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Abstract18

We have developed a new procedure for combining lists of substorm onset times from19

multiple sources. We apply this procedure to observational data and to magnetohydro-20

dynamic (MHD) model output from 1-31 January, 2005. We show that this procedure is21

capable of rejecting false positive identifications and filling data gaps that appear in in-22

dividual lists. The resulting combined onset lists produce a waiting time distribution that23

is comparable to previously published results, and superposed epoch analyses of the solar24

wind driving conditions and magnetospheric response during the resulting onset times are25

also comparable to previous results. Comparison of the substorm onset list from the MHD26

model to that obtained from observational data reveals that the MHD model reproduces27

many of the characteristic features of the observed substorms, in terms of solar wind driv-28

ing, magnetospheric response, and waiting time distribution. Heidke skill scores show that29

the MHD model has statistically significant skill in predicting substorm onset times.30

1 Introduction31

Geomagnetic substorms consist of an explosive release of stored solar wind energy32

from the magnetotail, much of which is deposited in the ionosphere. Originally they were33

observed as an auroral phenomenon [e.g. Akasofu, 1964], consisting of sudden bright-34

ening of auroral emissions accompanied by rapid changes in their spatial distribution.35

It is now recognized that a rapid reconfiguration of the night-side magnetic field, con-36

sisting of a plasmoid release and dipolarization, is a fundamental component of the sub-37

storm process. The plasmoid release coincides with the formation of field-aligned cur-38

rents, termed the substorm current wedge, connecting the auroral zone to the magnetotail39

[e.g. Kepko ., 2015]. When the concept of the current wedge was first introduced, it was40

imagined as a pair of equal and opposite currents entering and exiting the ionosphere at41

the same latitude but different longitudes. More recent work has shown evidence that the42

upward and downward currents may overlap in longitude [Clauer Kamide, 1985], and43

that the real structure may involve multiple filaments of upward and downward current44

[Forsyth ., 2014], possibly organized into localized regions of flow-driven current termed45

“wedgelets” [Liu ., 2013]. However, some doubt has been cast on the wedgelet model46

[Forsyth ., 2014], and the manner in which wedgelets might contribute to filamentation47

remains an open question [Kepko ., 2015]. Similarly, the behavior of the earthward flow48
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upon arrival at the inner magnetosphere has not been clearly determined from observa-49

tions [Sergeev ., 2012].50

Other open questions remain regarding the conditions that lead to substorm onset,51

and the timing of events leading to and following from substorm onset. For instance, the52

question of how substorm onset is influenced by solar wind conditions has not been fully53

resolved, with some holding that some or all substorms are “triggered” by changes in solar54

wind conditions [e.g. Caan ., 1977; Lyons ., 1997; Russell, 2000; Hsu McPherron, 2003,55

2004], and others claiming that the observed characteristics of substorms can be explained56

without invoking solar wind triggering [e.g. SK. Morley Freeman, 2007; Wild ., 2009;57

Freeman Morley, 2009; Newell Liou, 2011; Johnson Wing, 2014]. Similarly, the ques-58

tion of where a substorm originates in geospace (magnetotail, ionosphere, or somewhere59

else) has remained open for a number of years [e.g. Korth ., 1991; Angelopoulos ., 2008;60

Rae ., 2009; Henderson, 2009].61

A major factor limiting progress on these questions is a lack of sufficient observa-62

tional data, due to the need for simultaneous observations in particular locations, or simply63

the need for more complete spatial coverage of the magnetosphere. However, addressing64

this problem directly requires launching additional satellites with the required instrumen-65

tation, and this is a long and costly process. Global magnetohydrodynamic (MHD) mod-66

els have the potential to address the problem of limited observational coverage by provid-67

ing predictions of currents, velocities, and magnetic fields throughout the magnetosphere.68

These predictions can provide insights into magnetospheric dynamics that would require69

an impractically large number of spacecraft to obtain using observations alone. The ability70

of MHD simulations to shed light on substorm dynamics has been demonstrated already71

by a number of studies [e.g. Si. Ohtani Raeder, 2004; Birn Hesse, 2013; El-Alaoui .,72

2009]. The capability of MHD models to provide a global, spatially resolved picture of73

the magnetosphere has been used in previous studies to shed light on cause and effect74

relationships relating to the evolution of a substorm [e.g. Zhu ., 2004; Raeder ., 2010].75

However, such results have been limited to single event studies or idealized test cases,76

which leaves open questions about the degree to which MHD models can reproduce sub-77

storm dynamics consistently and reliably. Despite years of application of MHD models78

to substorms, no MHD model has been rigorously validated with regard to its ability to79

predict substorm onsets.80
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Validating any model (MHD or otherwise) for substorm prediction is complicated81

by the fact that substantial disagreement remains within the community about what consti-82

tutes a substorm. While a general consensus exists around several of the main features of83

substorms, the community has not developed a set of criteria for identifying substorm on-84

sets that is unambiguous, comprehensive, and widely agreed upon. This remains the case85

despite decades of attempts to clarify the salient characteristics of substorms [e.g. Aka-86

sofu, 1964, 1968; Akasofu Meng, 1969; RL. McPherron, 1970; RL. McPherron ., 1973;87

Pytte, Mcpherron Kokubun, 1976; Pytte, McPherron ., 1976; Caan ., 1978; Rostoker .,88

1980; Hones, 1984; Lui, 1991; Baker ., 1996; Rostoker, 2002; Sergeev ., 2012; Kepko .,89

2015]. As a result, different researchers studying the same time period often come to sub-90

stantially different conclusions about what events should be considered substorms.91

A major factor contributing to the sometimes discordant results obtained is the fact92

that substorms produce numerous observational signatures, most of which have substan-93

tial limitations. Although a substorm is generally regarded as a global phenomenon, many94

of its effects are localized in a particular region. As a result, gaps in observational data95

can easily prevent detection of a substorm. For instance, the sparse distribution of ground-96

based magnetometers can result in negative bay onsets not being detected [Newell Gjer-97

loev, 20111]. In situ observations are subject to similar limitations: Dipolarizations and98

plasmoids can only be detected when a satellite is on the night side of the Earth and in99

the right range of distance, MLT sector, and latitude. Moreover, a plasmoid that propa-100

gates too slowly relative to the observing spacecraft might go unnoticed [Nishida ., 1986].101

At the same time, many observational features used to identify substorms can be created102

by other processes, resulting in false positives. For instance, single-satellite observations103

may not be able to distinguish a plasmoid from other transient features in the current sheet104

(such as thickening, thinning, or bending) [Eastwood ., 2005]. A storm sudden commence-105

ment can result in a negative bay at auroral magnetometers [Heppner, 1955; Sugiura .,106

1968], as can a pseudobreakup [Koskinen ., 1993; S. Ohtani ., 1993; Aikio ., 1999; Kullen107

., 2009]. A discussion of the challenges faced by researchers in distinguishing different108

magnetospheric phenomena from each other can be found in RL. McPherron [2015].109

Differences in results obtained when different observational datasets are used can be110

substantial. An illustrative example is Boakes . [2009], which compared substorm onsets111

previously published by Frey . [2004] based on analysis of auroral images with energetic112

particle observations at geosynchronous orbit. Boakes . [2009] found that 26% of the au-113
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roral expansion onsets had no corresponding energetic particle injection even though a114

satellite was in position to detect such an injection, and suggested that such events might115

not be substorms.116

The difficulty in positively identifying substorm onsets presents a problem for val-117

idation of substorm models. In the absence of a definitive substorm onset list against118

which to validate a model, those seeking to validate a substorm prediction model are left119

to choose among the published lists, or create a new one. Given the substantial differences120

between the existing onset lists, validation against any single onset list leaves open the121

question of whether the validation procedure is testing the model’s ability to predict sub-122

storms, or merely the model’s ability to reproduce a particular onset list, whose contents123

may or may not really be substorms.124

One potential way to address the problems of onset list accuracy is to use multi-125

ple substorm signatures in combination, checking them against each other to remove false126

positives and avoid missed identifications. The resulting consensus list may prove more127

reliable than any of its constituent lists, providing a more comprehensive and trustwor-128

thy set of onsets. Comparing two or three substorm signatures by hand for individual129

events has been commonplace since the beginning of substorm research [e.g. Akasofu,130

1960; Cummings Coleman, 1968; Lezniak ., 1968], and a number of researchers have131

produced statistics comparing onset lists for two or more substorm signatures [e.g. Mold-132

win Hughes, 1993; Boakes ., 2009; Liou, 2010; Chu ., 2015; Forsyth ., 2015; Kauristie .,133

2017]. RL. McPherron Chu [2017] demonstrated that a better onset list could be obtained134

using the midlatitude positive bay (MPB) index and the SML index together than by using135

either dataset alone.136

Despite an awareness within the community that multiple observational signatures137

are required to positively identify a substorm, RL. McPherron Chu [2017] has been the138

only work to date that uses multiple signatures to create a combined onset list, and no at-139

tempt to create an onset list using more than two different signatures has been published.140

This may in part be due to the complexities involved in doing so. As was discussed ear-141

lier, the absence of a particular signature does not always indicate the absence of a sub-142

storm, while at the same time some identified signatures may not in fact be substorms.143

Ideally a combined list should somehow allow for these possibilities and correct for them.144
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Further complicating matters is the fact that different signatures may be identified at differ-145

ent times for the same substorm [e.g. Rae ., 2009; Liou ., 1999, 2000; Kepko, 2004].146

In the present work we present a new procedure which uses multiple substorm sig-147

natures to identify substorm onsets. By using multiple datasets consisting of different148

classes of observations, we reduce the risk of missing substorms due to gaps in individ-149

ual datasets. At the same time, the new procedure aims to reduce false identifications by150

only accepting substorm onsets that can be identified by multiple methods. Our procedure151

is generalizable to any combination of substorm onset signatures, and allows for the pos-152

sibility that the signatures may not be precisely simultaneous. We demonstrate the tech-153

nique on observational data from January, 2005. We present evidence that the procedure154

is successful at reducing false identifications while avoiding missed identifications due to155

observational data gaps, and that the resulting onset list is consistent with the known char-156

acteristics of substorms. Finally, we demonstrate the technique on output from an MHD157

simulation of the same January, 2005 time period, and show preliminary evidence of pre-158

dictive skill on the part of the MHD model.159

2 Methodology160

2.1 Identification of substorm events from combined signatures161

Our procedure for combining multiple substorm onset lists consists of first convolv-162

ing each onset list with a Gaussian kernel. The result of this convolution is re-scaled us-163

ing an error function (erf) in order to keep the values bounded by 1. The re-scaled convo-164

lutions of the onset lists are then summed together to produce a nominal “substorm score.”165

For a series of onset times τi j from a set of onset lists i, this score is given by166

f (t) =
nsigs∑
i=1

erf ©­«
nonset∑
j=1

exp

(
−
(t − τi j)2

2σ2

)ª®¬ , (1)

where σ is a tunable kernel width. The i’s each represent a particular substorm on-167

set list. The onset lists each represent a distinct substorm signature and are described in168

detail in Sections 2.4 and 2.5. The j’s represent the onset times in each onset list. To169

obtain a list of onset times, we search for local maxima in the score f (t), and keep any170

maxima that rise above a specified threshold T . If we choose a threshold greater than one,171

we effectively require that substorm signatures from different lists occur within σ of each172
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Figure 1. An illustration of the procedure used to combine multiple substorm onset lists into a single one.

Panels (a-e) show scores obtained by convolving individual onset lists with a Gaussian kernel (using σ = 13.8

minutes), while (d) shows the combined score obtained by adding together the scores in panels (a-e). The

threshold T = 1.6 is marked with a red horizontal line, and vertical dashed lines are drawn through local

maxima of the combined score that exceed this threshold.

189

190

191

192

193

other in order to identify a substorm. The implications of the choice of threshold T and173

kernel width σ will be discussed in more detail later in the paper. We apply this proce-174

dure to the onset lists produced from the simulation, and separately apply the procedure to175

the observational data.176

The process is illustrated in Figure 1 for the 24-hour time period of 31 January,177

2005. Figure 1 was created using a kernel width σ = 13.8 minutes and a threshold T =178

1.6. These values were selected using an optimization process that will be described later.179

The specifics of how the signatures were identified will be discussed in Section 2.4, but to180

illustrate the convolution procedures it suffices to say that a list of candidate onset times181

was identified separately for each signature. Figures 1a-1e show the scores obtained from182

the onset list obtained from each signature. Figure 1f shows the sum of the scores in Fig-183

ures 1a-1e. The threshold value T is drawn in red, and vertical dashed lines mark the on-184

set times identified from local maxima of the combined score that exceed the threshold.185

In order to exceed the threshold, signatures from two different lists must occur within a186

few minutes of each other, and this occurred seven times during the time period shown in187

Figure 1.188

It is worth noting that the individual onset lists in Figure 1 are substantially differ-194

ent from each other, each identifying substorms at different times from the others, and195

two including candidate onset times that are not near those in any other list. Our proce-196

dure rejects those onsets, such as the dipolarization around 1300 UT and the AL onset197

around 1400 UT, which appear only in one list. Near-simultaneous onsets are counted if198

two or more occur within approximately σ of each other so that the score rises above the199

threshold T . Reducing the threshold would increase the total number of substorm identifi-200

cations, while increasing it would lower the number of substorm identifications. The im-201

plications of changing the threshold will be explored further in Section 3.2. Note also that202

if the score remains above the threshold for a period of time and multiple local maxima203
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are found within that period, all of them are counted as substorm onsets. For example, the204

local maxima around 1130 UT and a second one just before 1200 UT are both counted as205

substorm onsets.206

The convolution process effectively acts as a low-pass filter, with the choice of σ207

determining the minimum time between successive onsets. As discussed in the introduc-208

tion, different substorm signatures may not be detected simultaneously even if they are209

related to the same substorm. For instance, Liou . [1999] and Liou . [2000] found geosyn-210

chronous energetic particle injections tended to lag the onset of auroral breakup by 1-3211

minutes, while the high-latitude magnetic bay can be delayed up to tens of minutes rel-212

ative to the onset of auroral breakup. Some of the findings of Liou . [2000] were chal-213

lenged by Kepko McPherron [2001] and Kepko [2004], but even Kepko [2004] found that214

Earthward plasma flows could precede auroral onset by 1-3 minutes. These results and215

others suggest that a kernel width of σ ≈ 3 minutes represents a lower bound for appro-216

priate values of σ, unless the analysis is restricted to a set of observational signatures that217

have been shown to occur nearly simultaneously. An upper end of the appropriate range218

for σ can be identified by noting that previous research has shown that successive sub-219

storms rarely occur within 30 minutes of each other [e.g. Borovsky ., 1993; Frey, 2010].220

This suggests that σ should be chosen to be under 30 minutes, but leaves substantial room221

for tuning. The effects that the choice of σ has on the statistics of the identified substorms222

will be explored in a later section of the paper.223

2.2 Event description224

To test our technique we selected the month of January, 2005. SK. Morley [2007]225

and S. Morley . [2009] had previously identified substorms from this time period, and226

from the data analyzed in those papers this time period was determined to have a suffi-227

cient number of substorms to enable statistical analysis. The substorm database provided228

by the SuperMag collaboration (http://supermag.jhuapl.edu/substorms/) [Gjerloev, 2012],229

which contains onsets identified from the SML index [Newell Gjerloev, 20112] using230

the Newell Gjerloev [20111] algorithm, lists 322 substorms during this period, placing231

it in the top 3% of 31-day periods included in that dataset. The substorm onset lists from232

Borovsky Yakymenko [2017] include 124 AL onsets and 109 energetic particle injections233

during January, 2005, placing that month in the top 3% in terms of AL onsets and in the234

top 7% in terms of energetic particle injections, compared with other 31-day periods from235
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the same onset lists. Frey . [2004] (whose list has subsequently been updated to include236

2003-2005 and published online at http://sprg.ssl.berkeley.edu/image/) lists 97 substorms237

in January 2005, placing the month in the top 13% of 31-day periods in that dataset. Chu238

. [2015] found 167 onsets during this month, placing it in the top 9% of 31-day intervals239

analyzed in that paper. In addition, two of the “supersubstorms” (AL< −2500 nT) identi-240

fied by Hajra . [2016] occurred during this time period.241

Three geomagnetic storms occurred during this month: One on January 7 with a242

minimum Sym-H of -112 nT, one on January 16 with a minimum Sym-H of -107 nT, and243

one on January 21 with a minimum Sym-H of -101 nT. A table of the minima, maxima,244

and quartiles of various observed quantities over the course of the month can be found in245

Haiducek . [2017]. Of particular note is the consistently high solar wind speed (median246

solar wind speed was 570 km/s), which may have contributed to the relatively high fre-247

quency of substorms during this period.248

2.3 Model description249

The simulations presented in this work were performed using the Block-Adaptive250

Tree Solar-Wind, Roe-Type Upwind Scheme (BATS-R-US) MHD solver [Powell ., 1999;251

De Zeeuw ., 2000]. This was coupled to the Ridley Ionosphere Model [RIM, Ridley .,252

2003; Ridley ., 2004] and the Rice Convection Model [RCM, Wolf ., 1982; Sazykin,253

2000; Toffoletto ., 2003]. The Space Weather Modeling Framework [SWMF, Tóth .,254

2005, 2012] provided the interface between the different models. The inputs to the model255

are solar wind parameters (velocity, magnetic field, temperature, and pressure) and F10.7256

radio flux. The model settings and grid configuration for the simulation are described in257

detail in Haiducek . [2017], which includes results from the same simulation. (In Haiducek258

. [2017] the simulation was referred to as “Hi-res w/ RCM” to distinguish it from the259

other two simulations included in that paper.) The results of Haiducek . [2017] showed260

that the simulation produced good predictions of the Sym-H, AL, and Kp indices on aver-261

age. On the other hand, the model was found to under-predict the frequency of occurrence262

for strongly negative AL values, suggesting a tendency to under-predict the strength or oc-263

currence rate of substorms.264
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2.4 Identification of model signatures265

The substorm process results in numerous observational signatures that can be lever-266

aged for identification. These include plasmoid releases, magnetic perturbations observable267

in the auroral zone and at mid latitudes, dipolarization of night-side magnetic fields ob-268

servable from geosynchronous orbit, Earthward injection of energetic particles, and auroral269

brightenings. Several of these can be synthesized using MHD as well. Unfortunately, as270

was discussed in the introduction, all of these signatures can be produced by other pro-271

cesses besides substorms, and this is true for both the observations and the model out-272

put. For instance, magnetospheric convection, pseudobreakups and poleward boundary273

intensifications can cause a negative bay response in the northward magnetic field compo-274

nent at auroral-zone magnetometers, which could be interpreted as substorm onsets [Pytte275

., 1978; Koskinen ., 1993; S. Ohtani ., 1993; Aikio ., 1999; Kim ., 2005]. On the other276

hand, substorms could occur but not be identified because of the limited spatial coverage277

of observational data, as was shown by Newell Gjerloev [20111] for auroral-zone mag-278

netic field. Substorms could also be missed simply because they produce a response below279

the threshold selected for analysis [e.g. Forsyth ., 2015]. Even for analysis of model out-280

put, many of these factors remain relevant, and we aim to mitigate this by using multiple281

signatures to identify our substorms. Specifically, we identify dipolarization signatures at282

6-7 RE distances [Nagai, 1987; Korth ., 1991], negative bays in the AL index [Kamide .,283

1974; Newell Gjerloev, 20111; Borovsky Yakymenko, 2017], positive bays in the midlat-284

itude positive bay (MPB) index [Chu ., 2015], and plasmoid releases [Hones ., 1984; Ieda285

., 2001].286

Figure 2 shows examples of substorm signatures from a substorm event on January287

2, 2005. This substorm was selected for illustrative purposes because it can be identified288

by all four of the signatures used in the model output. A handful of previous researchers289

have identified substorm onsets during the time period shown in the plot (2000-2200 UT).290

Borovsky Yakymenko [2017] found an AL onset at 2026 UT on this day, and a geosyn-291

chronous particle injection at 2130 UT. Chu . [2015] identified an MPB onset at 2112 UT.292

The SuperMag substorm database (populated using the Newell Gjerloev [20111] algo-293

rithm) contains onsets at 2016, 2038, and 2059 UT. Figures 2a-2c show time-series plots294

of Bz at x = −7 RE (GSM), the AL index, and the MPB index. Apparent onset times295

identified from each curve are marked by triangles. Figures 2d-2f show the MHD solution296

within the x-z (GSM) plane at 5-minute intervals during a plasmoid release. The back-297
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grounds of Figures 2d-2f are colored according to the plasma pressure. Closed magnetic298

field lines are plotted in white, and open field lines in black. The Earth is shown as a pair299

of black and white semicircles, and surrounded by a grey circle denoting the inner bound-300

ary of the MHD domain. The approximate location of the reconnection region is denoted301

by a red triangle, and a blue dot marks where x=-7 RE along the noon-midnight line (this302

is the location from which the data in Figure 2a was obtained).303

Figure 2. Model signatures for an example substorm. (a) Bz variations at x = −7 RE along the GSM x

axis. (b) AL index. (c) MPB index. Apparent substorm onset times are marked with triangles in (a-c). (d-f)

x − z (GSM) cut planes, at 5-minute intervals, colored by pressure. Closed magnetic field lines are drawn in

white, and open field lines in black. Earth is drawn as a pair of black and white semicircles, surrounded by a

grey circle denoting the inner boundary of the MHD domain. The location x = -7 RE , from which the data in

(a) was obtained, is marked a blue circle. The apparent X-line location is marked with a red triangle.

304

305

306

307

308

309

2.4.1 Plasmoid release310

A fundamental characteristic of a substorm is the tailward release of a plasmoid[e.g.311

Hones ., 1984], and this is the first substorm signature we will describe. In observations,312

plasmoids are identified by a bipolar variation of Bz as observed by a spacecraft near the313

central plasma sheet [e.g. Slavin ., 1989, 1992; Ieda ., 2001; Eastwood ., 2005]. MHD314

models provide data throughout the magnetosphere rather than being limited to a few315

point observations, and this enables several additional techniques for identifying plas-316

moids. One approach is to plot variables such as temperature, velocity, and magnetic317

field over time for different x coordinates along a line through the central plasma sheet318

at midnight. This produces a 2-D map showing the time evolution of the MHD solution319

in the plasma sheet, in much the same way that keograms are used to visualize the time320

evolution of auroral emissions [Raeder ., 2010]. Plasmoids appear in such maps as tail-321

ward propagating magnetic field perturbations, with corresponding tailward flow velocity.322

Another approach for identifying plasmoids was proposed by Honkonen . [2011], who323

used the magnetic field topology derived from an MHD simulation to identify a plasmoid,324

which they define as a set of closed field lines that enclose a region of reconnecting open325

field lines. Probably the most common method is to plot magnetic field lines in the x-z326

–11–



Confidential manuscript submitted to JGR-Space Physics

plane, looking for evidence of a flux rope in the form of wrapped up or self-closed field327

lines, as in e.g. Slinker . [1995].328

The method of visually identifying plasmoids by searching for regions of wrapped-329

up field lines is the one used in the present work. We require that such features be located330

in or near the central plasma sheet, and that they exhibit tailward motion. For each such331

plasmoid, we record the time of the first indication of tailward motion, and the x and z332

coordinates of the apparent X-line at that time. Plasmoids for which the X-line is beyond333

35 RE down-tail are ignored. Figures 2d-2f show examples of the images that are used for334

this analysis. For the event in Figure 2, the first apparent tailward motion occurred at 2059335

UT, and this time is shown in Figure 2d. The X-line occurs at around x=-32 RE , and the336

plasmoid extends from there to -60 RE . Figures 2e and 2f show the same plasmoid 5 and337

10 minutes after release. Tailward motion is clearly apparent, with the center of the plas-338

moid moving from x ≈ −55 to x ≈ −80 RE in 10 minutes.339

2.4.2 Dipolarization340

While the plasmoid propagates tailward, the magnetic fields Earthward of the X-line341

undergo a dipolarization. Previous studies have identified dipolarizations by searching for342

sharp increases in Bz [e.g. Lee Lyons, 2004; Runov ., 2009; Birn ., 2011; Runov ., 2012;343

Liu ., 2013; Frühauff Glassmeier, 2017] or elevation angle344

θ = tan−1 ©­­«
Bz√

B2
x + B2

y

ª®®¬ (2)

[e.g. RL. McPherron, 1970; Coroniti Kennel, 1972; Noah Burke, 2013] within the night-345

side magnetotail. A number of studies have also used a decrease in346

|Br | =

����� xBx + yBy√
x2 + y2

����� , (3)

coincident with the increase in Bz or θ, as criteria for identifying a dipolarization onset347

[e.g. Nagai, 1987; Korth ., 1991; Schmid ., 2011; Liou ., 2002]. Automated procedures348

for identifying dipolarizations have been developed by Fu . [2012] and Liu . [2013]. We349

found the Fu . [2012] algorithm unsuitable for our purposes because it uses flow veloc-350

ity as part of its criteria, for which we had no observational data from the GOES satel-351
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lites used in the analysis. The Liu . [2013] algorithm was designed for THEMIS and uses352

Bz alone for event selection. Since our data was from 6-7 RE from the Earth (where the353

fields differ substantially from those seen by THEMIS), we developed a new algorithm354

which uses variations in Bz , |Br |, and θ to identify dipolarizations from the model output.355

The new procedure is described in detail in Appendix A: . The algorithm was used to356

identify dipolarization signatures along the orbits of GOES 10 and 12, and at a fixed point357

located at x = −7 RE in GSM coordinates on the sun-Earth line; this point is identified by358

a blue circle in Figures 2d-2f. A plot of Bz at x = −7 RE is shown in Figure 2a, and two359

dipolarization onsets identified using our procedure are marked on the plot with triangles.360

The first of these is closely aligned with the plasmoid release time.361

2.4.3 Auroral-zone negative bay362

The dipolarization process can be interpreted as a partial redirection of cross-tail363

current into the ionosphere [e.g. Bonnevier ., 1970; RL. McPherron ., 1973; Kamide .,364

1974; Lui, 1978; Kaufmann, 1987]. The ionospheric closure of this current results in a365

negative bay in the northward component of the magnetic field on the ground in the au-366

roral zone [Davis Sugiura, 1966]. As a result, substorm onsets can be identified by sharp367

negative diversions of the AL index. A number of algorithms have previously been devel-368

oped for identifying substorm onsets from the AL index, including the Newell Gjerloev369

[20111] (SuperMag) algorithm and the Substorm Onsets and Phases from Indices of the370

Electrojet (SOPHIE) algorithm [Forsyth ., 2015].371

In the present paper we identify AL onsets using the algorithm presented in Borovsky372

Yakymenko [2017]. This algorithm was chosen for its simplicity and because it produces373

a distribution of inter-substorm timings that is consistent with that obtained from other374

signatures, as Borovsky Yakymenko [2017] demonstrated through comparison with tim-375

ings of energetic particle injections. We apply the Borovsky Yakymenko [2017] algorithm376

to a synthetic AL index computed from the model output using virtual magnetometers as377

described in Haiducek . [2017]. An example AL onset is shown in Figure 2b. A nega-378

tive bay onset, marked by a triangle, occurs just before 2100 UT, just after the plasmoid379

release at 2054 UT.380
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2.4.4 Midlatitude positive bay381

The integrated effect of the currents closing between the tail and auroral zone results382

in a northward diversion of the ground magnetic field in the mid latitudes, called a mid-383

latitude positive bay [MPB, RL. McPherron ., 1973]. Often MPB’s are identified manually384

through examination of individual magnetometers [e.g. R. McPherron, 1972; RL. McPher-385

ron ., 1973; Caan ., 1978; Nagai ., 1998; Forsyth ., 2015]. However, the ASYM-H index386

may also be used [Iyemori Rao, 1996; Nosé ., 2009]. More recently, Chu . [2015] and387

RL. McPherron Chu [2017] have developed procedures to compute what they call the388

MPB index, which is specifically designed to respond to a midlatitude positive bay, along389

with procedures for identifying substorm onsets using the MPB index. In the present pa-390

per we use the MPB index implementation described in Chu . [2015] and its accompany-391

ing onset identification procedure. To evaluate the MPB index from the model output, we392

use a ring of 72 virtual magnetometers placed at a constant latitude of 48.86◦ and evenly393

spaced in MLT. We compute estimated magnetic fields for the locations of these magne-394

tometers by performing a Biot-Savart integral over the entire MHD domain, and to this395

add the contributions of the Hall and Pedersen currents computed using RIM; this proce-396

dure is described in Yu Ridley [2008]; Yu . [2010]. Using the estimated magnetic fields397

at these virtual magnetometer locations, we compute the MPB index and associated sub-398

storm onsets using the procedures described in Chu . [2015]. An example of the MPB399

response is shown in Figure 2c. The MPB onset time occurs roughly 10 minutes after the400

plasmoid release time, but is well aligned with the second of the two dipolarizations in401

Figure 2a.402

2.5 Identification of substorm events from observational data403

When possible, we use the same procedures to identify substorm signatures in the404

observational data as we do with the model output. This includes the dipolarizations, AL405

index, and MPB index. In some cases modifications are required due to limitations in the406

availability of observational data; for instance ground-based magnetometers are normally407

restricted to being placed on land with suitable terrain, and the locations of satellite ob-408

servations are constrained by orbital mechanics. On the other hand, some observations409

rely on physical phenomena that cannot be modeled by the MHD code, such as energetic410

particle injections and auroral brightenings. In an effort to obtain the best possible identi-411

fications of observed substorms, we use as many observational datasets as possible, which412
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for this time period included GOES magnetic field observations, the AL and MPB indices,413

energetic particle injections at geosynchronous orbit, and auroral brightenings.414

We identify AL onsets by applying the procedure from Borovsky Yakymenko [2017]415

to the SuperMag SML index [Newell Gjerloev, 20111]. For simplicity, we will use the416

term AL throughout the paper to refer to both the observed SML index and the synthetic417

AL computed from the model output. For the observed MPB index and observed MPB418

onset times we use the values from the analysis previously published in Chu . [2015]. We419

identify dipolarizations by applying the procedure described in Appendix A: to measure-420

ments obtained with the magnetometers onboard GOES 10 and 12 [Singer ., 1996].421

In addition to the dipolarization, another substorm signature that can be observed at422

geosynchronous orbit is the Earthward injection of energetic electrons and protons [e.g.423

Lezniak ., 1968; DeForest McIlwain, 1971]. Previous studies have identified a temporal424

association between such particle injections and auroral zone magnetic signatures [e.g.425

Lezniak ., 1968; Kamide McIlwain, 1974; Weygand ., 2008], along with a connection be-426

tween energetic particle injections and dipolarizations [e.g. Sauvaud Winckler, 1980; Birn427

., 1998]. In the present work we use energetic particle injections identified by Borovsky428

Yakymenko [2017] using the Synchronous Orbit Particle Analyzer (SOPA) instrument429

[Cayton Belian, 2007] on the LANL-1990-095, LANL-1994-085, and LANL-97A satel-430

lites. The list of particle injections found in the supplemental data of Borovsky Yaky-431

menko [2017] is used as-is.432

Some of the energetic particles produced by the substorm enter the ionosphere and

cause a brightening and reconfiguration of the aurora. These can be observed from the

ground using all-sky imagers, or from cameras onboard spacecraft. For the month of

January, 2005, observations from the Imager for Magnetopause-to-Aurora Global Explo-

ration (IMAGE) spacecraft are available for this purpose. The IMAGE spacecraft was in

a highly elliptical polar orbit with an apogee of 45,600 km and an orbital period of 14

hours, providing 8-10 hours per orbit of good conditions for imaging the northern auro-

ral oval [Frey ., 2004]. Frey . [2004] examined images from the Far Ultraviolet Imager

(FUV) instrument onboard IMAGE, and produced a list of northern hemisphere substorm

onsets for the years 2000-2002, since updated to include 2003-2005 and available online at

http://sprg.ssl.berkeley.edu/sprite/ago96/image/wicsummary/substorms/.WeusetheJanuary,2005portiono f thislistasparto f oursubstormidenti f ication.
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3 Results433

3.1 Substorm waiting times434

The distribution of substorm waiting times (the amount of time that passes between435

successive substorms) gives an indication of the occurrence frequency for substorms. A436

number of previous papers have examined waiting times, including Borovsky . [1993]437

which identified substorm onsets from energetic particle injections and found the modal438

waiting time to be around 2.75 hours. Chu . [2015] and RL. McPherron Chu [2017] an-439

alyzed MPB onsets and reported modal waiting times of 80 and 43 minutes, respectively.440

Kauristie . [2017] reported modal waiting times of 32 minutes for AL onsets identified441

by Juusola . [2011] and 23 minutes for SML onsets identified by the Newell Gjerloev442

[20111] procedure. Hsu McPherron [2012] obtained a modal waiting time of about 1.5443

hours for AL onsets, about 2 hours for onsets identified from tail lobe fields, and about444

2.5 hours for Pi 2 onsets. Freeman Morley [2004] reproduced the waiting time distribu-445

tion from Borovsky . [1993] using a solar wind driven substorm model.446

To visualize the distributions of waiting times, we use kernel density estimates (KDEs)447

[Parzen, 1962], which approximate the probability density function of a distribution by448

convolving samples from the distribution with a Gaussian kernel. The resulting curve can449

be interpreted in the same way as a normalized histogram. Since the waiting times can450

take only positive values, while the Gaussian kernels used in the KDE give nonzero prob-451

abilities for negative values, we perform the KDE in logarithmic space and transform the452

result to linear space for plotting as described in Appendix C: . For some of our KDE453

plots we have estimated confidence intervals using a bootstrapping procedure described454

in Appendix D: . This provides a means to assess whether the waiting time distribution455

obtained from the model is significantly different from the observed distribution, in a sta-456

tistical sense.457

To test the sensitivity of the waiting time distributions to the choice of kernel width458

and threshold, we plotted waiting time distributions for a range of each parameter, as459

shown in Figure 3. Figure 3 shows the distribution of waiting times for the model and for460

the observations using three different choices of threshold and four different kernel widths,461

ranging from σ = 5 minutes to σ = 20 minutes. The y-axis of each panel shows the prob-462

ability densities of waiting time, and the x axis shows the waiting times. Figures 3a, 3b,463

and 3c show waiting time distributions from the observations, while Figures 3d, 3e, and464
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Figure 3. Distributions of substorm waiting times for a range of identification thresholds and kernel widths

used in the identification procedure. a), b), and c): Observed waiting time distributions. d), e), and f): MHD

waiting time distributions. a) and d): Threshold=1.0; b) and e): Threshold=1.5; c) and f): Threshold=2.0.

471

472

473

3f show waiting time distributions obtained from the MHD simulation. Figures 3a and 3d465

show thresholds of 1.0, Figures 3b and 3e show thresholds of 1.5, and Figures 3c and 3f466

show thresholds of 2.0. Within each plot, the kernel width σ used in the substorm iden-467

tification procedure is varied from σ = 5 minutes to σ = 20 minutes. σ = 5 minutes is468

plotted in red with a dash-dot pattern, σ = 10 minutes in green with dots, σ = 15 minutes469

in orange with dashes, and σ = 15 minutes in blue as a solid line.470

From Figure 3, it is apparent that both the threshold and the kernel width affect474

waiting time distributions substantially. The modal waiting time varies from approximately475

0.25 to 2.5, while the height of the peak varies from greater than 0.3 to less than 0.1.476

In order to choose appropriate values of σ and T for the remainder of the analysis,477

we aimed to reproduce the mean and mode waiting times from the AL onset list published478

by Borovsky Yakymenko [2017]. Only the waiting times during January, 2005 were used.479

The Borovsky Yakymenko [2017] AL onset list was chosen because it contained 124 sub-480

storm onsets (corresponding to a mean waiting time of 6.0 hours), which was the median481

among the currently published onset lists that cover the month of January, 2005. This led482

to the choice of Tobs=1.60, σobs = 13.8 min, Tmodel = 1.72, and σmodel = 20 min.483

Figure 4 shows the waiting time distribution obtained from the observational data484

(thick blue line) and the model (orange line), along with waiting time distributions from485

five previously published substorm onset lists that cover January, 2005. The 95% confi-486

dence interval of the observed distribution is denoted with light blue shading. The total487

number of substorms in each list, which corresponds to the mean waiting time, is listed488

in parentheses in the legend. The Supermag list was something of an outlier compared489

with the others, and its mode is not visible with the chosen axis limits. Figure B.1 in the490

appendix shows the full Supermag waiting time distribution for January, 2005.491

Figure 4 shows that the waiting time distribution of the Borovsky Yakymenko [2017]496

AL list (the green dashed curve) falls near the middle of the published lists in terms of its497

waiting time distribution, not only in terms of the mean waiting time but also in terms of498
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Figure 4. Distributions of substorm waiting times from the present paper (thick solid lines), compared with

other published lists that cover the same time period (dashed lines). The shaded region denotes the 95% con-

fidence interval for the observed waiting time distribution in the present work. The total number of substorms

in each list (which corresponds to the mean waiting time) is given in parentheses in the legend.

492

493

494

495

the mode and overall shape of the distribution. The observed onset list developed for the499

current paper (blue curve) produces a waiting time distribution that is very close to that500

of the Borovsky Yakymenko [2017] AL list. The MHD model produces a waiting time501

distribution with a higher peak probability, but it falls entirely within the 95% confidence502

interval of the observed distribution.503

Figure 5 compares the waiting time distributions of the combined lists with those504

of the individual onset lists used to create the combined lists. The observed onsets are505

shown in light blue, with the 95% confidence interval represented as a shaded region of506

lighter blue. The MHD results are shown in dark blue. Figure 5a shows the AL onsets,507

Figure 5b shows dipolarization onsets, Figure 5c shows MPB onsets, and Figure 5d shows508

all signatures in combination.509

Figure 5. Substorm waiting times for MHD and observations. a) AL onsets only b) Dipolarizations only,

and c) MPB onsets only d) All signatures combined.

510

511

The distributions of waiting time between AL onsets (Figure 5a) show a modal wait-512

ing time of around 1 hour for the simulation and 2 hours for the observations. This is513

shorter than the 2.75 hours reported by Borovsky . [1993], and longer than the results514

of Juusola . [2011] and Newell Gjerloev [20111], but it is comparable to the approxi-515

mately 1 hour reported by Hsu McPherron [2012]. The model distribution for AL waiting516

time falls within the confidence intervals of the observed distribution for shorter (<1.5517

hours) waiting times, though the model underestimates prevalence of 2-6 hour waiting518

times somewhat.519

Dipolarizations produce a much narrower waiting time distribution (Figure 5b), with520

the modes of both the modeled and observed distributions occurring at less than one-half521

hour of waiting time. This suggests that the dipolarizations are substantially more frequent522
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than AL onsets. The model reproduces the observed waiting time distribution reasonably523

well, straying only slightly outside the confidence bounds of the observed distribution.524

The observed waiting time distribution for MPB onsets (Figure 5c) has a mode525

around 1 hour, in between those of the dipolarizations and AL onsets. The model waiting526

time distribution has its mode positioned fairly close to that of the observed distribution,527

but the height of the peak is noticeably higher, and well outside the confidence bounds of528

the observed distribution. This suggests that the model produces MPB onsets with similar529

dynamics to reality in terms of recovery time, but that the onsets occur more often. One530

possible reason for this is that the model MPB index was computed using virtual magne-531

tometers distributed evenly across all longitudes, while the observed MPB index is neces-532

sarily computed using real magnetometers, for which substantial gaps in spatial coverage533

may have prevented some substorms from producing an MPB signature.534

3.2 Forecast metrics535

In order to evaluate the predictive capabilities of the model, we first apply the pro-536

cedure described in Section 2.1 to the onset lists from the model and separately to the ob-537

served onset lists, in order to produce a combined onset list for each. We next divide the538

month into 30-minute bins, and determine whether a substorm onset from each combined539

list was present in each bin. We then classify each bin according to whether a substorm540

was identified in the model, observations, neither, or both. The four categories are com-541

monly displayed in a two-by-two table called a contingency table, as shown generically in542

Table 1: In the upper left corner (a) are true positives, the bins in which a substorm was543

found in both the model and the observations. Next are false positives (b), in which sub-544

storms were found in the model only. In the bottom row of the table are false negatives545

(c), in which substorms were found in the observations only, and true negatives (d), in546

which no substorm was found.547

Observations

Y N

Predictions
Y a b

N c d

Table 1. A generic contingency table.548
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To produce a contingency table using our data from January, 2005, we first produced549

lists of substorm onsets using the procedure described in Section 2.1, and the parameters550

Tmodel , Tobs , σmodel , and σobs set to the values given in Section 3.1.551

Table 2 shows the contingency table produced from the onset lists obtained using552

our procedure. We obtained 124 positive bins from the model list, 25 of which were true553

positives. We obtained 122 positive bins from the observed list. Since the observed list554

contains 124 substorms, this indicates that two of the 30-minute bins contained two sub-555

storms from the observed list.556

Observations

Y N

SWMF
Y 25 99

N 97 1267

Table 2. Contingency table for SWMF vs. observations557

From the values in the contingency table we compute several metrics summarizing558

the predictive abilities of the model. These include Probability of Detection (POD), Prob-559

ability of False Detection (POFD), and the Heidke skill score (HSS), all of which are in560

common use in space weather applications [e.g. Lopez ., 2007; Welling Ridley, 2010;561

Pulkkinen ., 2013; Ganushkina ., 2015; Glocer ., 2016; Jordanova ., 2017; SK. Morley .,562

2018]. The POD, given by563

POD =
a

a + c
, (4)

[Wilks, 2011] indicates the relative number of times a substorm was forecast when one564

occurred in observations. A model that predicts all the observed events will have a POD565

of 1. POFD, given by566

POFD =
b

b + d
(5)
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indicates the relative number of times that a substorm was forecast when none occurred.567

Smaller values of POFD indicate better performance, and a model with no false predic-568

tions will have a POFD of 0.569

Skill scores are a measure of relative predictive accuracy [e.g. Wilks, 2011]. The570

Heidke Skill Score (HSS) is based on the proportion correct (PC), defined as571

PC =
a + d

a + b + c + d
, (6)

which measures the fraction of correct predictions relative to the total number of predic-572

tions. A perfect forecast would have a PC of 1. The HSS adjusts PC relative to a refer-573

ence value, PCre f , which is the value of PC that would be obtained by a random forecast574

that is statistically independent of the observations, and is given by575

PCre f =
(a + b)(a + c) + (b + d)(c + d)

(a + b + c + d)2
. (7)

The HSS is obtained from PCre f as576

HSS =
PC − PCre f

1 − PCre f
=

2(ad − bc)
(a + c)(c + d) + (a + b)(b + d)

. (8)

The HSS ranges from -1 to 1, where 1 represents a perfect forecast, 0 is equivalent to a577

no-skill random forecast, and -1 represents the worst possible forecast.578

All of the above metrics are subject to sampling uncertainties, meaning that any par-579

ticular value could be obtained simply by chance, and might not be representative of the580

model’s overall abilities. To address this, we estimate 95% confidence intervals for each581

metric. The 95% confidence interval is a range in which we estimate that each metric will582

fall for 95% of a given number of random samples of the dataset. Since no analytical for-583

mulas are known for computing confidence intervals for the HSS [Stephenson, 2000], we584

estimate the confidence interval using bootstrapping [e.g. Conover, 1999]. This approach585

was used previously by SK. Morley . [2018], and the procedure is described in detail in586

Appendix D: .587

We now apply the above forecast metrics to our substorm onset lists. Figure 6 shows588

receiver operating characteristic (ROC) curves for the MHD model. An ROC curve, by589
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Figure 6. ROC curves for the MHD simulation. The threshold score for identifying substorms from the

model output is varied to produce each curve, resulting in changes in the probability of detection (POD) and

probability of false detection (POFD). Each curve is computed using a particular threshold score Tobs for

identifying observed substorms; the thresholds and number of observed substorm identifications are listed

in the legend. The case of the observed threshold equal to 1.6 is highlighted with a bold line, and the case of

model threshold and the observed threshold equal to 1.72 along this line is highlighted with a black circle.

609

610

611

612

613

614

definition, shows the probability of detection (POD) of a predictive model as a function590

of the probability of false detection (POFD), as the threshold for event identification is591

varied [e.g. Ekelund, 2012; Carter ., 2016]. Such curves are commonly used in evaluat-592

ing predictive models; a notable recent example from the space weather field is Liemohn593

. [2018]. For a perfect forecast, the ROC curve would pass through the upper left corner594

of the plot (POD=1 and POFD=0), so the closer the ROC curve comes to the upper left595

corner of the plot, the greater the overall accuracy of the forecast. To produce the curves596

in Figure 6, the threshold Tmodel used to identify a substorm in the model output is var-597

ied along the length of each curve, while the threshold Tobs for identifying an observed598

substorm is held fixed. Each curve is computed using a different threshold value Tobs for599

identifying an observed substorm. Tobs = 0.5 is shown in blue, Tobs = 1.60 is shown in600

orange, Tobs = 2.0 is shown in green, and Tobs = 2.5 is shown in red. The total number601

of observed substorms obtained with each threshold is shown in parentheses in the legend.602

The orange curve, corresponding to an observed threshold of 1.6, is drawn in bold since603

that is the threshold that was chosen for use throughout the paper, except for tests like this604

one in which the thresholds are varied. A black circle denotes the model threshold of 1.72605

along this green curve. A diagonal grey line shows where POD equals POFD, indicating606

no skill. For a forecast, POD should exceed POFD, and this is the case along the entire607

length of each curve (except for the case POD = POFD = 0, where equality is expected).608

Note that although a typical ROC curve continues to POD = POFD = 1, ours ends615

at POFD ≈ 0.2. The reason for this is that the practice of using local maxima in the sub-616

storm score places a ceiling on the POD and POFD based on the characteristics of the617

underlying substorm onset lists. If the substorm score has no local maxima within a given618

30-minute window, no substorm will be identified regardless of what threshold is used.619

Also note that the curves corresponding to higher values of Tobs produce higher values of620
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POD. While higher POD is desirable, in this case it comes at the cost of an unrealistically621

low total number of substorms in the observations (and correspondingly, an unrealistically622

high average waiting time). Rather than maximizing POD, we chose instead in the present623

work to choose thresholds Tobs and Tmodel that produce realistic statistics in terms of sub-624

storm waiting time.625

Figure 7 shows the Heidke skill score (HSS) as a function of the frequency bias (the626

ratio of the total number of model substorm bins to the total number of observed sub-627

storm bins). Figure 7 was produced by varying the modeled and observed thresholds in628

the same manner as was done to produce Figure 6. This provides a means to test the sen-629

sitivity of HSS to changes in these thresholds. The x-axis value is obtained by dividing630

the total number of substorm bins obtained from model output by the total number of bins631

obtained from the observational data. Different observed thresholds are identified by color632

and shape in the same manner as Figure 6, with error bars denoting the 95% confidence633

interval for each skill score. Also like Figure 6, the case of the observed threshold equal634

to 1.6 is drawn with bold lines, and the case of the model threshold equal to 1.72 with the635

observed threshold equal to 1.6 is marked with a black circle.636

For a perfect forecast, the model should produce the same number of substorms as637

occur in the observations, in which case the frequency bias on the x-axis of Figure 7 will638

equal one. Since we chose the thresholds Tobs and Tmodel so that they produce the same639

mean waiting time, the black circle corresponding to our chosen thresholds corresponds640

with a frequency bias very close to one.641

For a skill score to represent a true predictive skill, it should be significantly greater642

than zero, in a statistical sense. This is indicated by the lower end of the 95% confidence643

interval being greater than zero. A forecast satisfying this criterion is estimated to pro-644

duce an HSS greater than zero 95% of the time. Figure 7 shows that the skill scores ob-645

tained from the MHD model are significantly greater than zero in the majority of cases.646

The only exception is a single case where Tobs = 2.5, which as discussed earlier produced647

an unrealistically large mean waiting time in the observed onset list.648

Figure 8 shows the same analysis as Figure 7, but with the kernel width σmodel de-658

creased from 20 minutes to 10 minutes. This provides a means to test the sensitivity of659

HSS to the kernel width σ. The style and axes are the same as Figure 7, and the case of660

the modeled threshold set to 1.6 and observed threshold both set to 1.74 is again iden-661
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Figure 7. Heidke skill score as a function of the frequency bias (the ratio of the number of model substorm

bins to the number of observed substorm bins). The threshold scores Tobs and Tmodel for identifying sub-

storms have been varied to test the sensitivity of skill scores and frequency biases to these thresholds. Each

color and shape corresponds to a particular threshold score Tobs for identifying observed substorms; the

thresholds and number of observed substorm bins are listed in the legend. For a given observed threshold,

different skill scores and frequency biases are obtained by varying the threshold for identifying a model sub-

storm. Error bars represent the 95% confidence interval for each skill score. The case of observed threshold

equal to 1.6 is drawn in bold, and the case of the model threshold equal to 1.72 with the observed threshold

equal to 1.6 is marked with a black circle.
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651

652

653

654
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Figure 8. Heidke skill score as a function of frequency bias, using a kernel width σmodel = 10 minutes in-

stead of the σmodel = 20 minutes width used elsewhere. The format is the same as Figure 7.

666

667

tified with a black circle. Figure 8 shows that the skill scores are sensitive to the choice662

of kernel width. Halving the kernel width reduces many of the skill scores by about half.663

However, a majority (all but five) remain significantly greater than zero as determined by664

their estimated 95% confidence intervals.665

Table 3 shows the total number of events, POD, POFD, and HSS for each of the668

substorm onset lists obtained from the model output. The first row of the table, labeled669

“All,” shows the metrics computed from all signatures, combined into a single onset list670

using the methodology in Section 2.1, while the remaining rows show results for indi-671

vidual signatures. With the exception of the last column of the table, all quantities are672

obtained by testing each signature in the model output with observed signatures of the673

same category (for instance, model AL is compared with observed AL). These numbers674

are absent for the plasmoids since there was no observational plasmoid data with which675

to compare. Two columns are shown for HSS. The first (labeled “HSS, same signature”)676

is computed using model and observed substorm onset lists obtained using the signature677

identified at the beginning of that row (all signatures combined in the case of the first678

row). The second uses the same model onset list as the first, but the observed onset list679

is the one obtained using all signatures combined together. This gives an indication of680

how well the individual model signature predicts the combined (all signatures) observed681

substorm onsets. For the POD, POFD, and HSS, a bar over the number identifies the last682

significant digit, as determined by the limits of the 95% confidence interval. For the skill683
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scores, the limits of the confidence intervals are shown in brackets. The lower limits of684

the confidence intervals are positive for every case except the plasmoids, indicating that685

the skill scores are significantly greater than zero.686

SWMF Obs.
POD POFD

HSS, same HSS, all

events events signature signatures

All 124 124 0.20 0.072 0.131 [0.061,0.20] 0.131 [0.062,0.20]

AL 85 130 0.18 0.045 0.166 [0.089,0.24] 0.125 [0.052,0.20]

MPB 201 167 0.27 0.111 0.148 [0.085,0.21] 0.129 [0.065,0.19]

dipolarizations 166 96 0.26 0.089 0.121 [0.052,0.19] 0.083 [0.02,0.1]

plasmoids 447 − − − − 0.042 [−9 × 10−4,0.09]

Table 3. Forecast metrics for each signature687

Of all the signatures, the plasmoids releases do the least well at predicting the ob-688

served substorms. The AL and MPB signatures produce higher skill scores than the dipo-689

larizations, but the confidence intervals for all three overlap so the differences between690

them may not be statistically significant.691

Far more plasmoid releases (447 in total) were identified than any other substorm692

signature, with the next most common signature being MPB onsets with only 166 occur-693

rences. This strongly implies that the plasmoid release list contained a large number of694

false positives. While we have confidence that all the plasmoids were real (in the sense695

that they occurred within the simulation), the much smaller number of AL and MPB on-696

sets (85 and 201, respectively) suggests that only a few of them were substorm related.697

The total number of events in the combined substorm list obtained from the simulation is698

only 124. This means that more than two thirds of the plasmoid releases were rejected by699

our substorm identification procedure, and indicates that the procedure used to combine700

signatures is largely successful at eliminating false positive identifications.701

3.3 Superposed epoch analysis702

We now present superposed epoch analyses (SEAs) of parameters related to the so-703

lar wind driving during substorms and to the geomagnetic signatures of the substorms.704
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SEA consists of shifting a set of time-series data y(t) to a set of epoch times tk , producing705

a group of time-series yk = y(t − tk) from which properties common to the epoch times706

can be estimated [e.g. Samson Yeung, 1986]. Common properties of the SEA may be707

estimated and visualized in a variety of ways. For instance, SK. Morley . [2010] plotted708

shaded regions representing the 95% confidence interval for the median and interquartile709

range, and Katus Liemohn [2013] plotted 2-D histograms colored according to the num-710

ber of SEA members passing through each cell of the histogram, while Hendry . [2013]711

created images colored according to the total electron flux observed by the Medium En-712

ergy Proton and Electron Detector among all SEA members, binned by epoch time and713

L-shell. Probably the most common approach to visualizing an SEA is to use a measure714

of central tendency such as the mean or median to obtain a new time-series ŝ(t) that es-715

timates the typical behavior of y(t) in the vicinity of the epoch times tk . In the present716

work we will use the median of yk to accomplish this. The epoch times tk will come from717

one of two lists of substorm onset times (one derived from the MHD simulation and the718

other from the observations).719

Computing an SEA using our substorm onset times serves as a diagnostic to deter-720

mine whether the onset times identified by our selection procedure are consistent with pre-721

viously reported behavior for substorms, in terms of both the solar wind driving and the722

geomagnetic response. With the model substorm onsets, the SEAs also provide a means to723

test how closely the model’s behavior during substorms follows the observed behavior of724

the magnetosphere.725

Figure 9 shows SEAs of the observational data and the model output, with the epoch726

times corresponding to substorm onset times obtained using each of the methods described727

in Section 2.5. SEAs obtained using the combined onset list (produced as described in728

Section 2.1 with the parameters given in Section 3.1) are shown as a thick blue curve,729

along with all the individual signatures: MPB onsets (orange), IMAGE/FUV (green), plas-730

moids (red), AL (purple), LANL (brown), and dipolarizations (pink). The left column731

(Figures 9a-9d) shows observed results, while the right column (Figures 9e-9h) shows the732

MHD results. The variables plotted on the y axes are IMF Bz (Figures 9a and 9e), solar733

wind ε (Figures 9b and 9f), the AL index (Figures 9c and 9g), and the MPB index (Fig-734

ures 9d and 9h). IMF Bz is in GSM coordinates. ε provides an estimation of the rate at735

which solar wind energy is entering the magnetosphere [Perreault Akasofu, 1978], and is736

given by737
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ε = |ux |
|B|2

µ0
sin

(
θclock

2

)4
, (9)

where ux is the sunward component of solar wind velocity, B is the IMF, and θclock738

is the IMF clock angle.739

Figure 9. Superposed epoch analyses of IMF Bz , ε , AL, and MPB, comparing onsets identified from the

model and from the observations. The left column shows SEAs computed using epoch times from the ob-

servations, while the right column shows SEAs computed using epoch times from the simulation. The AL

and MPB data come from the respective datasets used to create the onsets (observations or model run), and

the other values come from the solar wind data input to the model. The lines show the median value for all

epoch times as a function of the time offset. The thick blue line (labeled “All” in the legend) shows the SEA

computed with epoch times from the combined onset list using all signatures, while thinner colored lines

show SEAs obtained using epoch times from the individual signatures.
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741
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746
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From the SEA of IMF Bz (Figures 9a and 9e), it is apparent that the observed sub-748

storms are typically preceded by a decrease in IMF Bz , with the minimum Bz occurring749

just before the onset time and a recovery back to near-zero Bz following the onset. Sim-750

ilar behavior is present in both the model and the observations, but the decrease in Bz is751

somewhat sharper for the model onsets (with the exception of the plasmoids, which have a752

particularly weak decrease in Bz). The decrease is evident for all of the onset lists. In ad-753

dition to the plasmoids, the AL onsets stand out significantly. When using AL onsets for754

the epoch times (both for observations and model) the minimum Bz occurs slightly later,755

which may be an indication that the AL onsets precede the other signatures on average.756

The model AL onsets are preceded by a 1-2 nT increase 1-2 hours prior to onset, and a757

particularly sharp decrease just prior to onset. The tendency of substorms to occur near a758

local minimum in IMF Bz has been previously reported, and our results for both observa-759

tions and MHD are qualitatively similar to those obtained by SEA in previous studies [e.g.760

Caan ., 1975, 1978; Newell ., 2001; Freeman Morley, 2009; Newell Liou, 2011; Walach761

Milan, 2015].762

Figures 9b and 9f show that all onset lists correspond with an increase in ε prior to763

onset, with a maximum occurring prior to onset, or in the case of AL, just after onset. A764

separate SEA of the solar wind velocity component ux (not shown) showed no apprecia-765
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ble trend, which indicates that the trend in ε is driven almost entirely by variation in IMF766

Bz . However, despite a lack of change in ux before and after onset, we found that some767

classes of onsets seem to be associated with higher or lower ux ; most notably dipolariza-768

tions were associated with higher ux than any other signature type, and this is responsible769

for the higher ε values associated with dipolarizations. As with Bz , ε undergoes a sharp770

transition prior to the model AL onsets, and the plasmoid release times are associated771

with only a very weak increase and decrease in ε .772

In the SEA of observed AL (Figure 9c), a sharp decrease occurs at onset. This oc-773

curs for the combined onset list and for all of the individual signatures except for the dipo-774

larizations. Dipolarizations are associated with a downward trend in AL but the decrease775

begins earlier and is more gradual. The behavior of the observed AL index is qualitatively776

similar to what was obtained by previous authors. The approximately 2 hour recovery time777

is similar to the results of e.g. Caan . [1978]; Forsyth . [2015], but the -500 nT minimum778

is lower than their results. Both Caan . [1978] and Forsyth . [2015] analyzed multi-year779

time periods, and the lower minimum AL obtained here may simply be due to the fact that780

the analysis covers a much shorter time period which was chosen for its relatively large781

amount of substorm activity. In the model output (Figure 9g), AL onsets are also associ-782

ated with a sharp decrease at onset, but the MPB onsets, dipolarizations, and plasmoids783

are associated with gradual decreases in AL. When AL onsets alone are used for the on-784

set list, an increase occurs in the hour prior to onset, followed by a decrease similar to785

that obtained from the SEA of observed AL onsets. When all the model signatures are786

combined, the increase 1 hour prior to onset is absent (although a more gradual, possibly787

unrelated increase occurrs 1-3 hours prior to onset), and the associated decrease in AL is788

weaker than occurs in observations.789

It is notable that while the combined signature list from the observations produces a790

robust decrease at onset in the SEA of AL, the same cannot be said of the combined on-791

set list obtained from the model. A possible explanation is that combining signatures does792

not preferentially eliminate weak substorms, but rather tends to eliminate those that are793

too far from the average for a given input dataset. The fact that the average in the model794

involves a weaker onset reflects the fact that the model produces weaker variations in AL795

in general, as was noted for the same simulation in Haiducek . [2017]. The weak associa-796

tion between dipolarizations and AL onsets in the observations may be due in part to the797

fact that only two satellites are used to identify dipolarizations (versus three for the LANL798
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energetic particle injections). The model output uses dipolarizations identified from a third799

location (which is ideally positioned on the sun-Earth line), and in the model output the800

dipolarizations do not contrast as strongly from the other datasets in terms of their associ-801

ated AL response.802

From Figure 9d, it can be seen that all of the observed signatures are associated803

with an increase in MPB beginning at onset. Dipolarizations are associated with an addi-804

tional gradual increase prior to onset, with the rate of increase becoming greater at the on-805

set time. When all signatures are combined, the associated increase in MPB is noticeably806

stronger than for any single signature alone. For all curves except the one produced using807

dipolarizations as the signature, the shape is qualitatively similar to the superposed epoch808

analysis shown in Chu . [2015] for MPB onsets, which similar to our results showed peaks809

between 50 and 250 nT and recovery times on the order of 1 hour. With the model output810

(Figure 9h), all of the signatures are also associated with an increase in MPB. However,811

the magnitude of this increase varies substantially from one signature to another. Plasmoid812

releases are associated with the weakest increase in MPB, while AL onsets are associated813

with the strongest increase. Combining all signatures together does not intensify the as-814

sociated MPB response as it does for the observations: The combined MPB curve falls in815

between those of the AL, dipolarization, and MPB onsets.816

It is worth noting that plasmoid releases are only very weakly associated with changes817

in driving conditions (IMF and ε) or in response indicators (AL and MPB). This is re-818

lated to the fact that many more plasmoid releases were identified than any other signature819

(see Table 3), which means that many plasmoid releases may have no associated auroral820

or geosynchronous response, or the response might be below the threshold for selection.821

Such plasmoids may be too weak or too far down-tail to have a substantial effect close822

to the Earth. The state of the fields and plasmas in the inner magnetosphere may also in-823

fluence how much energy from the plasmoid release is transported Earthward. Similarly,824

dipolarizations are also only weakly associated with changes in driving conditions and825

magnetospheric response, though they are more strongly associated than plasmoids are.826

Like the plasmoids, dipolarizations are observed in the magnetosphere and most likely827

some of them occur without a strong coupling to the ionosphere that would produce a typ-828

ical substorm response.829
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4 Discussion830

In the present paper we have demonstrated a procedure to combine multiple sub-831

storm onset lists into a single list. We applied this procedure to observational data and to832

MHD output from the same one-month period. By performing superposed epoch analysis833

we demonstrated that the resulting onset list is consistent with previous results in terms of834

the solar wind driving and the geomagnetic response as measured by ground-based mag-835

netometers. We showed that the total number of substorms and the waiting time distribu-836

tions are also consistent with previous results. Finally, we showed preliminary evidence837

that our MHD model has statistically significant predictive skill and is able to reproduce838

the observed waiting time distribution, as well as some of the observed features in terms839

of driving and response.840

4.1 Effectiveness of combining signatures841

The approach of combining onset lists obtained using different techniques into a sin-842

gle combined list appears to at least partially address the problems of false identifications843

and data gaps. More than twice as many plasmoid releases were identified from the model844

output than were obtained by analyzing any single observational signature, yet the total845

number of substorms identified in the model output is far smaller than the number of plas-846

moid releases, indicating that the vast majority of plasmoid releases were rejected for lack847

of an associated AL, MPB, or dipolarization signature. At the same time, data gaps in the848

observations account for significant under-counting of dipolarization signatures, but the849

total number of observed substorms in the combined list is significantly higher than the to-850

tal number of dipolarizations. This suggests that the combined inputs from other observed851

signatures were able to compensate for the lack of continuous night-side magnetic field852

observations in geosynchronous orbit.853

We chose tuning parameters so that the resulting onset list has a mean and mode854

waiting time that is on par with previously published results for the same time period.855

The resulting waiting time distribution is qualitatively similar to previously published re-856

sults [by e.g. Borovsky ., 1993; Chu ., 2015; Kauristie ., 2017; Borovsky Yakymenko,857

2017]. The modal waiting time of around 1-1.5 hours is consistent with previously pub-858

lished results covering January, 2005, and the distribution shape is very close to that of859

the Borovsky Yakymenko [2017] results for that time period, reproducing not only the860
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mean and mode for which we optimized, but also the shape of the distribution. We also861

find that SEAs of our combined onset lists reproduce many of the expected behaviors for862

substorms, such as a local maximum in IMF Bz [e.g. Caan ., 1975, 1978; Newell ., 2001;863

Freeman Morley, 2009; Newell Liou, 2011; Walach Milan, 2015] and a negative bay in864

AL [Kamide ., 1974; Caan ., 1978; Forsyth ., 2015, e.g.] that occur around the substorm865

onset time. This indicates that, on average, the magnetosphere exhibited dynamics previ-866

ously reported for substorms around the times included in the combined onset lists.867

4.2 Paths for improving the substorm identifications868

We have demonstrated that the mean and mode waiting time of substorms identified869

by our method can be controlled by adjusting its tuning parameters: The detection thresh-870

old T and the kernel width σ. While we chose to optimize these parameters to reproduce871

the waiting time distribution of a previously published substorm onset list, this may not872

be the best approach in all situations. In general it is possible to determine a range of val-873

ues for each parameter beyond which reasonable results are no longer expected. For in-874

stance, setting the kernel width too low can greatly reduce the number of events selected,875

and in extreme cases can result in no events being selected at all. An overly large kernel876

width would cause unrelated signatures to be counted together, potentially inflating the877

total number of events. However, at some point increasing the kernel width may cause a878

decrease in the number of events as independent events are merged together. We have se-879

lected a kernel widths σ of 14-20 minutes, but kernel widths as small as 5 minutes and as880

large as 25 minutes might be considered reasonable. Similarly, the threshold T can have881

a substantial effect on the total number of events selected, as was illustrated in Figures 6882

and 7 in which the total number of observed events varies from 47 to 250 as the detection883

threshold is varied.884

The relationship between the threshold T , kernel width σ, and what events are se-885

lected depends on the number of signatures used as well as the statistical characteristics886

of each signature, such as their waiting time distributions. As a result, the threshold needs887

to be adjusted whenever signatures are added or removed. In the present work we opti-888

mized T and σ to produce a waiting time distribution that is comparable with previously889

published results. However, this approach is only possible for time periods that have ex-890

isting published lists to which to compare. An alternative approach might be to construct891

a heuristic based on the number of onset lists that are combined. A simple way to do this892
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would be to scale the threshold according to the number of onset lists used. The thresh-893

old might be adjusted down for time periods in which one or more signatures is known to894

contain a data gap.895

It is also worth noting that our procedure weights all signatures equally, convolving896

each with the same kernel function and adding them together. It would certainly be pos-897

sible to instead apply weight factors during summation, for instance if one signature was898

considered more reliable than another. Lacking an objective means to determine appropri-899

ate weight factors, we have decided not to apply variable weights to the individual signa-900

tures in the present work. However, in the future it might be appropriate to introduce such901

weight factors. One way to do this is to compute weighting factors based on the average902

waiting time in each onset list. This would weight signatures such as plasmoids that occur903

very frequently (and probably are not always associated with substorms) less heavily than904

those that occur infrequently. Another approach might be to develop a reliability measure905

of some sort, which could be applied to each signature and used to compute its weight906

factor. For some signatures, it might be appropriate to weight individual onsets according907

to a measure of event strength associated with that signature. For instance, the amount of908

change in AL within a specified time after onset could be used as a measure of AL onset909

strength, and AL onsets with large changes could be weighted more strongly than those910

with small changes.911

The use of a Gaussian kernel imposes a temporal symmetry, where onsets are treated912

as being related or not according to how close they occur in time relative to each other,913

without regard to which signature precedes the other. However, in reality a particular class914

of signature may tend to occur before or after onset, and the amount of time relative to915

onset may not be uniform. Our own data suggest that changes in AL may tend to precede916

other signatures, for instance. This could be accounted for by using a non-Gaussian ker-917

nel shape, which could be selected individually for each signature based on its tendency to918

lead or follow other signatures.919

The tunability of our procedure, along with the possible modifications described in920

this section, give it a significant amount of flexibility. This enables it to be optimized to921

produce desired characteristics in terms of what events are identified. An obvious ap-922

proach to optimization is to adjust the tuning parameters to best fit established criteria923

for identifying substorms. However, the lack of a community consensus on precise pro-924
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cedures, benchmarks, or tests for correct substorm identification precludes this approach.925

This lack of such a consensus has been an issue in the community for a while, and has926

been noted by a number of authors [e.g. Rostoker ., 1980; RL. McPherron Chu, 2017,927

2018]. While we can readily compare our list against existing ones, as has been done by928

a number of researchers [e.g. Moldwin Hughes, 1993; Boakes ., 2009; Liou, 2010; Chu929

., 2015; Forsyth ., 2015; Kauristie ., 2017], fundamentally such comparisons tell us about930

the similarities and differences between the lists and not which list is most correct. In the931

meantime, optimizing for known characteristics of substorms, rather than a specific list, is932

probably the best approach.933

If our identification procedure is used applied for operational purposes, another im-934

portant consideration in choosing detection thresholds is the needs of forecast customers.935

In this case, factors such as the costs and risks associated with false positive and false936

negative detections should be considered. Is the cost of responding to a false positive937

prediction greater or less than the cost incurred when a substorm arrives unannounced?938

Of course, this probably depends on the strength of an event, and ideally the procedure939

should be tuned in a manner that makes stronger events more likely to be identified.940

4.3 Substorm prediction with MHD941

One of the possible operational applications for our identification procedure is the942

development of a substorm forecast product. This could be done using an MHD model943

as we demonstrated in the present work, although the technique of combining multiple944

types of signatures can certainly be applied to other types of models. The ability to simu-945

late a substorm with an MHD model has been demonstrated previously [e.g. Lyon ., 1981;946

Slinker ., 1995; Raeder ., 2001; Wang ., 2010]. However, previous efforts simulating sub-947

storms with MHD have covered time periods lasting no more than a few days and at most948

several substorms, preventing a rigorous analysis of the model’s predictive skill. In the949

present paper we used a one-month simulation including over 100 substorms, which is950

sufficient to enable computation of forecast accuracy metrics such as POD, POFD, and951

HSS. To our knowledge, this is the first attempt to rigorously evaluate an MHD model for952

its ability to predict substorms.953

In our test, the MHD model demonstrated consistently positive predictive skill, with954

zero or negative skill scores occurring only in extreme cases of high or low detection955
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thresholds. The skill scores achieved are significantly greater than zero, but they are closer956

to zero (no skill) than they are to one (perfect skill). This certainly leaves room for im-957

provement, and also begs the question of whether scores on this level are sufficiently high958

to be of practical use. Looking to evaluations of existing operational models, one can find959

some examples of tropospheric models that deliver performance on this level, particularly960

for long lead time forecasts of difficult to predict phenomena such as precipitation [e.g.961

Barnston ., 1999]. However, such comparisons are of limited utility not only because of962

the differences in the system being modeled, but also difference in the lead time and the963

temporal and spatial granularity of the forecast. Ultimately, an assessment of operational964

usefulness depends on the manner in which the forecast is used by customers, including965

the operational impact and mitigation strategies available.966

4.4 Paths for improved MHD modeling of substorms967

An obvious path forward with the MHD model is to explore whether this initial968

demonstration of predictive skill can be improved upon. The first step would be to con-969

duct tests of different configurations of the model to determine the sensitivity of results to970

parameters such as grid resolution and boundary conditions. Another possible path for im-971

provement is the incorporation of non-ideal MHD and other physical processes that were972

not incorporated in the simulation shown here. A likely candidate for this is the inclusion973

of additional resistive terms. It has long been recognized that resistivity plays an impor-974

tant role in controlling magnetotail dynamics such those associated with substorms. Birn975

Hones Jr. [1981], for instance, demonstrated that an X-line formation and plasmoid release976

could be induced in an MHD simulation by abruptly increasing the amount of resistiv-977

ity. In the present work, as with many efforts involving MHD simulation, we rely entirely978

on numerical resistivity to enable reconnection to occur. Our results show that numeri-979

cal resistivity can produce substorms at a realistic rate, as evidenced by the fact that the980

total number of substorms is in line with other lists from the same time period, and the981

waiting time distribution produced by the model is close to that produced by the obser-982

vations. This means that our numerical resistivity is realistic enough that the model can983

capture important aspects of the system dynamics. However, improved prediction of sub-984

storms may require a more realistic resistivity model. One approach is to introduce Hall985

resistivity, which has been shown by observations to play a role in magnetotail reconnec-986

tion [Øieroset ., 2001]. Hall MHD has been implemented in SWMF [Tóth ., 2008], but987
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has not been tested in the context of substorm prediction. Another approach that may im-988

prove substorm-related reconnection physics is the use of a particle-in-cell (PIC) model in989

place of MHD in and near the reconnection region. This has been demonstrated by Tóth .990

[2016] and Chen . [2017] for magnetospheric simulations, but again has not been tested991

for substorm prediction. On the other hand, the PIC approach, while promising for its992

ability to capture aspects of reconnection physics that are not incorporated in ideal MHD,993

is likely too computationally expensive for operational use in the near term.994

Besides night-side reconnection, coupling between the magnetosphere and iono-995

sphere plays an important role in the substorm process. For instance, ionospheric con-996

ductivity influences the strength and spatial distribution of field-aligned currents within997

the magnetosphere [e.g. Ridley ., 2004]. However, there is considerable room for im-998

provement in the models of this conductance, particularly in the auroral zone. SWMF999

currently estimates auroral-zone conductance using an empirical relationship based on1000

the strength of field-aligned currents, since MHD does not directly estimate the precipi-1001

tating fluxes that determine the conductivity in reality [Ridley ., 2004]. Welling . [2017]1002

showed that SWMF is frequently used to simulate conditions that fall outside the range1003

of validity for the existing conductance model. Efforts are currently ongoing to develop1004

an improved empirical model for this purpose [Mukhopadhyay ., 2018]. However, this1005

approach has limitations because the conductance depends on other factors besides the1006

field-aligned current, including particle precipitation, that are not modeled by MHD. An1007

alternative might be to estimate the conductivity using the particle distributions in an in-1008

ner magnetosphere model such as RCM, but this would likely require the development of1009

new empirical relationships between precipitating fluxes and conductivity. Other improve-1010

ments to the MHD model that could influence magnetosphere-ionosphere coupling include1011

the use of anisotropic pressure [Meng ., 2012, 2013], polar outflow [Glocer, Tóth, Gom-1012

bosi Welling, 2009], and multi-fluid MHD [Glocer, Tóth, Ma ., 2009], all of which have1013

been implemented in BATS-R-US and demonstrated in magnetospheric simulations, but1014

none of which have been tested for their effect on substorm prediction. The initial tests of1015

anisotropic pressure and polar outflow in SWMF (Meng . [2012] and Glocer, Tóth, Gom-1016

bosi Welling [2009], respectively) both showed that simulations using those models have1017

increased tail stretching compared with BATS-R-US simulations that do not use them, and1018

increased tail stretching could have a significant influence on substorm dynamics since the1019
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substorm growth stage is associated with magnetotail stretching [e.g. Kaufmann, 1987;1020

Sergeev ., 1990].1021

Of the enhancements mentioned above, ionospheric outflow may be particularly im-1022

portant because it has been shown to be associated with substorms. For instance Øieroset1023

. [1999] and Wilson . [2004] both found that ionospheric outflow increases by a factor of1024

two on average from quiet time to substorm onset, and that stronger substorms are asso-1025

ciated with higher rates of ionospheric outflow. Modeling results have shown that iono-1026

spheric outflow can influence magnetospheric dynamics in general [e.g. Winglee ., 2002;1027

Wiltberger ., 2010] and substorm strength and onset times in particular [e.g. Welling .,1028

2016]. Such results suggest that exploration of ionospheric outflow may be a fruitful path1029

toward improved substorm prediction.1030

5 Conclusions1031

The conclusions of the paper can be summarized as follows:1032

1. We have demonstrated a new technique for substorm identification that combines1033

multiple substorm signatures to reduce false positive identifications as well as re-1034

duce missed identifications.1035

2. The technique can be tuned to produce a mean and mode waiting time that are1036

comparable to previously published results.1037

3. The magnetospheric driving and response at the substorm onset times identified1038

using our technique is consistent with expected behavior during substorms.1039

4. When our substorm identification technique is applied to output from an MHD sim-1040

ulation, we obtain a distribution of waiting times that is comparable to the observa-1041

tional data, driving conditions that are similar to those at the observed epoch times,1042

and a magnetospheric response that is qualitatively similar to (though quantitatively1043

different from) the observed response.1044

5. The MHD simulation has weak, but statistically significant, skill in predicting sub-1045

storms.1046

A: Procedure for identifying dipolarizations1047

Our procedure aims to find points that satisfy the following criteria:1048
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• Local minimum of θ1049

• Onset of a rapid increase in Bz and θ1050

• Near a local maximum of |Br |1051

The procedure consists of first finding local minima in θ by searching for points that1052

are less than both of their immediate neighbors (endpoints in the data are not considered).1053

Neighboring points around each of these local minima are checked against a set of thresh-1054

olds to determine whether they satisfy the criteria given above. Given a minimum in θ,1055

denoted by the subscript i, we specify a set of ranges m : n relative to i, and a threshold1056

Bz or |Br | must satisfy within that range in order for i to be considered a dipolarization1057

candidate. The thresholds are defined as follows:1058

max(Bzi:i+10 ) > Bzi + 2

max(Bzi:i+30 ) > Bzi + 10

max(Bzi:i+60 ) > Bzi + 16

min(|Br |i−10:i−2) < |Br |i − 0.25

min(|Br |i+2:i+20) < |Br |i − 0.5

min(|Br |i+10:i+40) < |Br |i − 2

(A.1)

The thresholds for Bz require an immediate increase in Bz (2 nT in 10 minutes),1059

which proceeds to at least 10 nT within 30 minutes and 16 nT within 60 minutes. This is1060

not a particularly fast increase; the thresholds are designed to identify all dipolarizations1061

and not only the strong ones.1062

The thresholds for |Br | require an increase of at least 0.25 nT within the 10 minutes1063

preceding the candidate onset, a decrease of 0.5 nT within the following 20 minutes, and1064

a decrease of 2 nT within the following 40 minutes. These are fairly weak criteria, and1065

are designed to select candidate onsets occurring near a local maximum, without requiring1066

the maximum be particularly strong nor that the onset candidate occur exactly at the local1067

maximum in |Br |.1068

An additional procedure aims to prevent counting multiple onset times for a single1069

dipolarization event. If an onset j is followed by an onset k within the preceding 60 min-1070

utes, then we require1071
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max(Bz j :k ) > 0.25max(Bzk :k+60 ); (A.2)

that is, the maximum Bz between j and k must exceed 25% of the maximum Bz1072

reached following onset k. If this threshold is not satisfied, the onset having the lowest1073

value of θ is kept and the other is discarded. Finally, for a candidate dipolarization to be1074

included in the final list, the satellite providing the observations must be located on the1075

night side; that is, MLT<6 or MLT>18.1076

The chosen thresholds are not particularly stringent individually, but in combina-1077

tion produce a set of dipolarizations that resembles what has been previously reported for1078

ensembles of dipolarizations. To demonstrate this, we performed a superposed epoch anal-1079

ysis (SEA) of the magnetic fields for the two GOES satellites in the observations. This is1080

shown in Figure A.1, which shows superposed epoch analyses of |Br |, Bz , and θ for dipo-1081

larization onsets identified from the observational data and each of the three model runs.1082

In this figure, and throughout the paper, plots comparing the model runs to each other and1083

to observations use a common color scheme: Observations are shown in light blue, the1084

Hi-res w/ RCM simulation in medium blue, the Hi-res w/o RCM simulation in orange,1085

and the SWPC simulation in green. The lines in Figure A.1 represent the median of the1086

SEA. The number of dipolarizations identified for each dataset is shown in parentheses in1087

the legend. Although the thresholds specified allow for as little as a 16 nT increase in 601088

minutes, the median increase is much faster, closer to 20 nT in 20 minutes. This is similar1089

to what has been reported in previous studies such as Liou . [2002]. The peaks in |Br | are1090

less pronounced than what occurs in Liou . [2002]. This could probably be addressed with1091

more stringent criteria for |Br |, at the cost of possibly missing some dipolarizations.1092

Figure A.1. Superposed epoch analysis of Br , Bz , and inclination angle θ for all dipolarization onset times.1093

B: Comparison of inter-substorm intervals obtained using the Borovsky and Newell1094

algorithms1095

Figure B.1 shows distributions of waiting times for AL onsets identified using the1096

Borovsky Yakymenko [2017] algorithm (blue curve), for AL onsets identified using the1097

Supermag algorithm [Newell Gjerloev, 20111] (orange curve) and for energetic particle1098

injections identified from LANL satellite data by Borovsky Yakymenko [2017] (green1099
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curve). The Supermag algorithm stands out with a modal 1-hour waiting time, while both1100

the AL onsets and the LANL particle injections from Borovsky Yakymenko [2017] pro-1101

duce a modal 3-hour waiting time. The fact that the Borovsky Yakymenko [2017] algo-1102

rithm produces a waiting time distribution that resembles that obtained using particle in-1103

jections contributed to the decision to use the Borovsky Yakymenko [2017] algorithm for1104

substorm identification in the present work.1105

Figure B.1. Substorm waiting times for onsets obtained using the Borovsky (blue curve) and Supermag

(orange curve).

1106

1107

C: Log-space computation of KDE1108

In Section 3.1 we visualize distributions of substorm waiting times using kernel den-1109

sity estimation (KDE). A KDE estimates a probability density function (PDF) by convolv-1110

ing samples of the PDF with a kernel function. For a set of n samples Xi and a kernel1111

function K(x), the KDE is given by1112

f̂ (x) =
1

nh

n∑
i=1

K
(

x − Xi

h

)
. (C.1)

In this paper we take K(x) to be a Gaussian. However, this introduces a difficulty1113

because the waiting times can take only positive values (meaning that the underlying PDF1114

is nonzero only for positive x), while K(x) takes nonzero values everywhere (including1115

negative x). To correct for this, we compute the KDE of log Xi , and evaluate this KDE for1116

log x. Since this log-space transform alters the spacing (and in turn the estimated densi-1117

ties), we must correct this by multiplying the resulting KDE by 1
x (the derivative of log x):1118

f̂ ′(x) =
1
x

f̂ (log x). (C.2)

D: Bootstrapping procedure to estimate confidence intervals for forecast metrics1119

and probability densities1120

The sampling distribution for the HSS is not known [Stephenson, 2000], and this1121

means that no analytical formula is available to estimate the confidence interval. We in-1122

stead employ a bootstrapping procedure [.e.g. Conover, 1999], which involves randomly1123
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sampling the binary event sequence in order to obtain an estimated distribution for the1124

skill score. This is done as follows: Given a sequence of n observed bins oi and n pre-1125

dicted bins pi , we take a sequence of n random samples, with the same indices taken from1126

both sequences. For instance, if n = 9, we might have1127

o = [0,0,1,1,0,0,1,0,1] (D.1)

and1128

p = [0,1,0,1,0,0,0,1,1]. (D.2)

We then generate a sequence of n random integers representing indices to be sam-1129

pled from o and p, for instance we might randomly obtain the indices [8,1,4,4,2,6,5,0,3],1130

which would result in1131

o′ = [1,1,1,1,1,0,0,1,0] (D.3)

and1132

p′ = [1,0,0,1,0,1,0,1,1], (D.4)

from which we can compute a new HSS. We repeat this process N times (typically1133

we use N = 4000). The 95% confidence interval for HSS is the 2.5th and 97.5th per-1134

centiles of the N skill scores obtained from the N sampled distributions. The same proce-1135

dure is applied to estimate confidence intervals for POD and POFD.1136

To obtain a confidence interval for a kernel density estimate, a similar procedure1137

is applied: Given a sequence of n values xi for which a KDE is to be computed, n we1138

generate a sequence of n random integers to be used as indices for xi to produce a new1139

sequence x ′j . A KDE fj(y) is computed from each sequence x ′j , and these points are eval-1140

uated at a series of points yk . This process is repeated N = 2000 times, producing n × N1141

probability density estimates pjk = fj(yk). For each yk , the 95% confidence interval of1142

the KDE is estimated as the 2.5th and 97.5th percentile of the pj values obtained for that1143

evaluation point yk .1144
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