are used from both315

the “Trees” and “Shrubs” plots for the transpiration estimation from high vegetation.316

The soil moisture content reflects the evaporated water volume, but root water uptake317

does not correlate directly with transpiration apparent from the lag between the two.318

Therefore, we scale daily soil moisture loss with hourly sap flow observations. This method319

takes advantage of the temporal variation in sap flow observations and the magnitude320

of the soil moisture content observations. Soil moisture loss due to drainage is assumed321

to be negligible, as the deepest soil moisture observations at 95 cm depth do not indi-322

cate a drainage flux. Furthermore, soil moisture loss in the lowest layer of observations323

is not added to the evaporation.324

The canopy interception and its evaporation are modeled with the Rutter model325

that allows for sub-daily resolution (Rutter et al., 1975; Valente et al., 1997). The model326

partitions rainfall between evaporation from the canopy and trunk, throughfall, and stem327

flow. Two storages are part of the model: the canopy and the trunk. Both storages evap-328
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orate at the potential rate calculated according to the Penman (1956) equation (Eq. 4).329

Canopy storage capacity depends on the tree species ranging between 0.1 and 3 mm (e.g.330

Aston, 1979; Klaassen et al., 1998; Baptista et al., 2018; Ramı́rez et al., 2018), although331

in exceptional tropical canopies capacities up to 8 mm have been observed (Herwitz, 1985).332

We assume the canopy storage capacity is linearly related to the leaf area index with a333

storage of 0.2 mm per unit leaf area (Huang et al., 2017). Leaf area index observations334

at monthly intervals are interpolated with a univariate spline with four degrees of free-335

dom. The modeled interception appears to be relatively insensitive to the other para-336

meters: trunk water storage capacity, partitioning between stem flow and throughfall,337

and the fraction of evaporation from the stem flow. All of these parameters concern the338

stem flow, which, on average, accounts for only 2% of the precipitation exceeding the canopy339

storage capacity (Rutter et al., 1975). The modeled interception evaporation is added340

to the transpiration to obtain the ET from the high vegetation.341

Low vegetation342

Low vegetation is directly represented by an EC system installed at 2 meters di-343

rectly above the grass at ROTH. In their similar study, Peters et al. (2011) installed an344

EC system close to the surface to estimate the ET from low vegetation as well. Within345

a forest, a comparable set-up helped to differentiate the ET components (Paul-Limoges346

et al., 2020).347

The quality-controlled ET is a direct observation of the low vegetation dynamics348

when the wind comes from between east (90◦) and southwest (230◦). Fluxes were only349

considered when suitable for process-focused studies (quality flag ”0” according to Foken350

et al. (2004)).351

Open water352

Open water evaporation is estimated with a parameterization of the Penman (1956)353

equation (De Bruin, 1979):354

Ep = 37 + 40u2m(es,2m − e40m) (4)355

where u2m is the mean wind speed at 2 meters (m s−1), es,2m the saturated vapor pres-356

sure at 2 meters (Pa), and e40m the vapor pressure at 40 meters (Pa). Open water is as-357

sumed to evaporate at the potential rate. In the case of a negative Ep, evaporation is358

set to 0.359

3.4 Top-down360

The top-down approach takes the neighborhood-scale EC observations and attributes361

the flux to the different surface cover types by solving a system of equations (Figure 2b).362

The system consists of four equations. Each equation describes how the surface covers363

are combined according to the footprint to yield the EC observation. The evaporation364

for the four surface cover types results in four unknowns, as the evaporation per surface365

cover type is assumed similar for all EC systems. The linear system can be solved, as366

it has an equal number of equations and unknowns.367

fim,1Eim + flv,1Elv + fhv,1Ehv + fow,1Eow = EEC,1 (5)368

fim,2Eim + flv,2Elv + fhv,2Ehv + fow,2Eow = EEC,2 (6)369

fim,3Eim + flv,3Elv + fhv,3Ehv + fow,3Eow = EEC,3 (7)370

fim,4Eim + flv,4Elv + fhv,4Ehv + fow,4Eow = EEC,4 (8)371
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Figure 3. Probability density of the time-dependent surface fractions in the EC footprint over

the study period (April-October 2019). The dashed vertical lines indicate the average surface

cover fraction within a 1-km radius of the EC (see Figure 1).

where f is the fraction of the impervious surface (im), low vegetation (lv), high372

vegetation (hv), and open water (ow), and E is evaporation of the same surfaces and the373

EC. The numbers indicate the different EC systems. The four EC systems are at the 56-374

m EC at TUCC and 2-, 30-, and 40-m ECs at ROTH. The evaporation from each sur-375

face can be determined given the fractions derived from the footprints and the EC ob-376

servations. We exclude solutions with estimated evaporation below -3.5 mm d−1 for one377

of the surface cover types, as these solutions likely have negative evaporation rates for378

one surface cover type that are balanced by positive evaporation rates for another type.379

4 Results380

4.1 Footprint variation381

A high variation in footprint composition highlights the heterogeneity of the ur-382

ban surface (Figure 3). The wide, non-normal distributions cause the actual surface frac-383

tions in the footprint to differ substantially from the surface cover fractions within a 1-384

km radius of the EC system (vertical lines) at most times. The 1-km radius estimation385

and the actual fraction are only similar for open water, as this covers a limited surface.386

For the impervious surface and high vegetation at ROTH, the bi-modality of the distri-387

bution demonstrates that a single value will not be able to capture the surface fractions.388

Additionally, surface covers can vary within a wide range as seen at TUCC where the389

impervious surface fraction varies from 0.2 up to 0.8. The high variation necessitates that390

the time-dependent footprint composition is considered to understand ET dynamics.391

4.2 Surface cover composition impact on evapotranspiration392

Combining the footprint variation from both sites with the neighborhood ET re-393

veals the influence of the surface cover composition on ET (Figure 4). We find less ET394

with more impervious surface and more ET with more vegetation (high and low). Open395

water shows a less clear relation, as the open water fraction is very low most of the time.396
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Figure 4. Relation of the observed ET and the surface cover fraction for each surface cover

type (a: impervious surface, b: low vegetation, c: high vegetation, d: open water). The proba-

bility density curves (right axis) describe the footprint compositions for both ROTH (solid) and

TUCC (dashed).

Although the surface cover is relevant, the variation in the ET indicates meteorologi-397

cal conditions affect ET as well, illustrated by the ordering of the points by available en-398

ergy quantified as the net radiation. While the surface cover composition in the footprint399

varies at one site, the two sites together reveal an evident influence of the surface on ET .400

4.3 Evapotranspiration attribution to the surface cover401

Observed ET is approximated by ET reconstructed by a weighted average of sur-402

face cover type evaporation dynamics (Figure 5 and Table 1). Performance depends on403

surface cover, as results show consistently higher correlations at ROTH compared to the404

more impervious TUCC. Additionally, the negative MBE indicates an underestimation405

of total ET . The data gaps due to quality control of the 2-m EC system explain why406

the number of evaluated data points is lower than the duration of the study period. In407

two TUCC cases, ET is highly overestimated when a rainfall event coincides with a high408

impervious fraction in the footprint and high potential evaporation (Figure 5c), for which409

the conceptual model for impervious surfaces is responsible.410

Absolute errors increase with rising ET rates across both timescales at ROTH (Fig-411

ure 5). Other than with ET itself, the absolute errors correlate with the meteorologi-412

cal and hydrological conditions (Table 2). The observed net radiation has a positive cor-413

relation with the absolute ET error at ROTH while no correlation is present at TUCC.414
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Figure 5. Comparison of the ET observed with EC against the ET reconstructed with small-

scale observations and conceptual models at (a-b) Rothenburgstraße and (c-d) TU Berlin campus

for (a,c) midday hours per half hour and (b,d) daily means. Midday hours are between 11:00 and

15:00 local time (10:00-14:00 UTC). Table 1 gives an overview of the statistics.

Table 1. Overview of the performance of the bottom-up approach compared with EC ET

observations per 30 minutes as shown in Figure 5.

Rothenburgstraße TU Berlin campus

Midday Daily Midday Daily

Figure 5 panel a b c d
Data points [-] 440 60 113 11
Observed mean ET [mm d−1] 3.9 3.4 1.7 1.1
Modeled mean ET [mm d−1] 2.3 2.0 1.3 0.8
Mean bias error [mm d−1] -1.6 -1.4 -0.4 -0.4
Mean absolute error [mm d−1] 1.8 1.4 0.9 0.5
Pearson’s r [-] 0.56 0.76 0.29 0.27
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Table 2. Overview of Pearson correlations between environmental variables and the absolute

error of the bottom-up reconstructed ET . Only significant correlations are shown (Wald’s test).

Rothenburgstraße TU Berlin campus

Midday Days Midday Days

Net radiation 0.39 0.18
Soil moisture -0.34
Specific humidity 0.35 0.20 0.16
Vapour pressure deficit 0.45
Impervious evaporation 0.59 0.86

This suggests the bottom-up approach performs worse with more available energy. At415

the same time, soil moisture values show a negative correlation at ROTH suggesting er-416

rors are smaller for relatively wet soil conditions. At TUCC, soil moisture does not cor-417

relate with the error, which could be explained by the high impervious fraction. The spe-418

cific humidity shows errors increase with more moist air. In contrast, vapor pressure deficit419

indicates higher errors for a higher deficit of moisture (drier air) at ROTH. At TUCC,420

high correlations are found with the evaporation from impervious surfaces indicating this421

surface cover type might explain most of the errors. Overall, correlations are typically422

weaker at TUCC except for evaporation from impervious surfaces. We expect the weaker423

correlations to be a consequence of the lower MBE. In turn, the lower MBE may be par-424

tially explained by the lower range of observed ET as a consequence of the high imper-425

vious fraction.426

Impervious surfaces contribute proportionally less to ET than their surface frac-427

tion according to the bottom-up approach (Figure 6a). In contrast, high vegetation con-428

tributes significantly more. The relative ET contribution of low vegetation varies depend-429

ing on the composition of the remaining surfaces. In areas with mainly impervious sur-430

faces, low vegetation exhibits a comparatively larger ET contribution, while in regions431

mainly covered by high vegetation, its ET contribution is lower. Despite open water cov-432

ering only a small fraction of the surface, the TUCC results indicate that the ET frac-433

tion can exceed the surface fraction. The relative contributions are constant through-434

out the months, although exact fraction values vary mostly around 0.02 with exceptions435

up to 0.13. Throughout the study period, the surface fraction has the same qualitative436

relation to ET contribution.437

The top-down approach yields similar relative contributions to the surface cover438

and ET as the bottom-up approach (Figure 6b). However, the ET fractions are more439

similar to the surface fractions than the bottom-up approach indicates. Noteworthy, the440

negligible open water surface contributes 20% to ET at ROTH. This result seems un-441

likely given that nearly no water bodies are within the area of most footprints at ROTH.442

Thus, it exposes a potential weakness of the top-down approach related to the data in-443

stead of the physics-driven nature of this approach. On top of that, in only 44 timesteps444

the linear system of equations resulted in a solution for two reasons. First, the data avail-445

ability limits this approach to 342 timesteps. Subsequently, 298 timesteps are excluded446

from the analysis as negative evaporation rates artificially enhanced the evaporation from447

the other surfaces. This artificial enhancement is an artifact of the linear system of equa-448

tions (Eq. 5). Next to the ET fractions, the surface fractions differ slightly from the bottom-449

up approach because different timesteps are considered. Over the months, relative ET450

contributions differ due to the low reliability of monthly estimates caused by the low data451

availability (not shown). In some months, the relative ET contribution becomes nega-452

tive, which we attribute to artificially-enhanced evaporation from the linear system. Un-453

like the bottom-up approach, no direct comparison with observations can be made, as454
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Figure 6. Relative contribution of the surface cover types to total surface cover (verti-

cal/horizontal hatch) and ET (diagonal hatch). Surface cover fractions differ between the two

methods at the same site at different times and thus footprints are included in the analysis due

to data availability.

the method gets the EC observations as input, and no observations are available at the455

patch scale.456

4.4 Evaporation dynamics per surface cover type457

The distinct evaporation dynamics of each surface cover type are visible when zoom-458

ing in on one drydown (Figure 7). These dynamics can be derived from the bottom-up459

approach given its good performance and the high number of timesteps with attributed460

fluxes. The impervious surface has a unique pattern with a sharp peak after rainfall and461

no evaporation once the surface has dried. Meanwhile, the other three surface cover types462

all show a daily cycle. Low vegetation and open water show comparable changes over463

time without a response to the time since the last precipitation but following energy avail-464

ability and transport efficiency. On the other hand, high vegetation limits ET within days465

after rainfall. These responses are seen in all other dyrdowns except for the last drydown466

during the warm season. At this time, the soil moisture is more depleted triggering low467

vegetation to limit ET , while open water maintains the same response.468

5 Discussion and conclusion469

5.1 Surface cover type contributions to evapotranspiration470

Our study revealed that the four distinguished surface cover types do not contribute471

to ET proportional to their surface fraction. To disentangle these contributions, the ET472

was attributed to the surface covers with both a bottom-up and top-down approach. Both473

approaches find similar ET contributions compared to the surface fraction; impervious474

surfaces evaporate less than their surface fraction, while high vegetation and open wa-475

ter evaporate more. For high vegetation, an isotope-evaluated model study found sim-476

ilar ratios between surface fraction (∼30%) and ET contribution (∼80%) at ROTH (Gillefalk477

et al., 2022). From this ET , evaporation of interception accounts for 17% of the total478

precipitation over the study period from April to October. This is comparable to some479

studies finding values between 14-27% (Bryant et al., 2005; Xiao & McPherson, 2011),480

while others show higher interception evaporation between 45 and 77% (Asadian & Weiler,481
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Figure 7. Illustration of ET dynamics during a drydown starting 30 minutes after rainfall

ceased determined with the bottom-up approach for the four surface cover types (a: impervious

surface, b: low vegetation, c: high vegetation, d: open water). This drydown occurred between

21-07-2019 and 29-07-2019. The gaps in the are explained by the quality control of the 2-m EC

measuring low vegetation.
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2009; Anys & Weiler, 2023) or lower between 5-6% (Paul-Limoges et al., 2020). Although482

our interception evaporation is lower than most observed values, together with transpi-483

ration, it exceeds the precipitation during the study period. Soil moisture reserves sup-484

ply the additional water. For low vegetation, the ET contribution may either be higher485

or lower than their surface fraction depending on the composition of the other surfaces.486

The found ET contributions are largely in line with findings by Peters et al. (2011),487

who did a similar exercise for a more homogeneous neighborhood. Still, we challenge their488

assumption that the impervious surface did not contribute anything to ET , as we find489

5% (11% top-down) of ET may come from impervious surfaces in a suburban setting (ROTH,490

39% impervious in footprint). In the more impervious city center (TUCC, 65/69% im-491

pervious in the footprint), we find a contribution of 15% (38% top-down). Ramamurthy492

and Bou-Zeid (2014); Chen et al. (2023) found ET from impervious surfaces contributed493

between 11 and 18%.494

Even though the ET contribution was similar for the bottom-up and the top-down495

approach, these methodologies also showed two interesting differences. Given these two496

differences, we think the bottom-up approach has the most potential to contribute to497

our understanding of the link between patch- and neighborhood-scale ET . The first dif-498

ference is the number of timesteps with a successful outcome: 1112 for bottom-up and499

44 for top-down. The maximum number is limited by the study period of 244 days equal500

to 11,712 half hours for top-down, of which 2,196 are during the midday hours. The EC501

observations cause the high number of timesteps without results, as these EC observa-502

tions contain considerable gaps, as many observations are filtered during quality control503

because of the challenging urban environment (Feigenwinter et al., 2012; Oke et al., 2017).504

Moreover, only the highest-quality EC observations are suitable for our analysis (qual-505

ity flag ”0” (Foken et al., 2004)), as this study focuses on the process level. While data506

availability is a challenge for both approaches, the top-down approach relies more heav-507

ily on EC observations leading to even fewer timesteps with results.508

The second difference is that the bottom-up approach is driven by physics, while509

the top-down approach is based on mathematics. The physics-driven bottom-up approach510

provides insight into the ET contributions of the surface cover types but still has a mis-511

match with the observed ET . Also using a bottom-up approach, Salmond et al. (2012)512

reconstructed the neighborhood-scale sensible heat flux observed with an EC system with513

smaller-scale observations from two scintellometers. They found a mismatch of 25%, which514

can partly be explained by three reasons that also apply here. Firstly, even when EC sys-515

tems are installed directly next to each other, the observations differ, up to 15% in the516

case of ET (Mauder et al., 2006, 2013). These differences are partly due to large tur-517

bulent structures that are not resolved at (sub-)hourly timescales. This makes time-averaged518

EC observations not by definition representative of the spatial average over heterogeneous519

surfaces. As these structures may resolve at daily timescales, it may explain the better520

performance of the bottom-up approach at the daily timescale. Secondly, the footprints521

are calculated with an analytical model that does not account for surface heterogene-522

ity and 3-dimensional surfaces (more in Section 5.3). Lastly, the patch-scale observations523

are not necessarily representative of the whole neighborhood scale. In our case, for ex-524

ample, sap flow was measured at six trees that cannot capture the diversity of the trees525

in the EC footprint. Another example is the low vegetation that experiences shading de-526

pending on the location within the canyon.527

Still, the physics-driven bottom-up approach yields errors comparable to urban land528

surface models from a decade ago and only slightly higher than more recent models (Grimmond529

et al., 2011; Lipson et al., 2023). Most urban land surface models assume the neighbor-530

hood flux is the sum of the separate surface covers. Compared to these models, our ap-531

proach reduces complexity and requires fewer inputs. The found agreement underscores532

the potential for utilizing surface-specific contributions to decipher ET dynamics.533
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In contrast, the top-down approach yields highly unlikely results as the linear sys-534

tem follows mathematics instead of physics. The linear system counteracted high neg-535

ative fluxes with high positive fluxes giving results as extreme as -2.0×1017 and 1.1×106536

mm d−1. These effects were omitted from the analysis by excluding negative fluxes, which537

omitted the high fluxes as well due to the linear relations in the equations. Due to these538

direct links, the ET contributions contain the errors from the EC observations. How-539

ever, these random errors will cancel out against each other, as we only look at aggre-540

gated results from the top-down results.541

While open water contributes little to the surface cover, we included this surface542

cover type in our analysis. It cannot be assigned to any of the other surface cover types543

and its inclusion improves the transferability of our methodology. In the top-down ap-544

proach, the low open water fraction caused extremely high or low evaporation fluxes, as545

these could be compensated with relatively small changes in surface cover types with larger546

fractions. In an attempt to eliminate this compensation, we performed the top-down anal-547

ysis with only three surface cover types and three EC systems leaving out the 2-m EC548

at ROTH. As this EC system had the most data gaps, the number of timesteps with re-549

sults rose from 44 to 527. Logically, no contribution from water is inferred. The imper-550

vious contribution rises with 8% (ROTH) and 15% (TUCC) but is still lower than its551

surface fraction. The low vegetation contributes more to ET with an increase of 37%552

(ROTH) and 17% (TUCC). Consequently, its ET contribution is now higher instead of553

lower than its surface fraction. Only, high vegetation has a lower ET contribution drop-554

ping 22% (ROTH) and 24% (TUCC). These changes show mathematical top-down ap-555

proach can give considerably different results by changing the input.556

5.2 Evaporation dynamics per surface cover type557

Apart from the different ET contributions compared to the surface fraction, evap-558

oration evolves differently for each surface cover after rainfall. Impervious surfaces evap-559

orate all water quickly after rainfall, as was also found by (Ramamurthy & Bou-Zeid,560

2014). In contrast, open water sustains evaporation for a longer time. The open water561

evaporation shows a strong daily trend reaching zero during the night. Previous research562

shows the large heat capacity of water dampens the daily trend, which does not go down563

to zero (Jansen et al., 2023). In this study, the daily trend results from the Penman equa-564

tion (Jansen & Teuling, 2020), which was applied given the unavailability of water tem-565

peratures. High and low vegetation show different behavior from each other with the high566

vegetation having a higher initial ET . While high vegetation decreases ET within days567

after the last precipitation, low vegetation sustains high ET rates until soil moisture avail-568

ability is limiting. This soil moisture limitation only occurred towards the end of the sum-569

mer, even though our study year 2019 was relatively dry. The same responses were found570

in other studies (Teuling et al., 2010; van Dijke et al., 2023). High vegetation has a stronger571

stomatal control that enables it to limit transpiration with sufficient available moisture,572

while low vegetation keeps transpiring until it lacks water.573

5.3 Footprint variability and modeling574

Given these differences in evaporation behavior between surface cover types, the575

surface composition in the footprint influences the EC observations. This changing foot-576

print has to be accounted for to understand ET dynamics, as the footprint contribution577

of a particular surface cover may vary as much as 50%. Previously, the relevance of foot-578

prints for ET was illustrated by the improved performance when the footprint-weighed579

surface cover was supplied to machine learning models in addition to meteorological ob-580

servations (Vulova et al., 2021, 2023). For other fluxes, such as CO2, footprint model-581

ing has also been shown to help understand flux dynamics (e.g. Velasco et al., 2009; Conte582

& Contini, 2019; Wu et al., 2022).583
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CO2 sources including directly from humans have been identified and quantified584

by looking at the relation between the CO2 flux and the surface cover composition equiv-585

alent to Figure 4. For example, Stagakis et al. (2019) find that traffic is an important586

CO2 source and human respiration accounts for 19% of the CO2 flux. Human respira-587

tion and perspiration are unlikely to affect our results. In the center of Beijing, the wa-588

ter fluxes from these processes are so small they would account for only 3% of ET in Berlin589

(Liu et al., 2022). Given the lower population density of our sites, human respiration and590

perspiration are even lower. Thus, these small water fluxes from these sources are much591

smaller than ET and do not influence the results.592

Footprint modeling is the key that connects the surface to the ET in this study.593

The key is however limited by the simplifications of the footprint model. Here, we ap-594

plied the analytical model by Kljun et al. (2015), which generates perfectly symmetri-595

cal footprints. The model does not account for the complexity and heterogeneity of the596

urban morphology. More detailed footprint modeling would provide footprints depend-597

ing on urban morphology, but this would also require more computational resources and598

thus limit the length of the period that can be studied.599

5.4 Generalizability600

Here, we studied ET in one city during the warm months of a single year, 2019,601

which was a relatively dry year in Berlin. While the climate and year-to-year variabil-602

ity may affect some aspects of the ET dynamics, others are likely to be more constant.603

The main aspect we expect to be relatively constant is the evolution of ET over a dry-604

down. The impervious surface will evaporate with a short intense peak, open water will605

evaporate more constantly, and vegetation will respond to soil moisture. These general606

patterns may be the same, but the dynamics are altered by site characteristics such as607

plant species, building materials, and water depth. Still, we anticipate this effect to be608

smaller than the differences found between the four surface covers. Apart from site char-609

acteristics, weather conditions control how much each of the surface covers contributes610

to the ET (Jansen et al., 2023). The weather conditions determine the water availabil-611

ity (number and length of drydowns), energy availability (radiation and temperature),612

and exchange efficiency (wind and vapor pressure deficit). These conditions will lead to613

changed ET dynamics dependent on the season, the climate, and the year-to-year vari-614

ability.615

The unique 2019 dataset from Berlin allowed us to reconstruct the ET signal from616

EC systems. Although relatively common observations are required for the conceptual617

models of the open water and impervious surfaces, the data needed to estimate the evap-618

oration dynamics of both vegetated surfaces is more specialized. These observations in-619

cluded low-level EC observations, tree sap flow, and multiple, continuous soil moisture620

sensors. In most cities, this will not be available. Instead, the vegetated surfaces could621

be modeled with the Penman-Monteith equation (Monteith, 1965). Grimmond and Oke622

(1991) have adapted this equation to urban environments and included the effect of wa-623

ter limitation. As a preliminary analysis, the Penman-Monteith equation was used to624

represent vegetation in the bottom-up approach. This analysis showed that despite an625

overestimation of ET , ET may be reconstructed with less specialized observations.626

6 Conclusion627

This study explores the link of neighborhood-scale ET to the surface cover at two628

sites in Berlin to estimate the contribution of each surface cover type to ET . This link629

is made starting from the ET dynamic from the surface cover types reconstructing the630

neighborhood-scale flux (bottom-up) and from four neighborhood-scale fluxes partitioned631

over the surface cover types through a linear system of equations (top-down). We find632

most ET originates from vegetation with especially high vegetation evaporating dispro-633
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portionately more than its surface fraction. Even though impervious surfaces contribute634

less to ET on long timescales they evaporate substantially after rainfall. Therefore, they635

should not be ignored in urban water management. While both approaches support these636

conclusions, the bottom-up approach proved to be more successful than the top-down637

approach in linking the surface covers at the patch scale to the observations at the neigh-638

borhood scale.639

We stress the importance of time-dependent EC footprints to understand ET dy-640

namics. Based on these dynamics, urban land surface models and their evaluation could641

be improved by accounting for the changing footprint. With footprint information, para-642

meters could be dependent on the situation in the current source area. In this way, the643

models would more directly represent what the EC system observes making for a more644

fair and better evaluation.645

Understanding ET is crucial in urban water management, for example, to deter-646

mine appropriate vegetation species and irrigation requirements. At the same time, ET647

plays a role in the energy balance and can contribute to the mitigation of heat stress.648

Therefore, the gained insights can support design decisions in city landscapes and ur-649

ban water management to improve the living environment of urban inhabitants.650
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Department for Urban Development, Building and Housing, 2012, 2013; Senate Depart-653

ment for the Environment, Mobility, Consumer and Climate Protection Berlin, 2014).654

Rainfall observations can be accessed at the DWD Climate Data Center (DWD, 2021a).655

Sap flow and soil moisture data are available at the FRED open-access database of IGB656

(Kuhlemann et al., 2020). All other data in this publication is available at 4TU (cita-657

tion at publication).658

Acknowledgments659

Special thanks to Judith Boekee, Studio Scientist, for the design of the conceptual fig-660

ure, her tireless support, and her eye for detail. Harro Jongen acknowledges this research661

was supported by the WIMEK PhD grant 2020. Stenka Vulova was supported by the662

German Research Foundation (DFG) within the Research Training Group ‘Urban Wa-663

ter Interfaces’ (GRK 2032-2). Fred Meier acknowledges funding for instrumentation of664

the Urban Climate Observatory (UCO) Berlin from DFG grants SCHE 750/8 and SCHE665

750/9 within Research Unit 1736 “Urban Climate and Heat Stress in Mid Latitude Cities666

in View of Climate Change (UCaHS)” and the research program “Urban Climate Un-667

der Change ([UC]2)”, funded by the German Ministry of Research and Education (FKZ668

01LP1602A).669

References670

Amt für Statistik Berlin-Brandenburg. (2019). Das statistische informationssys-671

tem berlin-brandenburg. Retrieved from https://statis.statistik-berlin672

-brandenburg.de/webapi/jsf/tableView/tableView.xhtml (Date accessed:673

9 september 2021)674

Anys, M., & Weiler, M. (2023). Rainfall interception of urban trees: event character-675

istics and tree morphological traits. Preprint .676

Asadian, Y., & Weiler, M. (2009). A new approach in measuring rainfall intercep-677

tion by urban trees in coastal british columbia. Water Quality Research Jour-678

nal , 44 (1), 16–25.679

Aston, A. (1979). Rainfall interception by eight small trees. Journal of hydrology ,680

42 (3-4), 383–396.681

–19–



manuscript submitted to Water Resources Research

Auvinen, M., Järvi, L., Hellsten, A., Rannik, Ü., & Vesala, T. (2017). Numerical682
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