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Introduction  

This supporting information provides details on the generation of synthetic shoreline scenarios 
and on the dual state-parameter EnKF algorithm. 

Text S1. 

Synthetic scenarios with the ShoreFor model 

Ten shoreline timeseries each spanning 20-years at 3-hourly sampling interval were generated 
using ShoreFor, forced by a set of synthetic wave records based on real observations and 
specifically designed to characterize seasonal, storm and mixed seasonal-storm wave climates. 
The expectation is that parameter variability will be modulated by interannual (i.e. ~5-10 years), 
inter-decadal and beyond (i.e. trends) timescales responding to larger-scale climate 
teleconnection patterns (e.g. ENSO, PDO) and longer-term trends in wave climate. For 
instance, Figure S1a shows the dimensionless fall velocity (Ω) from an inshore wave record 
located in Southeast Australia, which is modulated by ENSO (Ranasinghe et al., 2004) and 
potentially IPO. Figure S1b shows the ShoreFor model free-parameter 𝑐𝑎 derived from Splinter 
et al., (2014) parametrizations and 5-year running Ω̅ magnitudes. A climate-driven interannual 
(period ~ 10 years) signal is evident, which also has a negative trend and potentially associated 
with present trends of average wave climate for this site (Hemer et al., 2013). Four synthetic 
shape functions were defined to represent differing modes of wave climate variability effects in 
model parameters: a time-invariant (Shape 1), a linear negative trend (Shape 2), a sinusoidal 
function with a representative period of 10 years (Shape 3) and a step-wise function (Shape 4). 
These four shapes were mixed together with increasing degree of complexity and differing 
wave climates (Figure S1c). Figure S2 to Figure S4 show these ten generated timeseries of 
synthetic shorelines/parameters. 
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Text S2. 

Dual State-Parameter Ensemble Kalman Filter 

The Dual State-Parameter EnKF presented in Pathiraja et al., (2016) is employed in this study. A 
flowchart of the EnKF algorithm is shown in Figure S5 and explained here. 
 
Consider a dynamical system described at any time t by a vector of model parameters θt and 
vector model states (i.e. shorelines) xt. In the EnKF, both system states and parameters at time 

t are random variables, represented by ensembles of states {xt
i}

i=1:n
 and parameters {θt

i}
i=1:n

 , 

each with n ensemble members. For the present application we set n = 50 for computational 
efficiency as n>50 showed no increase in model skill. In the following, (-) and (+) indicate 
updated and background (or prior) ensembles, respectively. For each realization of the 
algorithm, the Dual State-Parameter EnKF is implemented as follows: 

1. Create a background parameter ensemble.  If t = 0, generate initial estimates of 
states/parameter ensembles. At any other given time, generate a prior parameter 
ensemble following Equation (1). 

 

                                      θt+1
i− = g(θt

i+) for i = 1 : n     ( 1 ) 

 
where g is a function called parameter evolution model to be selected by the user.  The 
method of Xiong et al., 2019 is employed, whereby the parameter evolution model 
simplifies to a noise-inflation model of the type: 

 

g(θt
i+) =  θt

i+
+  𝑞𝑖  for i = 1 : n      ( 2 ) 

 

where 𝑞𝑖 is white noise (process-noise) for each i-th ensemble member. The  magnitude 
of process-noise reflects the level of parameter inflation and filter capabilities to track 
time-varying parametrizations. For the present application where θ = [𝑐𝑎, 𝑐𝑒 , 𝜙], we 
generate 𝑞 using 𝑉𝑎𝑟(𝑞) = [1−6, 5−7, 1−4]. Text S3 and Figure S6 show the sensitivity of 
process-noise magnitude on parameter estimation. 

 
2. Generate a set of noisy observations. The typical accuracy of the shoreline data (defined 

as R) is used to generate a set of perturbed observations. We assume that shoreline 
error characteristics are described by a white-noise signal (e.g. Long & Plant, 2012). 
Therefore, stochastic perturbations are aggregated to the observations vector to 
generate a set observations ensemble. 
 

yt+1
i = yt+1

o + εt+1
i , for i = 1 : n      ( 3 ) 

 

εt+1
i ~N (0, Σt+1

yoyo

)      ( 4 ) 

 

where yt+1
o  is the raw observation and Σt+1

yoyo

 denotes the observation error covariance 

matrix (or R2). For the case of a shoreline model forced by waves, wave data (ut+1
i )  could 

also be perturbed to account for forcing uncertainty in the ensemble characterization (e.g. 
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derived from inaccuracies in wave modelling or instrumentation). However, we set forcing 

error to zero here as the focus is on shoreline variability compensated by parameter 

changes only. 

 
3. Generate simulated observations using background parameters. The current state and 

parameter ensemble is used to calculate simulated observations: 
 

x̂t+1
i = f(x̂t

i+, θt+1
i− , ut+1

i )  for i = 1 : n             ( 5 ) 

 

ŷt+1
i = h(x̂t+1

i , θt+1
i− ) for i = 1 : n      ( 6 ) 

 

where f are the model equations (ShoreFor), ŷt+1
i  are the i=1:n ensemble members of 

the model simulation generated from the background parameter, h is an operator used 

to convert model states to observed variables and  ut+1
i  is the forcing vector (e.g. 

waves) 
 

4. Kalman Update of Parameters. The Kalman update equation and the covariance 
between simulated observations and parameters are used to update the background 
parameter ensemble: 

 

θt+1
i+ =  θt+1

i− +  Kt+1
θ (yt+1

i −  ŷt+1
i )  for i = 1 : n    ( 7 ) 

 

Kt+1
θ =  Σt+1

θŷ
[Σt+1

ŷŷ
+ Σt+1

yoyo

]
−1

       ( 8 ) 

 

Where Kt+1
θ  is the Kalman Gain, Σt+1

ŷŷ
 denotes the covariance matrix of the simulated 

observations and Σt+1
θŷ

 is a matrix of the cross-covariance between background 

parameters {θt+1
i− }

i=1:n
 and simulated observed variables {ŷt+1

i }
i=1:n

. 

 
5. Generate simulated observations using updated parameters. Now the updated model 

parameter ensemble {θt+1
i+ }

i=1:n
 and the model equations (ShoreFor) are used to 

generate the background state ensemble {xt+1
i− }

i=1:n
. 

 

xt+1
i− = f(xt

i+, θt+1
i+  , ut+1

i ) for i = 1 : n     ( 9 ) 

 

ỹt+1
i = h(xt+1

i− , θt+1
i+ ) for i = 1 : n       ( 10 ) 

 

with ỹt+1
i  the simulated observed variable using updated parameters. 

 
6. Kalman Update of States. Finally, the states are updated using the Kalman equation for 

correlated measurement and process noise (Pathiraja et al., 2016). Note that the 
standard Kalman Equations (Equations 7 and 8) are not used because they assume 
independent errors between background and observations, which is no longer valid in 
the dual parameter-state filter, since the simulated states were generated from 
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observations from the same time step. Thus, state updating is carried out considering 
the potential correlation between background noise and observations.  

 

xt+1
i+ = xt+1

i− + Kt+1
x (yt+1

i − ỹt+1
i ) for i = 1 : n     ( 11 ) 

 

Kt+1
x =  [Σt+1

xỹ
+  Σt+1

εxyo

] [Σt+1
ỹỹ

+ Σt+1

εỹyo

+ (Σt+1

εỹyo

)
T

+  Σt+1
yoyo

]

−1

   ( 12 ) 

 

εxt+1
i =  xt+1

i− − x̂t+1
i , εỹt+1

i =  ỹt+1
i − ŷt+1

i      ( 13 ) 

 
 

Where Σt+1
εxyo

 is the covariance between {εxt+1
i }

𝑖=1:𝑛
 and the observations and ( )𝑇  is the 

transpose operator. Σt+1
xỹ

 is the cross-covariance matrix between simulated observed 

variables {ỹt+1
i }

𝑖=1:𝑛
 and states {xt+1

i− }
𝑖=1:𝑛

. For more details on this step and its 

derivation refer to the Appendix in Pathiraja et al. (2016). 

Text S3. 

Algorithm sensitivity to the magnitude of process-noise (q) 

The magnitude of process-noise reflects the level of parameter inflation and the filter 
capabilities to track time-varying parametrizations. For the present application where θ 
= [𝑐𝑎 , 𝑐𝑒 , 𝜙], we set 𝑉𝑎𝑟(𝑞) = [1−6, 5−7, 1−4] for all model runs. The algorithm sensitivity to  
this magnitude is presented for Scenario 10 (dt = 1 day, R = 1 m) by varying 𝑉𝑎𝑟(𝑞)  by one and 
two larger/lower order of magnitudes in process-noise by: 
 

1. Setting 𝑉𝑎𝑟(𝑞∅) magnitude unchanged and decreasing  𝑉𝑎𝑟(𝑞𝑐𝑎), 𝑉𝑎𝑟(𝑞𝑐𝑒) 
magnitudes (Figure S6a) 

2. Setting 𝑉𝑎𝑟(𝑞𝑐𝑎), 𝑉𝑎𝑟(𝑞𝑐𝑒)   magnitude unchanged and decreasing 𝑉𝑎𝑟(𝑞∅) 
magnitude  (Figure S6b) 

3. Setting  𝑉𝑎𝑟(𝑞∅)  magnitude unchanged and increasing 𝑉𝑎𝑟(𝑞𝑐𝑎), 𝑉𝑎𝑟(𝑞𝑐𝑒)   
magnitudes (Figure S6c) 

4. Setting 𝑉𝑎𝑟(𝑞𝑐𝑎), 𝑉𝑎𝑟(𝑞𝑐𝑒) magnitude unchanged and increasing 
 𝑉𝑎𝑟(𝑞∅)   magnitude (Figure S6c) 

 
In general, results show that reducing process-noise magnitude results in slowed convergence 
in parameter-estimation for the three parameters (Figure S6a,b). In turn, this slowed 
convergence results in the miss-specification of the remaining parameters. In contrast, larger 
magnitudes of process noise (Figure S6c,d) do not slow the parameter convergence but 
incorporate higher frequency variability beyond the time-scales of interest. 
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Figure S1. a) 20-year dimensionless fall velocity timeseries from an inshore wave record 
potentially modulated by climate drivers. b) 𝑐𝑎 obtained from the parametrization proposed in 
Splinter et al., (2014) for the 20-year period (grey dashed line) and using a 5-year running mean 
of the dimensionless fall velocity. c) Synthetic scenarios generated from different wave 
climates and combinations of parameter variability (Shape 1 to Shape 4).  
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Figure S2. Synthetic shorelines and parameter timeseries for Scenarios 1, 2, 3 and 4. For each 
scenario, top panel : shoreline timeseries, middle panel : 𝑐𝑎 (continuous line) and 𝑐𝑒  (dashed 
line) and bottom panel : 𝜙 
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Figure S3. Synthetic shorelines and parameter timeseries for Scenarios 5, 6, 7 and 8. For each 
scenario, top panel : shoreline timeseries, middle panel : 𝑐𝑎 (continuous line) and 𝑐𝑒  (dashed 
line) and bottom panel : 𝜙 
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Figure S4. Synthetic shorelines and parameter timeseries for Scenarios 9 and 10. For each 
scenario, top panel : shoreline timeseries, middle panel : 𝑐𝑎 (continuous line) and 𝑐𝑒  (dashed 
line) and bottom panel : 𝜙 

 

 
Figure S5. Flowchart of the dual state-parameter EnKF 
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Figure S6. Algorithm sensitivity to different magnitudes of process noise. Black lines are 
obtained using the magnitude of process-noise adopted for every model run in this work. Red 
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dashed lines are the true synthetic value and the remaining continuous lines indicate the effect 
of different magnitudes of process noise (see legends). 
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