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integrated within an established shoreline model  13 
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shoreline data critical to overall EnKF skill 15 

 Time-varying model parametrizations are physically linked to non-stationary wave forcing, 16 

resulting in more accurate shoreline predictions 17 
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Abstract  19 

A novel approach to improve seasonal to interannual sandy shoreline predictions is presented, 20 

whereby model free parameters can vary in time, adjusting to potential non-stationarity in the 21 

underlying model forcing. This is achieved by adopting a suitable data assimilation technique 22 

(Dual State-Parameter Ensemble Kalman Filter) within the established shoreline evolution 23 

model, ShoreFor. The method is first tested and evaluated using synthetic scenarios, specifically 24 

designed to emulate a broad range of natural sandy shoreline behavior. This approach is then 25 

applied to a real-world shoreline dataset, revealing that time-varying model free parameters are 26 

linked through physical processes to changing characteristics of the wave forcing. Greater 27 

accuracy of shoreline predictions is achieved, compared to existing stationary modelling 28 

approaches. It is anticipated that the wider application of this method can improve our 29 

understanding and prediction of future beach erosion patterns and trends in a changing wave 30 

climate.  31 

Plain Language Summary 32 

Understanding and predicting future changes along sandy coastlines worldwide is highly relevant 33 

for coastal management in the context of climate change. In the future, the changing occurrence 34 

of storms – and over longer timescales, rising sea levels - are expected to result in new patterns 35 

of shoreline erosion. It is very common for shoreline change models to use past records of 36 

measured shorelines and waves to match mathematical equations to these existing observations. 37 

However, the validity of these types of shoreline models to predict the future is questionable, 38 

when waves and storm patterns around the world in coming decades are now expected to be 39 

different to those observed in the past. A new methodology is presented to address this issue by 40 

exploring how a mathematical shoreline model can self-adjust to wave climates that vary through 41 

time. The proposed methodology is shown to be successful at improving shoreline predictions. 42 

  43 
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1 Introduction 44 

Coastal managers have an increasing need for reliable tools that predict the response of sandy 45 

coastlines worldwide to the impacts of extreme storm events, shifting regional wave climates and 46 

rising sea levels. Semi-empirical shoreline models are proving to be increasingly successful at 47 

predicting shoreline variability and evolution at seasonal to multiyear timescales (e.g., Splinter et 48 

al., 2014; Yates et al., 2009). However, the complex spatio-temporal interactions of the different 49 

processes driving shoreline change make multi-decadal predictions challenging (Montaño et al., 50 

2020), limiting our confidence on shoreline predictions at timescales extending to decades and 51 

beyond (Ranasinghe, 2020). 52 

 53 

The present generation of shoreline models typically rely on a single period of measured wave 54 

forcing and observed shoreline measurements to establish the ‘optimum’ set of model free 55 

parameters (e.g., Long & Plant, 2012). It is then assumed that differences between predicted and 56 

measured shorelines can arise from further unresolved morphological processes, inaccuracy in 57 

shoreline measurements and/or uncertainty in wave measurements (Montaño et al., 2020). But 58 

crucially, by this approach it is implicitly assumed that all model free parameters are stationary, 59 

even though the calibrated model may then be used to explore past and future shoreline patterns 60 

and trends (e.g., Antolínez et al., 2019; Vitousek et al., 2017). This use of a time-invariant 61 

approach to model free parameter estimation necessarily precludes the consideration of potential 62 

biases introduced by the particular time period and/or duration of the selected wave and shoreline 63 

dataset (D’Anna et al., 2020; Splinter et al., 2013) that is used to perform the calibration. Recent 64 

works (D’Anna et al., 2020; Montaño et al., 2020) confirm that shoreline hindcasting and 65 

forecasting is highly dependent on the selected calibration period. In the context of a changing  66 

climate - and as a result, anticipated temporal variability in the key wave and water-level drivers 67 

of shoreline evolution (Wong et al., 2014) - this assumption of model free parameter stationarity 68 

must be further examined.  69 

 70 

Other fields of geophysical research provide useful guidance on the implementation and physical 71 

interpretation of non-stationary model parametrization. For example, Gove & Hollinger (2006) 72 

applied a dual state-parameter Unscented Kalman Filter to explore the time evolution of model 73 

parameters in problems of surface-atmosphere exchange, in which the observed changes were 74 
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linked to seasonal atmospheric-driven variability. More recently, hydrological applications have 75 

examined adjustments in rainfall-runoff parametrizations to improve model prediction 76 

capabilities resulting from dynamic catchments (e.g., Grigg & Hughes, 2018; Pathiraja et al., 77 

2016a) and climate variability (e.g., Stephens et al., 2019; Xiong et al., 2019). Applied to 78 

shoreline modelling, Splinter et al. (2017) used a simplified methodology of split-calibration 79 

spanning two consecutive 4-year time periods at the Gold Coast, Australia. By this exploratory 80 

approach, a substantial difference in one of the key model free parameters (frequency response) 81 

was observed. This was found to be consistent with the finding of a significant difference in the 82 

occurrence and distribution of storm wave events between the two consecutive calibration 83 

periods. As is illustrated in Figure 1, it was observed that the shoreline response shifted from a 84 

distinctly seasonally-dominated mode (annual cycle) to a more storm-dominated (~monthly) 85 

mode of behavior, highlighting the challenge of assuming wave climate stationarity when 86 

applied to multi-year shoreline prediction and forecasting.   87 

 88 

 89 

Figure 1. Shoreline observations and modelling for an 8-year period at the Gold Coast, 90 

Australia, adapted from Splinter et al., (2017). With the model first calibrated to the 4-year 91 

period up to the start of 2005 (red solid line) then used to forecast the shoreline during 2005–92 

2008 (red dotted line), the model was found to significantly underestimate the observed shoreline 93 

erosion (black solid line) from 2005 onwards. Subsequent analysis of the Gold Coast wave 94 

climate during 2001-2004 found that it was distinctly seasonal during this period, in contrast to 95 

the following 4-years 2005-2008 when the wave climate at the Gold Coast was dominated by the 96 
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occurrence of individual storm events. To improve model predictions spanning 2005-2008, a 97 

second calibration was reported (blue solid line) specific to this time period. Only by applying 98 

this ‘split calibration’ approach could reasonable hindcasts of shoreline behaviour spanning the 99 

full 8 years be achieved.    100 

In a recent review of climate change-driven coastal erosion modelling, Toimil et al. (2020) 101 

concluded that uncertainty across all constituents of the modelling framework, including model 102 

parameters, should be considered. To achieve this objective, data assimilation techniques offer 103 

the potential to continuously adjust model parameters as additional state (i.e., shoreline) 104 

observations become available (Evensen, 2010). In the new work presented here, a novel 105 

methodology to enhance sandy shoreline modelling is developed, in which a suitable data 106 

assimilation technique is integrated within an established shoreline evolution model. A Dual 107 

State-Parameter Ensemble Kalman Filter (EnKF) (Pathiraja et al., 2016b) is adapted for this 108 

purpose, and implemented within the generalized version of the cross-shore ShoreFor model 109 

(Splinter et al., 2014). The approach is first tested using synthetic wave climate scenarios, 110 

specifically designed to emulate a range of distinct and naturally occurring sandy shoreline 111 

behavior. The technique is then applied to a real-world observational dataset, where it is 112 

determined that the time-variation in model free parameters can be linked through physical 113 

processes to the changing characteristics of the wave forcing at this long-term study site. 114 

2 Methods 115 

2.1 Shoreline Model 116 

ShoreFor (Davidson et al., 2013) is a semi-empirical model based on the behavioral concept that 117 

shorelines continuously evolve towards a time-varying equilibrium position. In the generalized 118 

form of this model (Splinter et al., 2014; hereafter SPLI14), the cross-shore rate of shoreline 119 

change (dx/dt) is given by: 120 

𝑑𝑥

𝑑𝑡
= 𝑐𝑎𝐹𝑎 + 𝑐𝑒𝐹𝑒 + 𝑏  (1) 121 

whereby the forcing term 𝐹𝑎,𝑒 = 𝑃0.5 𝛥𝛺𝑎,𝑒 𝜎𝛥𝛺⁄  accounts for the wave power (P) and the 122 

disequilibrium dimensionless fall velocity (ΔΩ), which in turn dictates the potential direction 123 

either offshore (ΔΩe < 0) or onshore (ΔΩa > 0) of cross-shore sediment transport. Within this 124 

forcing term the disequilibrium component 𝛥𝛺 =  (𝛺𝑒𝑞  −  𝛺) and its associated standard 125 

deviation 𝜎𝛥𝛺 are computed from the dimensionless fall velocity 𝛺 at the break point (i.e., the 126 
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seaward edge of the surf zone)  and a time-varying equilibrium expression (after Wright et al., 127 

1985) given by:  128 

𝛺𝑒𝑞 = [∑ 10−𝑖/𝜙2𝜙
𝑖=1 ]

−1
∑ 𝛺𝑖10−𝑖/𝜙2𝜙

𝑖=1      (2) 129 

 130 

Note that the additional term b in (1) simply accounts for any unresolved processes. Importantly, 131 

the model in Equation 1 includes three wave-driven sediment transport-related parameters 132 

𝑐𝑎, 𝑐𝑒 and 𝜙 that require calibration. The magnitude rate parameters 𝑐𝑎 and 𝑐𝑒 (in 133 

𝑚1.5𝑠−1𝑊−0.5) are proxies for the accretion/erosion sediment transport efficiency, and the 134 

frequency rate parameter 𝜙 (in days) represents a response time. Based on extensive testing of 135 

the ShoreFor model at a diverse range of seasonal and storm-dominated sandy coastlines in 136 

Australia, Europe and the USA, SPLI14 proposed generalized parametrizations for these rate 137 

parameters based on the mean interannual (≥ ~5 years) 𝛺̅, consistent with well-established 138 

relationships (e.g., Wright and Short, 1984) between modal beach states and cross-shore 139 

processes. Conceptually, mild-slope beaches experience slower rates of shoreline changes (i.e. 140 

𝜙 > 100 days) and decreased sediment exchange efficiency (lower 𝑐𝑎 and 𝑐𝑒 values) between 141 

the surf zone and beach face. Conversely, the breaker line tends to be closer to the beach face at 142 

steeper beaches, enhancing efficient (larger 𝑐𝑎 and 𝑐𝑒 magnitudes) and rapid (i.e. 𝜙 < 100 days) 143 

sediment exchange. Within this framework, Davidson et al., (2013) found that 𝜙 ≅ 100 days 144 

usefully defines the approximate transition between storm-dominated and more seasonal 145 

shoreline response. The reader is referred to Davidson et al., (2013) and SPLI14 for a complete 146 

description of the model.  147 

2.2 Synthetic scenarios with the ShoreFor model 148 

Ten shoreline timeseries each spanning 20-years at 3-hourly sampling intervals were generated 149 

using ShoreFor, forced by a set of synthetic wave records based on real observations and 150 

specifically designed to characterize seasonal, storm and mixed seasonal-storm wave climates. 151 

As is summarized in Figure 2a, four shape functions were defined to represent differing modes of 152 

wave climate variability and long-term trends: simple time-invariant (Shape 1), a linear negative 153 

trend (Shape 2), a sinusoidal function with a representative period of 10 years (Shape 3) and a 154 

step-wise function (Shape 4). To generate the 10 synthetic scenarios, these four parameter shapes 155 

were then mixed together with increasing degree of complexity. A full description of this process 156 
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is detailed in the accompanying Supporting Information. As the focus here is on the non-157 

stationarity of wave-driven parameters, for all ten scenarios 𝑏 = 0 (see Equation 1).  158 

The resulting shoreline timeseries are then subsampled at time intervals (dt) of 1, 7, 15 and 30 159 

days, representative of a range of typical sampling frequencies used for ongoing shoreline 160 

monitoring programs worldwide (e.g., Holman & Stanley, 2007; Turner et al., 2016) and random 161 

noise added (~𝑁(0, 𝑅2), R=[1,1,12] m) to characterize the accuracy of various shoreline 162 

measurement methods that are typically used (see Harley et al., 2011).  The final result is a total 163 

of 480 individual test cases. For a number of these cases it is anticipated (see Figure S1b, 164 

Supporting Information) that model parameter variability may be modulated and therefore not 165 

necessarily stationary at both multiyear (say, 5-10 years) and longer inter-decadal timescales, 166 

responding to climate patterns (e.g. ENSO) as well as longer-term trends in wave climate (e.g., 167 

Young & Ribal, 2019). In contrast, shoreline changes below these timescales are anticipated to 168 

be well-resolved by the existing SPLI14 stationary approach to model parameter calibration. 169 

Figures S2–S4 in the accompanying Supporting Information present the synthetic shoreline and 170 

parameter timeseries for each of the 10 scenarios. 171 

2.3 Dual State-Parameter Ensemble Kalman Filter 172 

To explore  parameter non-stationarity within the context of an established shoreline model, the 173 

Dual State-Parameter EnKF algorithm proposed by Pathiraja et al., (2016b, 2016a) was 174 

implemented. The full details of the methodology are summarized in Figure S5 of the 175 

accompanying Supporting Information. Briefly, for each algorithm realization the method 176 

initializes system states (i.e., shorelines) and model parameters as random variables created from 177 

n ensemble members of known mean and error characteristics, and propagates these in time as a 178 

Monte Carlo application of the well-known Kalman Filter (Evensen, 2010).  179 

 180 

At each 3-hourly time-step, the shoreline model first uses inflated (i.e. process noise included) 181 

background parameter ensembles to estimate shorelines at the next time-step. This continues 182 

until a new shoreline observation is available, which in turn is dependent on the particular 183 

sampling frequency (dt). At this point, parameter ensembles are updated based on the shoreline 184 

observation ensembles (i.e. mean with error statistics mirroring the measurement accuracy, R in 185 

Section 2.2). These updated parameters are then used to provide new shoreline estimates, which 186 
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are then used to calculate combined mean-confidence intervals of both the shorelines and model 187 

parameters. Pathiraja et al., (2016b) found that the magnitude of parameter ensemble inflation 188 

(process noise) was critical to successfully track parameter changes, otherwise updated estimates 189 

with lower variance than the previous time-step resulted in nearly time-invariant 190 

parametrizations (e.g., Long & Plant, 2012; Vitousek et al., 2017). In the present work, the 191 

approach of Xiong et al., (2019) was implemented, in which the magnitude of process noise was 192 

sufficiently high to track time-varying parametrizations. Further details are provided in the 193 

Supporting Information.   194 

 195 

Initial parameter ensembles are generated from truncated normal distributions to ensure that 196 

parameters fall within their feasible range (Splinter et al., 2014). Rather than correcting for 197 

erroneous initial parameter values, the purpose is to assess the EnKF performance for tracking 198 

the potential non-stationarity of some or all model parameters. Therefore, the optimum initial 199 

conditions with standard deviation spanning the range of values previously determined by 200 

Splinter et al., (2014) were implemented. The exceptions to this approach were for Scenarios 1 201 

and 2, since these cases are fully time-invariant, so instead random initial conditions sampled 202 

from a uniform distribution were adopted. An analysis (not shown) for Scenario 10 using 203 

ensemble sizes of n = 10, 25, 50, 100, 250 and 500 members showed similar results for all cases 204 

where n ≥ 50 and thus we adopt n = 50 for computational efficiency. Ensemble statistics were 205 

computed over 50 realizations of the algorithm, to account for the stochastic nature of the EnKF 206 

(Pathiraja et al., 2016b). Thus, a total of 24000 individual model runs were used to explore the 207 

EnKF performance to varying wave climate, shoreline measurement frequency and accuracy, 208 

and degrees of parameter variability. 209 

 210 
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 211 

Figure 2. Ten synthetic shoreline scenarios generated with ShoreFor and sampled at a range 212 

of frequencies, incorporating increasingly complex combinations of parameter variability and 213 

a range of synthetic wave climates. (a) The four shape functions are: time-invariant (Shape 214 

1), a linear negative trend (Shape 2), a sinusoidal function with a representative period of 10 215 

years (Shape 3) and a step-wise function (Shape 4). As is tabulated, these are then applied in 216 

an increasingly complex combination of time-varying model parameters and either a 217 

seasonal, storm-driven or mixed seasonal-storm wave climate. (b) EnKF skill expressed as 218 

the percentage of time within acceptable limits (PTWL), when applied at different sampling 219 

frequencies dt = 1, 7, 15 & 30 days.  These results are summarised for the three ShoreFor 220 

wave-driven parameters 𝑐𝑎, 𝑐𝑒 , 𝜙 (top to bottom) as a function of shoreline measurement 221 

accuracy R (horizontal axes). Note that higher PTWL values indicate superior algorithm 222 

performance. Triangles (circles) correspond to cases generated by the seasonal (storm) 223 

dominated wave climate scenarios 1 - 8. Diamonds correspond to the mixed seasonal-storm 224 

wave climates in scenarios 9 and 10. 225 
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3 Results 226 

3.1 Synthetic Cases 227 

The performance of the EnKF is summarized in Figure 2b for the three wave-driven parameters 228 

𝑐𝑎, 𝑐𝑒 , 𝜙 (from top to bottom), different shoreline time-sampling dt = 1, 7, 15 and 30 days 229 

(from left to right) and shoreline measurement accuracy R = 1:1:12 m (horizontal axes). The 230 

percentage of time the ensemble mean is within acceptable limits (denoted PTWL, after Pathiraja 231 

et al., 2016b)  is used as the performance metric, such that PTWL values closer to 100% indicate 232 

higher skill. Acceptable limits are defined for time t as 𝜃𝑡
∗ + 𝜌𝑑𝑝, where 𝜃𝑡

∗ is the true synthetic 233 

parameter magnitude, 𝑑𝑝 is the feasible range of parameters magnitude (SPLI14) and 𝜌 is the 234 

10% fraction. A benchmark of PTWL ≥ 70% is selected here to define cases where the EnKF 235 

methodology could be reasonably anticipated to succeed when applied to real-world datasets. 236 

Accordingly, 87% of the cases fulfil this condition. In general, results indicate that the EnKF 237 

performance is highly dependent on the quality of the observational data, whereby more 238 

frequently sampled and less-noisy measured shorelines result in higher PTWL for the majority of 239 

scenarios. 240 

 241 

To explore this general conclusion in further detail, representative results for the highest quality 242 

shoreline data (dt = 1 day, R = 1 m) are shown in Figure 3a-d for increasingly complex Scenarios 243 

4, 5, 9 and 10, respectively. From top to bottom, panels show the EnKF estimations (shown in 244 

black) of shoreline timeseries as well as the parameters  𝑐𝑎, 𝑐𝑒 and 𝜙, compared to their true 245 

synthetic values (red dashed lines). Time-invariant (Shape 1), negative trend (Shape 2), 246 

sinusoidal (Shape 3) and step-wise parameter functions (Shape 4) are well estimated by the 247 

EnKF for the full range of idealized seasonal, storm and mixed wave climates.  248 

 249 

Examples of parameter estimation sensitivity to varying shoreline measurement accuracy (R = 1, 250 

4, 8 and 12 m, dt = 7 days) and frequency (dt = 1, 7, 15 and 30 days,  R = 4 m) are shown in 251 

Figure 3e-f for the complex Scenario 10. As anticipated, EnKF performance decreases for higher 252 

levels of R (e.g. 𝜙 , Figure 3e). With decreasing observational quality data, parameter 253 

convergence is slower as the EnKF algorithm weights the model equations more than the 254 

observations (e.g., Long & Plant, 2012; see also S2 in Supporting Information).   255 

 256 
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The effect of decreasing the frequency of shoreline observations (i.e. increasing dt) is also 257 

apparent, resulting in less accurate and time-lagged parameter estimations (e.g. 𝜙 , Figure 3f). 258 

However, Figure 2b demonstrates that results are more sensitive to observation accuracy (R) 259 

rather than observation frequency (dt), with this being most pronounced for variations in 𝜙 260 

(lower panels). The time-lag between true and estimated parameters is assessed through the 261 

convergence time of initially random sampled parameters at Scenarios 1 and 2 (fully time-262 

invariant). For all values of R and dt, 73% of the time-invariant cases (Figure 2, blue circles and 263 

triangles) converge within 2 years (i.e. PTWL > 90%). Notably, convergence and the ability to 264 

capture time variability are inversely dependent on the level of process noise. For example, 265 

adopting a lower process-noise (e.g., Long & Plant, 2012; Vitousek et al., 2017) results in 92% 266 

of the time-invariant cases converging, however, this low level of noise severely limits the EnKF 267 

performance on non-stationary parametrizations (Pathiraja et al., 2016b). It is therefore 268 

concluded that the approach presented here is well suited to identifying and interpreting model 269 

parameter non-stationarity using the established ShoreFor model at timescales down to 270 

interannual. Notably, this convergence time is similar to Long and Plant (2012) who used an 271 

Extended Kalman Filter applied to synthetic monthly-sampled shorelines of R = 0.5 m accuracy. 272 

The new and more extensive analyses presented here provides the encouraging result that, for 273 

shoreline measurement accuracy that can be more realistically obtained in the field (i.e., R up to 274 

12 m) the EnKF performs well. Results for Scenarios 9 and 10 (Figure 2b) also indicate that 𝜙 275 

estimations are in general less accurate than those for 𝑐𝑎 and 𝑐𝑒. This is because the time-varying 276 

equilibrium expression given by Equation 2 is relatively insensitive for values of 𝜙 > 100 days, 277 

resulting in the potential for parameter equifinality and lower parameter estimation quality (e.g., 278 

Figure 3f, at around year 11).  279 

 280 

The effect of differing wave climate characteristics can be also explored for varying levels of 281 

shoreline measurement accuracy. Selecting a representative sampling interval of dt = 7 days and 282 

comparing similar parameter combinations forced by the seasonally-dominated Scenario 5 283 

(Figure 3g) versus the storm-dominated Scenario 6 (Figure 3h), results indicate an overall higher 284 

skill level for the seasonal cases, up to and including the least-accurate shoreline data considered 285 

here (R = 12 m). This observation is attributed to the more frequent and rapidly varying 286 



Non-peer reviewed preprint 

 

characteristics of an episodic storm wave climate, compared to the more slowly evolving 287 

characteristics of a seasonal wave climate. 288 

 289 

 290 
Figure 3. Representative results of the EnKF algorithm. Examples for the highest quality 291 

shoreline data (R = 1 m and dt = 1 day) are shown in (a)-(b)-(c)-(d) (from top to bottom, 292 

shorelines, 𝑐𝑎, 𝑐𝑒 and 𝜙, note that 𝑐𝑎 >   𝑐𝑒) for Scenarios 4, 5, 9 and 10, respectively. Black 293 

lines are the EnKF estimates, red dashed lines are the true synthetic values and grey bands 294 

indicate the central 95% ensemble. Algorithm sensitivity to dt and R is shown (Scenario 10) for  295 

(e) varying R (at dt = 7 days) and (f) varying dt (at R = 4 m). Depictive examples for algorithm 296 

sensitivity to wave climate characteristics are shown for Scenarios 5 and 6 which are generated 297 

from (g) seasonal and (h) storm-dominated wave climate, respectively. Note that parameter 298 

confidence bands in (e), (f), (g) and (h) were not included to better facilitate visualization. 299 

 300 
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3.2 Application to a real-world shoreline dataset 301 

The EnKF technique is now applied to a dataset of measured shorelines and waves at the Gold 302 

Coast in southeast Australia spanning the 8-year period 2001-2008. This same shoreline dataset 303 

was previously described in Splinter et al., (2017; hereafter SPLI17) and is also shown in Figure 304 

1, being notable because of the observation that shoreline variability switched from a distinctly 305 

seasonally-dominated mode to an episodic storm-dominated mode mid-way through the 8-year 306 

measurement period. Briefly, to obtain this dataset shorelines were obtained on a weekly basis 307 

(dt = 7 days) from ARGUS video imagery (Holman & Stanley, 2007) with a cross-shore 308 

accuracy of R ~ 5 m (Turner & Anderson, 2007). Wave buoy and shoreline observations are 309 

assimilated into the ShoreFor model equations. As this is a real-world dataset, in contrast to the 310 

synthetic cases (Section 3.1) the last term in Equation 1 is no longer fixed as b = 0, to account for 311 

the possibility of secondary processes. The focus of the results presented here, however, remains 312 

on the primary wave-driven cross-shore model parameters. To apply the new EnKF 313 

methodology, initial model parameter estimates were obtained via the generalized 314 

parametrizations provided in SPLI14 applied to the first 4-years of the wave record, along with 315 

an initial seed value of b = 0. To explore and compare the new non-stationary EnKF results to 316 

previous time-invariant approaches, three additional ShoreFor model realizations are presented: 317 

1) a single calibration spanning the full 8-year dataset; 2) split-sample calibration of the two 318 

consecutive time-periods T1 (2001-2004) and T2 (2005-2008) as reported in SPLI17 (see Figure 319 

1); and 3) use of the stationary model free parameters derived for T1 to forecast the shoreline 320 

variability in T2. 321 

 322 

A summary of these results is presented in Figure 4. From top to bottom, Figure 4a shows the 323 

shoreline predictions for the four different ShoreFor model realizations, along with in Figure 4b 324 

and 4c the corresponding values of non-stationary/stationary model free parameters 𝑐𝑎 325 

(continuous lines), 𝑐𝑒 (dashed lines) and 𝜙.  As was previously observed in SPLI17, Figure 4 326 

demonstrates that shoreline and parameter estimation is sensitive to the selected calibration 327 

period, bringing into question the validity of the assumption of stationarity. Encouragingly, 328 

comparison of the new non-stationary EnKF approach (Figure 4a, black line) that now enables 329 

the model free parameters to continuously evolve in time, can be seen to result in enhanced 330 

model skill (EnKF, 𝜌=0.95, NMSE=0.10, RMSE=5.0 m) when compared to the stationary 331 
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calibration (Figure 4a, magenta line) based on the 8-year dataset (8-year, 𝜌 =0.82, NMSE=0.33, 332 

RMSE=8.8 m).  333 

 334 

SPLI17 relied on subjective visual observation to distinguish the two time periods of T1 and T2 335 

to undertake the reported split calibration. A key advantage of the new EnKF approach is that it 336 

is able to continuously vary model parameters to best fit the shoreline observations. In particular, 337 

after an initial period (2001-2003) of increasing magnitudes in 𝑐𝑎 and 𝑐𝑒, the multi-year 338 

variability of both parameters from 2004 onwards (Figure 4b, black line) converges more closely 339 

to the magnitudes obtained in the T2 stationary calibration. Both 𝑐𝑎 and 𝑐𝑒 also show shorter-340 

term variability (~seasonal) which remains unexplained and outside the scope of the present 341 

work. These changes suggest a relationship of this variability in 𝑐𝑎 and 𝑐𝑒 and an underlying 342 

change in the forcing wave climate that requires further investigation (See Discussion). As was 343 

previously determined for the synthetic cases (Section 3.1), 𝜙  is the most challenging parameter 344 

to estimate primarily because the model is relatively insensitive for 𝜙 > 100 days (see Section 345 

2.1). In the Gold Coast real-world application presented here (Figure 4c), during the time period 346 

T1 the time-evolving 𝜙 remains large (𝜙 ≅ 1000 days) and relatively constant, corresponding to 347 

a more seasonally dominated mode of shoreline behavior. In contrast, during the following T2 348 

period this parameter can be seen to deviate and vary substantially from this value, oscillating 349 

towards lower magnitudes (𝜙 ≅ 100 days) that are more indicative of a period of storm-350 

dominated shoreline behavior.  351 

 352 

The final model realization depicted in Figure 4 shows the effect of transferring stationary model 353 

free parameters calibrated from the initial time period T1 into the following T2, analogous to the 354 

forecasting of future shoreline behavior (e.g., Davidson et al., 2013). Unlike the EnKF 355 

continuous parameter adjustment, the time-invariant approach indicates that the T2 shoreline 356 

forecast (Figure 4a, red dotted line) continues to track the general multi-year variability observed 357 

during T1, but underestimates shorter-term erosive periods that are encountered during T2 (e.g. 358 

2008). As anticipated, this result highlights the inherent weakness in the assumption of parameter 359 

stationarity when semi-empirical shoreline models are applied to out-of-calibration shoreline 360 

prediction. 361 

 362 
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 363 

Figure 4. EnKF application to a real observational shoreline dataset at the Gold Coast, Australia,  364 

and compared to 3 different time-invariant ShoreFor realizations: 1) overall 8-year period 365 

(magenta lines), 2) split-sample calibration (after SPLI17) of  two consecutive time-periods T1 366 

(2001-2004, red lines) and T2 (2005-2008, blue lines), and 3) T2 model forecast obtained from 367 

T1 model calibration (red dotted lines in panel a). From top to bottom a) Shoreline observations 368 

(pink dots), shoreline EnKF estimates (black line), T1 model hindcast (red continuous line), T2 369 

model hindcast (blue line), complete 8-year hindcast period (magenta line) and T2 forecast 370 

obtained from T1 model calibration (red dotted line). b) 𝑐𝑎  (continuous lines) and 𝑐𝑒 (dashed 371 

lines) with line colours as described for panel (a). Note that horizontal lines represent time-372 

invariant approaches. Similarly, panel (c) shows the frequency rate parameter (𝜙) estimated with 373 
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the EnKF and from time-invariant approaches. Grey bands indicate the central 95% ensembles. 374 

(d) Running mean (4-year) dimensionless fall velocity at the wave breaking position. 375 

4 Discussion and Conclusions 376 

Analysis of 480 test cases, comprising ten synthetic shoreline timeseries derived from an 377 

increasingly complex mix of four distinct parameter functions, three wave climate characteristics 378 

and differing levels of observation accuracy and time-sampling (Section 2.2), confirms that the 379 

EnKF technique is suitable for tracking non-stationary parametrizations (PTWL ≥ 70%) to 380 

predict the cross-shore movement of shorelines at multi-year timescales (Section 3.1). 381 

Exceptions to this general conclusion include cases where the observation shoreline data is either 382 

too noisy (R > ~6 m) or measured too infrequently (dt > ~15 days), with measurement accuracy 383 

and frequency become decreasingly important for beaches exposed to more seasonal compared 384 

to storm-dominated wave climates. In addition to the EnKF methodology providing a new 385 

enhancement over previous stationary calibration methods by enabling model parameters to 386 

evolve in response to non-stationary wave climate forcing, it also facilitates the use of ensemble-387 

based approaches to incorporate uncertainty in both the estimated shorelines and model 388 

parameters. This overall improvement to the ability to predict shoreline behavior is illustrated by 389 

the real-world application at the Gold Coast presented in Figure 4, where the use of time-varying 390 

𝑐𝑎, 𝑐𝑒 and 𝜙 parameters and their uncertainty result in higher accuracy shoreline predictions 391 

spanning the total 8-year observation period. 392 

 393 

It is of interest to now briefly consider how the EnKF technique can be extended to explore the 394 

underlying physical processes that may be occurring at a coastal site. For example, the Gold 395 

Coast application in Section 3.2 reveals time periods commencing in mid-2004 when the 396 

magnitude of 𝜙 shifted from essentially constant to an overall decrease in magnitude and 397 

increase in variability (Figure 4c), corresponding to the previously identified switch in the wave 398 

climate and resulting shoreline behavior from seasonal to storm-dominated (SPLI17). In 399 

addition, the EnKF captures the multiyear variability in 𝑐𝑎 and 𝑐𝑒 initially indicating an 400 

increasing trend (2001-2003), and then roughly constant with some seasonal variability (2004-401 

onwards).  402 

 403 
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The previous stationary approach detailed in SPLI14 dictates that the accretionary rate term 𝑐𝑎 is 404 

a function of the mean dimensionless fall velocity (𝛺̅) at a site, and then assumes that the erosive 405 

rate term 𝑐𝑒 is simply proportional to 𝑐𝑎. According to SPLI14 parametrizations, magnitude 406 

increases in 𝑐𝑎 would necessarily implicate negative trends in the multi-year 𝛺̅. This relationship 407 

between 𝑐𝑎 and 𝛺̅, as well as the assumed proportionality of 𝑐𝑎 and 𝑐𝑒 appears to be captured by 408 

the EnKF during the initial 2001-2003 period. However, the new EnKF results presented here 409 

that allow for independent calibration of 𝑐𝑎 and 𝑐𝑒, reveal that these two parameters may not be 410 

simply proportional to each other, and will require further fundamental physical-process 411 

investigation.  Interestingly, in the latter half of the data (2005-2008) these two terms appear to 412 

oscillate on seasonal to interannual frequency but in opposite directions (e.g. 2006, Figure 4b). 413 

Recalling that 𝑐𝑎 and 𝑐𝑒 in the ShoreFor model encapsulate cross-shore sediment transport 414 

efficiency (Section 2.1), this temporal variability may be linked to nearshore morphology. For 415 

example, Ruessink et al., (2009) used video images to observe the decay of an outer bar at this 416 

site in early 2006. The resulting loss of a protective outer bar and the formation of a new bar 417 

close to the shoreline matches with increased/reduced efficiency in erosive (𝑐𝑒) and accretive 418 

(𝑐𝑎) processes, respectively. 419 

 420 

Synthetic and real-world results presented here emphasize the need for shoreline model structure 421 

that can adjust to potential changes in the underlying physical forcing. Results of the new work 422 

presented here suggest that the EnKF method is able to capture this variability when applied over 423 

long-term datasets subjected to natural variability at interannual scales and beyond, and for 424 

which waves are the driver of the observed and/or anticipated shorelines changes. The inclusion 425 

of time-varying parametrizations (and their uncertainty) offers the opportunity to ensure 426 

consistency between modelled coastal evolution drivers and the underlying physical processes 427 

(Toimil et al., 2020), and now warrants  the EnKF application as a method to explore parameter 428 

changes and predict future beach erosion patterns and trends in the face of inter-decadal shifting 429 

waves (Morim et al., 2019) and intensified climate teleconnections patterns (Barnard et al., 2015; 430 

Mentaschi et al., 2017). 431 

 432 

Future applications of the  EnKF are likely to be motivated by the advent of newly available  433 

global-scale shoreline detection methods (e.g., Kelly & Gontz, 2019; Vos et al., 2019)  and the 434 
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increasing public availabiltiy of high resolution long-term shoreline datasets (e.g., Ludka et al., 435 

2019; Turner et al., 2016). It is anticipated that the approach presented here will be useful for 436 

exploring cross-shore parameter variability as a first step for training model parameters and 437 

relating their variability to natural changes in forcing. Shoreline models will also benefit from a 438 

clearer understanding and inclusion of cross-shore model parametrizations, ensemble-based 439 

wave forcing (e.g. Davidson et al., 2017) and also from the inclusion of additional processes 440 

such as alongshore sediment transport and sea level rise (e.g., Robinet et al., 2018; Vitousek et 441 

al., 2017). The EnKF approach presented here offers the potential to provide a robust structure to 442 

account for uncertainty across all constituents of the shoreline modeling framework (Toimil et 443 

al., 2020), as one contributor to the end-goal of achieving realiable multi-decadal shoreline 444 

projections. These improved tools will be useful to coastal managers and stakeholders, by 445 

providing combined magnitude-uncertainty predictions that can be applied to future hazard 446 

assessment and planning. 447 
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