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Abstract19

The societal importance of geothermal energy is significantly increasing because of its20

low carbon-dioxide footprint. However, geothermal exploration is also subject to high21

risks. For a better assessment of these risks, extensive parameter studies are required22

that improve our understanding of the subsurface. This yields computationally demand-23

ing analyses. Often this is compensated by constructing models with a low vertical ex-24

tent. In this paper, we demonstrate that this leads to entirely boundary-dominated and25

hence uninformative models. We demonstrate the indispensable requirement to construct26

models with a large vertical extent to obtain informative models with respect to the model27

parameters. For this quantitative investigation, global sensitivity studies are essential28

since they also consider parameter correlations. To compensate for the computationally29

demanding nature of the analyses, we employ a physics-based machine learning approach,30

namely the reduced basis method, instead of reducing the physical dimensionality of the31

model. The reduced basis method yields a significant cost reduction while preserving the32

physics and a high accuracy, thus providing a more efficient alternative to considering,33

for instance, a lower vertical extent. The reduction of the mathematical instead of phys-34

ical space leads to less restrictive models and, hence, maintains the model prediction ca-35

pabilities. We use this combination of methods for a detailed investigation of the influ-36

ence of model boundary settings in typical regional-scale geothermal simulations and high-37

light potential problems.38

1 Introduction39

Geothermal energy is an important part of the future energy mix on the path to40

a more sustainable use of resources. Many aspects influence the potential use of a geother-41

mal resource, with one prime parameter being the temperature in the subsurface. In or-42

der to determine expected temperatures on a regional scale, geothermal simulations are43

often performed (Gelet et al., 2012; Kohl et al., 1995; O’Sullivan et al., 2001; Taron et44

al., 2009; Watanabe et al., 2010). A common procedure is to start with a geological model,45

representing the main geological sequences, grouped by similar thermal properties, and46

to use this information for the parameterization of a geothermal simulation (Cacace et47

al., 2010; Mottaghy et al., 2011a; Sippel et al., 2015). However, the (effective) thermal48

parameters of subsurface geological units (e.g. thermal conductivity, heat production rate)49
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are generally uncertain and the material parameters are therefore often calibrated on the50

basis of temperature observations.51

Extensive parameter studies or full uncertainty quantification studies are non-trivial52

since basin-scale models tend to be computationally demanding. To overcome this is-53

sue, a common approach is to generate models that have a large horizontal extension but54

a very low vertical extent (Pribnow & Schellschmidt, 2000; Pribnow & Clauser, 2000;55

Mottaghy et al., 2011b; Vogt et al., 2013; Kastner et al., 2015). The boundary condi-56

tions for these models are either based on best estimates or retrieved from larger mod-57

els (Noack et al., 2013). We investigate here in detail how these typical approaches to58

treat boundary conditions influence all subsequent analyses, leading partly to fully boundary-59

dominated models. Here, we demonstrate that they only have very limited capabilities60

for the analysis and understanding of the physical processes. During the model calibra-61

tion, we can compensate for possible boundary errors through an adjustment of the ther-62

mal properties. Meaning that this has no direct impact on the temperature distribution63

but a significant impact on the physical plausibility of our model. Hence, for scenarios64

that lay outside of our calibrated regime, we lose any prediction capabilities. This is a65

major restriction when considering the sparse nature of our observations.66

In order to investigate the influence of thermal boundaries, we employ full global67

sensitivity analyses (SA) for several case studies. These types of global SA approaches68

are usually not performed due to the high associated computational cost. To address this69

computational challenges, we are replacing a full finite element solution of our forward70

solves with the reduced basis solution. This approach aims to reduce the complexity of71

the mathematical instead of physical space, yielding fast, accurate, and physics-preserving72

surrogate models. With these surrogate models, we then perform the global sensitivity73

analyses on several model realizations of a regional-scale geothermal basin model in north-74

ern Germany (around Berlin and the state of Brandenburg) to demonstrate the influ-75

ence of the lower boundary condition on the simulation.76

Additionally, we perform an automated model calibration to provide an objective77

and reproducible way to compensate for the errors of both the physical and geological78

model. Sensitivity analysis for basin-scale models have been performed before in Noack79

et al. (2012) and also been combined with automated model calibrations (Wellmann &80

Reid, 2014). Also, Fuchs and Balling (2016) consider model calibrations but in their case81
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without sensitivity analyses. Furthermore, local sensitivity studies are presented in Ebigbo82

et al. (2016). However, none of these can address the computationally demanding na-83

ture of the problem. Therefore, they are limited in the number of parameters, sensitiv-84

ity analyses, and model calibrations they can perform. By using a physics-based machine85

learning approach instead of the finite element method, we can reduce the compute time86

of the forward solve by several orders of magnitude. It allows, in turn, to perform global87

sensitivity analysis and full flexibility in the model calibration.88

Global sensitivity analyses have been performed for hydrological problems (van Griensven89

et al., 2006; Tang et al., 2007; Cloke et al., 2008; Zhan et al., 2013; Baroni & Tarantola,90

2014; Song et al., 2015), for volcanic source modeling (Cannavó, 2012), and for geother-91

mal heat exchangers (Fernández et al., 2017). In Degen, Veroy, Freymark, et al. (2020),92

the authors have investigated the influence of both local and global sensitivity studies93

for the Upper Rhine Graben. In this paper, we want to use the combination of the global94

sensitivity study and model calibration, as presented in Degen, Veroy, Freymark, et al.95

(2020), to investigate the influence of the placement of the boundaries on the model pre-96

dictions.97

The paper is structured as follows: We present the methodologies and the govern-98

ing equations. In Section 2 and in Section 3, we conceptually introduce the problem of99

the lower boundary condition using a simple 1D model. Section 4 presents the impact100

of the lower boundary conditions, by focusing on a real-case basin-scale application. There-101

fore, we present and discuss the results of both global sensitivity analyses and model cal-102

ibrations.103

2 Materials and Methods104

In the following, we will briefly describe the geothermal conduction problem used105

for the forward simulations of the temperature. Furthermore, we introduce the concept106

of sensitivity analyses.107

2.1 Physical Model108

For the simulation of the temperature field, we are considering a geothermal con-

duction problem with the radiogenic heat production S as the source term after Bayer
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et al. (1997):

λ∇2T + S = 0, (1)

where λ is the thermal conductivity, and T the temperature. Nondimensionalizing the109

problem, for efficiency reasons and to investigate the relative importance, leads to eq.110

2:111

λ

λref Sref

∇2

l2ref

(
T − Tref

Tref
) +

S

Sref Tref λref
= 0. (2)

Here, λref is the reference temperature, Tref the reference temperature, Sref the reference112

radiogenic heat production, and lref the reference length. Note that the Laplace oper-113

ator (∇) is used on the nondimensional space. For the motivational study we neglect the114

radiogenic heat production to focus the analysis on the heat diffusion and the bound-115

ary condition. Furthermore, we apply for all models Dirichlet boundary conditions at116

the top and bottom of the model domain.117

2.2 Sensitivity Analysis118

Sensitivity analyses aim to determine which model parameters influence the model119

response to what extent. So, in our studies, we want to investigate, which thermal con-120

ductivities and radiogenic heat productions have a significant impact on the tempera-121

ture distribution. We distinguish two types of sensitivity analyses: local and global ones.122

Local sensitivity analyses consider that all parameters are independent of each other. In123

contrast, global sensitivity studies investigate also the parameter correlations. A detailed124

comparison of both methods for hydro-geological problems is presented in Wainwright125

et al. (2014) and for basin-scale geothermal application in Degen, Veroy, Freymark, et126

al. (2020).127

For the sensitivity analysis (SA), we need to define a quantity of interest. We use128

the L2-norm of the temperature misfit to the reference model as our quantity of inter-129

est, for the motivational. The quantity of interest for the real-case model is the L2-norm130

of the temperature misfit between the simulated and observed temperature values.131

For the global sensitivity analysis, we are using the Sobol method with the Saltelli132

sampler, this is a variance-based sensitivity analysis operating in a probabilistic frame-133

work. Further information regarding the Sobol method can be found in Sobol (2001);134
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Saltelli (2002); Saltelli et al. (2010). For the sensitivity analyses, we are using the python135

library SALib (Herman & Usher, 2017).136

2.3 Model Calibration137

The main aim of this paper is to investigate the influence of the lower boundary138

condition on our physical interpretation through an evaluation of the temperature dis-139

tribution. This the reason why we make use of global sensitivity analyses. However, in140

practical applications, we often want to calibrate our model against existing tempera-141

ture measurements to ensure the correctness of the model.142

For this, we require model calibrations, which aim to compensate for existing model143

errors by an adjustment of the model parameters. For deep geothermal applications cal-144

ibrations are challenging since we usually have only a few shallow data points (Degen,145

Veroy, Freymark, et al., 2020). As we will see for the real-case study, it is possible to ad-146

just a given model to the observed temperatures. However, larger model errors yield un-147

physical model parameters, imposing the danger of losing the predictability for obser-148

vation points that have not been included in the calibration. This aspect will be discussed149

in detail later on.150

In this work, we employ a trust region reflective algorithm as the calibration method,151

which is a suitable choice for constrained problems, meaning that we have defined ranges152

for our thermal parameters (Branch et al., 1999). During the calibration, we minimize153

the L1 norm of the misfit between the simulated and observed temperature measurements.154

We consider the L1 norm to put less weight on outliers. The analysis is performed through155

the python library SciPy (Virtanen et al., 2020). For more details regarding the method,156

we refer to Branch et al. (1999) and more details regarding the application to basin-scale157

models we refer to Degen, Veroy, Freymark, et al. (2020).158

3 Motivational Example159

In this paper, we investigate the influence of the impact of the lower boundary con-160

dition on the temperature distribution. This is an issue concerning geological models in161

general. For this reason, we first demonstrate the problem using a highly simplified mo-162

tivational model. This motivational study aims to illustrate the general problems and163

not to represent a realistic geothermal application. To demonstrate that the issue has164
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a major impact on real-case geothermal applications, we extend the investigation to the165

real-case study of Berlin-Brandenburg (a sedimentary basin in north-eastern Germany166

which is introduced in Section 4).167

3.1 Forward Model168

We first introduce the forward problem used for the motivational study, for which169

we consider a simplified 1D model. The 3-layer model, schematically shown in Fig. 1,

z=0

z=0.45

z=1__

__

____

__

T=0

T=1

λ3=1.0

Layer 1

Layer 2
Layer 3

λ2=1.5 z=0.55__

λ1=1.0

Figure 1. Schematic representation of the 3-layer 1D model used for the motivational study of

the boundary condition problem. The depth is denoted with z, the temperature with T , and the

thermal conductivity with λ.

170

consists of three layers, where the middle layer is thinner than both adjacent layers. Fur-171

thermore, the thermal conductivity of all layers is 1.0. We chose a thermal conductiv-172

ity of 1.0 for the top and bottom layer and a thermal conductivity of 1.5 for the thin layer.173

At the top of the model, we apply a Dirichlet boundary condition of zero for the tem-174

perature and at the bottom a Dirichlet boundary condition of one. We solve the model175

analytically. Note that we consider the nondimensional form to focus the analysis on the176

relative difference.177

In the following analyses, we analyze the influence of the thermal conductivity of178

the thin middle layer (Layer 2 in Fig. 1) with respect to its distance from the bound-179

ary conditions. Therefore, we change the position of the thin layer. Three different po-180

sitions of the thin layer are considered: i) the thin layer adjacent to the base boundary181

condition (position P1 in Fig. 2), ii) the thin layer in the center of the model (position182
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P2 in Fig. 2), and iii) the thin layer adjacent to the top boundary condition (position183

P3 in Fig. 2). For the sensitivity analysis, we define the scenario P2 as the reference model,184

where the thin layer is located around the center (see Fig. 1). Consequently, the refer-185

ence model represents the case of the lowest possible boundary influence.186

3.2 Impact of the Boundary Condition187

To determine the influence of the lower boundary condition, we perform a global188

sensitivity analysis with 100 equally spaced temperature measurements in depth rang-189

ing from zero to one. Furthermore, we allow a variation range of ± 50 % for the ther-190

mal conductivities of all three layers.191

The results of the global SA are shown in Fig. 2. Before discussing the results for192

this SA, we want to specify the terminology. In Fig. 2 we obtain first- and total-order193

terms. The first-order terms describe the influence from the parameter itself, whereas194

the total-order term describes the influence from the parameter plus any parameter cor-195

relations. Consequently, the correlation is defined as the difference between the total-196

and first-order contributions. We want to investigate the influence of both boundary con-197

ditions on the model. Therefore, we need to take the scenario, where the thin layer is198

in the center of the model (P2) as the reference case. This means that high influences199

of the parameters correspond to a high boundary dominance.200

For our simple model, all thermal conductivities are dominated by total-order con-201

tributions for all three scenarios (P1-P3). This means that we have high parameter cor-202

relations. The high correlations are induced by the set-up of the model, where the tem-203

perature distribution is only determined by the two Dirichlet boundary conditions and204

by the ratio of the thermal conductivities between adjacent layers. Furthermore, the in-205

fluence of λ2 is at all three positions the lowest, which is an effect of the lower thickness206

of this layer. Also note that for λ2, we observe nearly no first-order influences.207

Focusing on scenario P1, we obtain the highest boundary dominance for λ1, which208

is situated at the upper boundary condition. The lowest influence is obtained for λ2 be-209

cause of the above-described reason. λ3 has a significantly lower influence of the bound-210

ary than λ1, which is logical since it is further away from the boundary. Interesting is211

that the decrease in the first-order contributions is more pronounced than the decrease212

in the total-order contributions. This shows that the remaining boundary influences are213
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mainly arising from parameter correlations. By having a detailed look at the SA, we ob-214

serve that the main correlations are arising from the correlation between λ1 and λ3. For215

scenario P3, we observe the same behavior with reversed roles for λ1 and λ3. For sce-216

nario P2, we obtain a boundary dominance of λ1 and λ3, which are both adjacent to the217

boundaries. λ2 is situated in the center of the model, resulting in negligible contribu-218

tions.219

The results for all three scenarios are following our expectations since we obtain220

the smallest boundary influences if the layers are further away from the boundaries. Note
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Figure 2. Black Box: First- and total-order Sobol sensitivity indices of the thermal conductiv-

ities for the 3-layer model with respect to the distance from the boundaries. Blue Box: Scenarios

P1, where the thin layer is adjacent to the bottom model boundary. Orange Box: Scenarios P2,

where the thin layer is in the middle of the model boundary. Green Box: Scenarios P3, where the

thin layer is adjacent to the top model boundary. Note that the interfaces of the thin layer are

denoted with L.

221

that these results can only be returned by a global SA. A local SA would assume that222

the influence is coming from the parameter itself. As an example, in P1 this would lead223
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to a significant overestimation of the influence of λ3. In the worst case, this yields the224

misleading conclusion that λ3 is still greatly influenced by the boundary.225

To conclude, for our motivational example we lose the information about the thin226

layer when it approaches the boundary condition. Or, as an alternative viewpoint, these227

two examples highlight the strong influence of boundary conditions on the simulation228

results. In a typical geothermal simulation setting, the position of the top boundary con-229

dition is usually defined as the land surface and cannot be changed. Its impact and pos-230

sible ways to solve the issue have been discussed in Degen, Veroy, and Wellmann (2020b).231

In contrast, the position of the lower boundary condition is usually adjustable.232

4 Case Study Berlin-Brandenburg233

After demonstrating the general problem of the placement of the boundary for ge-234

ological models, we want to show the consequences for real-case studies. Therefore, we235

exchange our simplified 1D example with various representations of the Berlin-Brandenburg236

model, which cover a sedimentary basin in north-eastern Germany (see Fig. 3).237

4.1 Berlin-Brandenburg Models238

In this paper, we are using three different versions of the Berlin-Brandenburg (BB)239

model. The first version, from now on denoted as the Berlin-Brandenburg LAB model240

(BB-LAB), has already been presented in Noack et al. (2012) and can be seen in Fig-241

ure 3a. It has an extension of 250 km in the x- and of 210 km in the y-direction and ex-242

tends down to the lithosphere–asthenosphere boundary (LAB). The model consists of243

15 lithological units and the mesh consists of deformed eight-noded prisms. The grid res-244

olution is one km in the horizontal directions, whereas the vertical length of the layers245

corresponds to the vertical element length, resulting in a mesh with 840,000 degrees of246

freedom.247

The second model, in the following, referred to as the Berlin-Brandenburg 6 km248

model, or BB-6km (Figure 3b), has the same horizontal extent but extends to a depth249

of 6 km instead of down to the LAB. It is presented in Noack et al. (2013) and consists250

of 12 lithological units. The model is discretized into a tetrahedral mesh. In compari-251

son to the Brandenburg LAB model, it is refined in both geological and grid resolution252

terms. We have a horizontal element resolution of 0.22 km2 and a vertical resolution that253
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is interpolated from the z-evaluations of the geological layers with a minimum thickness254

of 0.1 m, resulting in a mesh of 1,546,675 degrees of freedom.255

a)

Geology
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10
9
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4
3
2
1
0b)

c)

a) + b)
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CH
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I

CZ
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Figure 3. Geology of the a) Berlin-Brandenburg LAB model, b) Berlin-Brandenburg 6 km

model, and the c) Berlin-Brandenburg combined model. For the acronyms, we refer to Table S1.

Combining the Berlin-Brandenburg 6 km model, the Berlin-Brandenburg LAB model,256

and removing the minimal vertical thickness of 0.1 m results in the third version of the257

Brandenburg model, denoted as the Berlin-Brandenburg combined model, or BB-combined258

(Figure 3c). Consequently, this model consists of 17 geological layers, where the upper259

11 layers have the same resolution as in the BB-6km model. The lower six layers have260

the same vertical resolution as the BB-LAB model and the same horizontal resolution261

as the Berlin-Brandenburg 6 km model. This results in a tetrahedral mesh with 2,141,550262

degrees of freedom.263

For both the BB-LAB and BB-combined model, we apply a Dirichlet boundary con-264

dition of 8 °C, corresponding to the average annual temperature, at the top of the model.265

Moreover, we set a Dirichlet boundary condition of 1300 °C at the base of the LAB (Turcotte266

& Schubert, 2002). Additionally, we allow a scaling of this boundary condition of ± 10 %267

to account for errors in the geometrical description of the LAB. The Berlin-Brandenburg268

6 km model has the same upper boundary condition, but at the bottom, we use various269

Dirichlet boundary conditions directly taken from the Berlin-Brandenburg LAB model.270

Furthermore, we consider a lower boundary conditions derived by Kriging. For this in-271
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terpolation, we consider 900 equally spaced temperature observation from the BB-LAB272

model in a depth of 6 km and derive the interpolated boundary with a spherical vari-273

ogram. All thermal properties are summarized in Table S1. The forward simulations are274

performed using the DwarfElephant package (Degen, Veroy, & Wellmann, 2020a) with275

a linear and nonlinear solver tolerance of 10-10. Due to the nondimensional nature of the276

problem, no preconditioners are needed for the finite element evaluations.277

We set the reference thermal conductivity λref to the maximum thermal conduc-278

tivity of the BB-LAB model of 3.95 W m-1 K-1. For the BB-LAB and the BB-combined279

model, the maximum temperature of 1300 °C is the reference temperature Tref, whereas280

for the BB-6km model a reference temperature of 8 °C is chosen. Homogeneous Dirich-281

let boundary conditions are used to achieve a better performance of the numerical meth-282

ods (Degen, Veroy, & Wellmann, 2020a). The Berlin-Brandenburg 6 km model has a con-283

stant Dirichlet boundary condition at the top. At the bottom, the model has a Dirich-284

let boundary condition with a different temperature value for each element. We set the285

top boundary condition to zero by using the value of the top boundary as our reference286

parameter. The bottom boundary condition is set to zero via a lifting function. In case287

of the Berlin-Brandenburg LAB and combined model, we have constant Dirichlet bound-288

ary conditions values for both upper and lower boundary, and hence we can use both of289

them as our reference parameter. We chose the value of the lower boundary condition290

to better reduce the magnitude of the temperatures, which yields a better performance.291

The maximum radiogenic heat production of the BB-LAB model of 2.5 µW m3 is the292

reference radiogenic heat production Sref. The reference length lref corresponds to the293

maximum x-extent of all models (250,000 m).294

For the validation of the models we use temperature measurements presented in295

Noack et al. (2012, 2013) and based on Förster (2001). The temperature consists of 81296

temperature measurements from 44 wells in the area of Brandenburg. It has been mea-297

sured at various depth and stratigraphic levels.298

4.1.1 Reduced Models299

The reduced basis (RB) method is a model order reduction technique that aims300

to significantly reduce the dimensionality of problems resulting from a discretization (e.g.301

via finite elements) of parameterized partial differential equations (PDE). The method302
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is decomposed into an offline and online stage, where the offline stage, being a one time303

cost, constructs a reduced basis, and therefore compromises all expensive pre-computations.304

The online stage uses this reduced basis to allow very fast forward evaluations, typ-305

ically in the range of a few milliseconds (Degen, Veroy, & Wellmann, 2020a). In contrast306

to other surrogate models, the RB method has the advantage that temperatures can be307

extracted at every location of the model and not only at predefined points. Furthermore,308

for geothermal conduction problems, it provides an error bound, enabling an objective309

evaluation of the approximation quality.310

For further information regarding the RB method we refer to Prud’homme et al. (2002);311

Veroy et al. (2003); Hesthaven et al. (2016) and for further information in the context312

of geosciences we refer to Degen, Veroy, and Wellmann (2020a).313

For using the RB method, we decompose our geothermal problem into a parameter-314

dependent and -independent part. In the following, we define the affine decompositions315

of the integral formulation of the PDE for the various scenarios of the Brandenburg model.316

Note that we use the operator representation. Therefore, we talk about the bilinear form317

instead of the stiffness matrix, and the linear form instead of the load vector.318

For all Berlin-Brandenburg models, the bilinear form a has the following decom-

position:

a(w, v;λ) = −
n∑

q=0

λq

∫
Ω

∇w ∇v dΩ, ∀v, w ∈ X, ∀λ ∈ D, (3)

where w ∈ X is the trial function, v ∈ X the test function, “q” denotes the index of319

the training parameter (for more information see Tab. S1), X the function space (H1
0 (Ω) ⊂320

X ⊂ H1(Ω)), Ω the spatial domain in R3, λ ∈ D the parameter, and D the parame-321

ter domain in Rn. We denoted the number of thermal conductivities in the training sam-322

ple with n. Consequently, n is equal to thirteen, nine, and fourteen for the BB-LAB, BB-323

6km, and BB-combined model, respectively.324

For all Berlin-Brandenburg models, except the BB-6km model with a lower bound-

ary condition derived via Kriging, the linear form f is decomposed in the following way:

f(v;λ, s) =−
n∑

q=0

λq s

∫
Γ

∇v g(x, y, z) dΓ + s

∫
Γ

∇v S dΓ, ∀v ∈ X, ∀λ ∈ D,

with g(x, y, z) = Ttop
h(x, y, z)− zbottom(x, y)

d(x, y)
.

(4)
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Here, Γ is the boundary in R3, s the scaling parameter for the lower boundary condi-325

tion, g(x, y, z) the lifting function, Ttop the temperature at the top of the model, h(x, y, z)326

the location in the model, zbottom(x, y) the depth of the bottom surface, and d(x, y) the327

distance between the bottom and top surface.328

For the BB-6km with a Kriging lower boundary condition, the linear form slightly

changes to the following:

f(v;λ, s) =−
8∑

q=0

3∑
i=0

λq si

∫
Γ

∇v gi(x, y, z) dΓ + s2

∫
Γ

∇v S dΓ, ∀v ∈ X, ∀λ ∈ D,

with g1(x, y, z) = g3(x, y, z) = 1− h(x, y, z)− zbottom(x, y)

d(x, y)
,

g2(x, y, z) =(
3 d(x, y)

2a
− 1

2
(
d(x, y)

a
)3)(1− h(x, y, z)− zbottom(x, y)

d(x, y)
).

(5)

Here g1, g2, and g3 are again the lifting functions, with s1 being the nugget, s2 the par-329

tial sill, s3 the scaling parameter for the mean temperature, and a the range.330

4.1.2 Parameterization and Set-Up of the Sensitivity Analysis331

The sensitivity analyses are performed with 13 (BB-LAB model – Fig. 3a), 11 (BB-332

6km model – Fig. 3b), 14 parameters (BB-combined model – Fig. 3c) and with 10,000333

realizations for each parameter to reduce the statistical error. Note that for the Berlin-334

Brandenburg 6 km model we show exemplarily the results using the Kriging lower bound-335

ary condition. The results of the sensitivity analyses using the other boundary condi-336

tions are analog to the one shown in this manuscript. We only vary thermal conductiv-337

ities and keep the radiogenic heat productions constant, to reduce the number of param-338

eters within the reduction and all further analyses. We fix the radiogenic heat produc-339

tions and not the thermal conductivities because their influence on the overall temper-340

ature distribution is smaller. We allow a variation of ± 50 % from the initial thermal341

conductivities. Also, for the nugget and the partial sill, we allow a variation of ± 50 %.342

For the scaling parameter of the lower boundary of both the Berlin-Brandenburg LAB343

model and Berlin-Brandenburg combined model we allow a variation ± 10 % and for the344

scaling parameter of the mean temperature at the lower boundary condition of the BB-345

6km model ± 20 %, in order to account for the uncertainties related to those boundary346

conditions.347
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Figure 4. Global Sensitivity analysis for a) the Berlin-Brandenburg LAB, b) Berlin-

Brandenburg 6 km model, and c) Berlin-Brandenburg combined model. We show the first- (blue)

and total-order contributions (orange). Please refer to Tab. S1, for the acronyms of the thermal

conductivities

4.2 Results348

As for the conceptual study, we want to demonstrate the influence of the lower bound-349

ary condition. Therefore, we first present the results from the sensitivity analysis and350

then the results from the model calibration.351

–15–



manuscript submitted to JGR: Solid Earth

4.2.1 Sensitivity Analysis352

Before presenting the results of the sensitivity analyses, note that all analyses were353

performed with the aim to investigate the influence of the lower boundary condition. We354

do not aim to characterize the influences of every single thermal parameter in the model.355

Nevertheless, some geological impacts can be derived and are presented in the follow-356

ing.357

Regarding the sensitivities, the Berlin-Brandenburg LAB (Fig. 4a) is mostly in-358

fluenced by the Lower Cretaceous/Jurassic/Buntsandstein layer. The first-order sensi-359

tivity index is dominant over the higher-order indices. Furthermore, the model is sen-360

sitive to the Quaternary/Tertiary layer and the Lithospheric Mantle. For the Quater-361

nary/Tertiary layer, we again have predominantly first-order influences, whereas the Litho-362

spheric Mantle mostly impacts through higher-order contributions. Less pronounced is363

the influence from the Zechstein layer. The observed influence has similar first- and higher-364

order contributions. This is counter-intuitive since one would expect a high influence of365

the Zechstein layer due to its high thermal conductivity and highly variable thickness366

resulting in significant property contrast. To explain this discrepancy, we take a closer367

look at the set-up of the sensitivity analysis. In the analysis, we combined layers with368

equal thermal conductivities. Therefore, the thermal conductivities of the Lower Cre-369

taceous, Jurassic, and Buntsandstein layer are combined. Consequently, the high influ-370

ence of this layer is originating from this high combined sediment thickness. Keep in mind371

that the aim of this analysis is to determine the influence of the boundary condition. For372

determining which individual thermal conductivity has the highest influence a separate373

analysis is required. The remaining thermal conductivities have minor influences and are374

therefore disregarded in further analyses.375

The Berlin-Brandenburg 6 km model is only influenced by the Basement layer and376

by the variability of the lower boundary condition (Fig. 4b). The influence of the scal-377

ing parameter of the mean temperature is significantly higher than the one from the Base-378

ment layer. Higher-order contributions dominate both parameters. Note that the Base-379

ment layer has nearly no first-order contributions, whereas the scaling parameter has non-380

dominant first-order contributions.381

For the Berlin-Brandenburg combined model (Fig. 4c), we observe a similar pat-382

tern. The highest influences, dominated by first-order contributions, are arising from the383

–16–



manuscript submitted to JGR: Solid Earth

Lower Cretaceous/Jurassic/Buntsandstein layer. The influence of both the Lithospheric384

Mantle and the scaling parameter of the lower boundary condition increased, but higher-385

order contributions still dominate both parameters. The Tertiary-pre-Rupelian-clay/Upper386

Cretaceous, and the Zechstein layers are also influencing on the model and comparable387

first- and higher-order contributions to each other.388

4.2.2 Model Calibration – Temperature Distribution389

We take the results from the global sensitivity analysis as an input for the follow-390

ing model calibration. Model calibration is necessary to account for model errors of the391

Berlin-Brandenburg model. Since the calibrations use the results from the sensitivity anal-392

yses, we vary six, two, and six thermal conductivites within the calibration for the Berlin-393

Brandenburg LAB, Berlin-Brandenburg 6 km, and Berlin-Brandenburg combined model,394

respectively.395

The calibration of the Berlin-Brandenburg 6 km model is challenging because of396

the lower boundary condition. The conventional way to define this boundary condition397

is to extract it from the calibrated BB-LAB model and apply it to the BB-6km model,398

although it is generally not clear that the calibration for the larger model is also valid399

for the shallower model. To evaluate the influence of different calibration results, we com-400

pare the model calibration for the shallow model using the boundary condition from two401

uncalibrated Brandenburg LAB model versions and various hierarchical model calibra-402

tions. For the hierarchical models, we chose either the boundary condition from the cal-403

ibrated BC or a boundary condition obtained via Kriging as the lower boundary con-404

dition.405

Therefore, we compare in Figure 5 the model calibrations using various lower bound-406

ary conditions of the Berlin-Brandenburg 6 km model. At the top panel, we show the407

difference at the observation points. The differences between the various methods are408

comparably small, which is not surprising since the calibration aims to minimize the dif-409

ference between the simulated and observed temperatures at these locations. However,410

if we look at the three points (P1 to P3, positions shown in Fig. 6), we observe differ-411

ences between the various calibrations that can exceed 50 °C. Showing the impact that412

the choice of the boundary conditions has on the overall model.413
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P1 P2 P3

Measurement Points

Figure 5. Comparison of the different calibration versions of the Berlin-Brandenburg-6 km

model for the observed temperatures at all temperature measurements within the model (top

panel) and at three points in the model (bottom panels) The position of the three points P1-P3

are shown in Fig. 6. They where chosen to cover the low temperature, the high temperature, and

the by salt structures influenced temperature regions.

We now compare temperature distributions for the interval of the uppermost 6 kilo-414

meters of all three versions of the Berlin-Brandenburg model in Fig. 6. For the BB-6km415

model, we only show exemplarily the hierarchical model calibration. The differences for416

all three points (P1 to P3) are comparable among the models. Note that the possible417

variation range of the BB-6km is much larger since the determination of the lower bound-418

ary condition is uncertain (see Fig. 5). The BB-LAB and BB-combined model already419

show the maximum possible variation, whereas the BB-6km model shows only the max-420

imum variation range of the good-fit model.421

Lastly, in Fig. 7 we show the differences in the temperature distributions at the422

three points (P1 to P3) for the entire depth of the BB-LAB and BB-combined models.423

The major difference between both models is induced by the different treatments of the424

boundary condition. During the sensitivity analysis of the BB-LAB model, the scaling425

parameter of the lower boundary condition did not significantly influence the model re-426

sponse, contrary to the analysis of the BB-combined model. Therefore, we consider in427

the latter model the scaling parameter in the calibration, wheres we keep the value con-428
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Figure 6. Comparison of the temperature distribution over an interval of 6 km depth for

all three versions of the Berlin-Brandenburg model at three different points in the models. The

top left panels show the initial and calibrated temperature values or BB-LAB model and the

stratigraphic columns for the points P1-P3. The top right panels show the same for the BB-6km

model and the bottom panels for the BB-combined model. The bottom right panel shows the

spatial position of the three points P1-P3.
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over the entire model depth. For the positions of P1-P3 refer to Fig. 6.

stant for the former model. Although, we allow with a maximum temperature increase429

of 10 % a great amount of variation, the possible variations at a depth of 6 km are com-430

parable to those of the Brandenburg 6 km model.431
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4.2.3 Approximation Quality and Computational Cost432

Model Forward

Time

FE [s]

Online

time

RB [s]

Speed-

up

Time

for SA

[min]

Func-

tion

evalu-

ations

SA

Number

of basis

functions

Rel.

error

tolerance

BB-LAB 73 4·10-3 1.81·104 15.5 2.8·105 248 5·10-4

BB-6km 526 2·10-3 2.77·105 5.4 2.4·105 143 1·10-3

BB-combined 501 5·10-3 1.02·105 47.8 3.0·105 273 5·10-4

Table 1. Summary of the computational cost for the global sensitivity analysis using the RB

method.

We now briefly present the computational costs for the methodologies presented433

here (Tab. 1). For the BB-LAB and the BB-combined model, we defined a relative er-434

ror tolerance of 5·10-4 and for the BB-6km model a tolerance of 1·10-3 for the model re-435

duction. We reach these error tolerances in all cases (Fig. S1). Our most accurate mea-436

surements are 10-1 accurate, and the deepest measurement is at a depth of around 7 km.437

We chose these error tolerances to ensure that we do no introduce additional errors through438

the approximation in the entire model.439

For the BB-LAB model, we require 248 basis functions to reach our pre-defined er-440

ror tolerance. This leads to a reduction of compute time for a single forward simulation441

from 73 s to 4 ms. Hence, we have a speed-up of 1.81·104. Similarly, we require 143 ba-442

sis functions to describe the BB-6km model and 273 for the BB-combined model (Fig.443

S1). Hence, we reduce the compute time for the BB-6km model from 526 s to 2 ms and444

for the BB-combined model from 501 s to 5 ms. Consequently, we obtain speed-ups of445

2.77·105 and 1.02·105 for the BB-6km and the BB-combined model, respectively. The446

simulations for the speed-up have been performed on MacBook Pro (Intel Core i7, 2.5 GHz,447

16 GB memory) using a single core. Using a physics-based machine learning approach448

resulted in compute times of 15.5 min (BB-LAB model), 5.4 min (BB-6km model), and449

47.8 min (BB-combined model) for the Sobol sensitivity analysis with 280,000, 240,000,450

and 300,000 function evaluations, respectively.451
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4.3 Discussion452

We demonstrated the dangers of constructing models with a low vertical depth. To453

further illustrate the importance of the placement of the lower boundary condition, we454

first discuss its impact by using the results of the global sensitivity study. Afterwards,455

we emphasize the consequences for inverse processes, by using a deterministic model cal-456

ibration. Both analyses are presented for the case study of the Berlin-Brandenburg model.457

4.3.1 Sensitivity Analysis458

The impact of the lower boundary condition is apparent by focusing on the differ-459

ence between the BB-6km, and the BB-LAB and combined models. For the Berlin-Brandenburg460

6 km model, we fixed the boundary condition at 6 km depth, resulting in an entirely bound-461

ary dominated model. This is observable due to the enormous sensitivity of the model462

to the:463

• Basement layer,464

• scaling parameter of the respective boundary condition, and465

• correlation between both parameters.466

Consequently, all information that we obtain from the Brandenburg 6 km model is com-467

ing from the boundary condition. Hence, we have a model that is uninformative concern-468

ing the upper layers. However, these are the layers we are interested in since our target469

region is within these layers. Loosing the information about the thermal conductivities470

means that only the boundary is determining the solution. Hence, any errors of the bound-471

ary conditions have a possible huge impact on the temperature distribution at our tar-472

get depth. This demonstrates that generating diffusive models with an extremely low473

vertical to horizontal length ratio is to be avoided at any cost.474

The results of the global sensitivity analysis of the BB-LAB and combined model475

are matching our expectations. We observe a high sensitivity for the upper layers, which476

is caused by the shallow measurements (500 m to 6,820 m). First-order contributions of477

the Lower Cretaceous/Jurassic/Buntsandstein layers mostly impact the model. That means478

that the thermal conductivities of these layers are influencing the model themselves and479

not through a correlation with other layers. For the BB-LAB model, we combined the480

thermal conductivity of the Quaternary and the Tertiary layer into one training param-481
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eter. For the Brandenburg combined model, we combined the thermal conductivities of482

the Quaternary and Tertiary-post-Rupelian, and the Tertiary-pre-Rupelian-clay and Up-483

per Cretaceous. Comparing the sensitivity analysis of both the BB-LAB model and com-484

bined model, we can conclude that the Tertiary-pre-Rupelian-clay is the layer that the485

model is sensitive to. We can rule out the Quaternary, and the Tertiary-post-Rupelian486

layer because the Berlin-Brandenburg combined model is insensitive to it. Furthermore,487

we can also eliminate the Upper Cretaceous because the Berlin-Brandenburg LAB model488

is insensitive to it. Also, the influence of the thermal conductivity of the Tertiary-pre-489

Rupelian-clay is mainly originating from the parameter itself and not from interactions490

between various parameters. Again, the influence of the Tertiary-post-Rupelian-clay seems491

counter-intuitive due to its low thickness. This influence is a combination of the shal-492

low measurements, which lead to higher influences for the upper layers and the Dirich-493

let boundary condition at the top. This boundary conditions fixes the temperature for494

each evaluation to the same value, yielding a reduced influence of the Quaternary and495

therefore a relatively higher influence of the Tertiary layers.496

Additionally, we get, for both models, a significant influence of the Lithospheric497

Mantle. Higher-order contributions dominate this parameter, and the second-order sen-498

sitivity indices show the parameter is correlated to the scaling parameter of the lower499

boundary condition. The Zechstein layer has similar influences in both model versions500

and is less significant in comparison to the overall influences.501

To conclude, the only meaningful way to construct the model is by inserting the502

refined model into the original Berlin-Brandenburg LAB model. This results in the BB-503

combined model, which again shows the expected sensitivity distribution. One needs to504

keep in mind that this means an increase in degrees of freedom from 1,546,675 to 2,141,550.505

Nonetheless, both the finite element and the online execution time for both models are506

comparable since the complexity in these two models remains similar. This demonstrates507

that a reduction in the mathematical and not in the physical space is advantageous since508

it is much less restrictive.509

4.3.2 Model Calibration510

At first hierarchical model calibrations seem to be a way to transfer the knowledge511

from large-scale coarse models to smaller-scale fine discretized models. However, the sen-512
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sitivities clearly show that the smaller model becomes uninformative towards the upper513

layers. That is especially dangerous because it is not noticeable looking at the temper-514

ature distributions at the observation points only. Hence, at a first glance, one would get515

to the conclusion that cutting-of the model at 6 km is a valid approach. However, this516

would only be possible if our sole interests are the temperatures at the measurement points517

used within the calibration. Naturally, a calibration will match the simulation to the ob-518

served temperatures. However, that comes at a cost. For the various model calibrations519

of the BB-6km model we obtain thermal conductivities ranging between 1.49 W m-1 K-1
520

and 2.83 W m-1 K-1 for the Basement layer. Meaning that we no longer have physical521

thermal conductivities but effective ones. These effective thermal conductivities are tai-522

lored to our measurements. However, if we are now interested in a different location (e.g.523

new drill-hole location), we can no longer derive reliable temperatures since our model524

calibration is not valid for this point and we lost the information about the physical sys-525

tem.526

This brings us to the next important point. The above-described procedure is valid527

in a limited application field. However, one should be aware that the model is no longer528

representative of the physical processes. In contrast, both the BB-LAB and combined529

model have significant influences from various thermal conductivities. The lower bound-530

ary condition is further away from our target area, reducing possible effects from this531

condition.532

In general, we want to improve through global SA the understanding of the phys-533

ical model. In this specific case study, we demonstrate a way to determine the most in-534

fluencing parameters allowing a back correlation to the geoscientific context. Note that535

we focus both the SA and the calibration on the observation locations. Hence, we ob-536

serve higher influences of shallower layers. A study focusing solely on the temperatures537

at certain locations is applicable for some geophysical studies but if your interest goes538

beyond fitting the temperatures it is not advisable to use models that are cut-off at a539

shallow depth.540

Note that we do not discuss the changes for the thermal conductivities in detail541

here. The reason is that we want to focus the discussion on the influence of the bound-542

ary condition. For further information about the thermal conductivities, we refer to the543

Supplementary Material S1.544
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4.3.3 Computational Cost545

We presented an automated sensitivity-driven model calibration at the basin-scale.546

Considering that the global sensitivity analysis requires 280,000, 240,000, and 300,000547

for the BB-LAB, BB-6km, and BB-combined model, respectively, it is clear that a model548

order reduction is needed to enable such an analysis. Using the reduced basis method549

showed extremely promising results because we obtain speed-ups of 1.81·104 to 1.65·105
550

without introducing approximation errors above the measurement error.551

A comparison of the computational costs using the FE and RB method is summa-552

rized in Tab. 2. The offline stage of the Brandenburg combined model was computed on553

the RWTH compute cluster. We used two Intel Xeon Platinum 8160 CPUs (24 cores,554

2.1 GHz, 192 GB of RAM), and it took 5.4 h. The other offline stages were computed555

on an Intel Westmere X675 machine (3.07 GHz 6 cores per chip, 12 cores per node and556

24 GB memory per node). They required 2.9 h (Brandenburg LAB model) using 50 cores,557

and 57 min (Brandenburg 6 km model) using 48 cores. These time-consuming offline stages558

could be faster calculated using more cores. Nonetheless, the RB method is more effi-559

cient than the FE method because the offline stages contain up to 273 FE evaluations.560

This number is substantially lower than the number of function evaluations in this the-561

sis. Note that we would have required 0.6 to 4.7 years for the Sobol sensitivity analy-562

sis using the FE problem one a single core. In contrast, we only required 5.4 min to 47.8563

min using the RB method. Also, note the following, the forward evaluations are paral-564

lelizable, whereas most inversion routines are not. Additionally, the RB method allows565

on the fly adjustments of the parameters in the field, which is not possible for the full566

model.

Model Time for SA

using FE [a]

Time for SA

using RB [h]

Offline Time [h]

BB-LAB 0.6 0.26 2.9

BB-6km 4.0 0.09 1

BB-combined 4.7 0.8 5.4

Table 2. Summary of the overall computational cost comparing the FE and RB method.

567
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4.4 Outlook568

Through this study, the path to subsequent tasks is opened. It would be interest-569

ing to further investigate the lower boundary condition. For some of the calibrations,570

we obtained very high thermal conductivities of the Lithospheric Mantle, which might571

be caused by the geometrical inaccuracies of the LAB. These inaccuracies would impact572

the lower boundary condition and the calibration would try to compensate for this by573

adjusting the thermal conductivity of the Lithospheric Mantle. We applied a scaling fac-574

tor to the temperature value of this boundary to account for these inaccuracies, which575

slightly improved the results. However, a single parameter is not enough to compensate576

for the model errors. Therefore, we would like to replace the scaling factor by a func-577

tion, which could be, for instance, determined through data assimilation. For this rea-578

son, an interesting next step to take would be to investigate if 3D-Var data assimilation579

yields improved results. In contrast to classical sequential data assimilation techniques,580

such as the Ensemble Kalman Filter (Burgers et al., 1998; Evensen, 1994), variational581

data assimilation is a continuous approach, where the entire time frame is considered.582

Variational data assimilation methods minimize a cost function to obtain an estimate583

of the state variable. Three dimensional variational data assimilation has been studied584

intensively in numerical weather forecast by, for instance, (Barker et al., 2004; Lorenc585

et al., 2000) but is fairly unknown for geothermal simulations. It has been studied in com-586

bination with the RB method already by Aretz-Nellesen et al. (2019). However, so far,587

the study is using benchmark problems only. Therefore, it would be interesting to in-588

vestigate the performance of the method for complex geophysical problems.589
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