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Key Points:

e The GRACE dataset is decomposed into 23 spatiotemporal patterns using
Principal Component Analysis and the Varimax rotation;

¢ 13 patterns are significantly correlated to the wind stress curl and are
located in areas where gravity anomalies were already documented;

e The other 10 are typically tropical and related to spatially coherent mass
variations that deserve further study.

Abstract

We decompose the monthly global Ocean Bottom Pressure (OBP) from
GRACE(-FO) mass concentration solutions, with trends and seasonal har-
monics removed from the signal, to extract 23 significant regional modes of
variability. The 23 modes are analyzed and discussed considering Sea-Level
Anomalies (SLA), Wind Stress Curl (WSC), and major climate indices. Two-
thirds of the patterns correspond to extratropical regions and are substantially
documented in other global or regional studies. Over the equatorial band, the
identified modes are unprecedented, with an amplitude ranging between 0.5
and 1 centimeter. With smaller amplitude than extratropical patterns, they
appear to be less correlated with the local SLA or WSC; yet, they present
significantly coherent dynamics. The Pacific Ocean modes show significant
correlations with the Pacific Decadal Oscillation (PDO) and El Nifio Southern
Oscillation (ENSO).

Plain Language Summary

In the oceans, water mass may vary due to the hydrological cycle, its modifica-
tion resulting from climate change, or astrophysical cycles influencing the Earth
system resulting in phenomena like tides or annual/semi-annual cycles of mass
variations. Apart from trends and cyclic variations, water mass variations in
the ocean are less known except at the poles and at the middle or high latitudes,
where they are often associated with the gyratory effect from winds interacting
with the ocean bottom topography. This study analyzes the monthly water
mass variations between 2002 and 2020 measured by the GRACE mission satel-
lites over the global ocean without trends and cycles. Our method highlights the
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regional areas where a coherent dynamic behavior is observed over the global
ocean. These consistent patterns are compared to the dynamics of sea-level
variations, winds, and well-known indices associated with climate dynamics. In
doing so, we recover known patterns from high and mid-latitudes but also other
patterns from lower latitudes that are poorly documented in the scientific lit-
erature and would benefit from further study. In the Pacific, these patterns
are associated with the climate phenomenon known as the El Nino-Southern
Oscillation.

1 Introduction

Since 2002, the Gravity Recovery and Climate Experiment (GRACE) and its
successor GRACE Follow-On (GRACE-FO) satellite missions allow monthly
estimations of ocean mass distributions at the global scale, with a 3°x3° spatial
resolution (Landerer et al., 2020; Tapley et al., 2004). GRACE products show a
sensitivity at the subcentimetric level when expressed in equivalent water height
(Chambers, 2006; Chambers et al., 2004). Besides GRACE(-FO), oceanic mass
distributions are estimated through a limited set of Ocean Bottom Pressure
(OBP) in-situ sensors, or from sea-level variations, indirectly, by removing steric
effects (Chambers et al., 2004), or using Ocean General Circulation Models
(OGCMs). Yet, OGCMs and GRACE(-FO) products have co-evolved along with
our understanding of the global ocean. OGCMs offer opportunities of correcting
GRACE(-FO) solutions from aliasing errors (Dobslaw et al., 2017; S. Han et al.,
2004; Quinn & Ponte, 2011). The physical representativeness of GRACE(-FO)
product over oceans was acknowledged early on (Chambers, 2006), even more
today with recent mass concentration solutions better matching with in-situ
OBP sensors (Piecuch et al., 2018; Save et al., 2016; Watkins et al., 2015).
Conversely, empirical analyses of GRACE(-FO) products, or their assimilation
in OGCMs, offer the opportunity of improving our understanding and model
representation of the global ocean functioning (e.g., Chambers & Willis, 2008;
Fukumori et al., 2021; Kohl et al., 2012).

Our study is part of this empirical process of understanding and targets the
global detection of regionally consistent spatiotemporal patterns within the
GRACE(-FO) data. In the literature, such global studies often consist of global
sea-level budgets and comparisons with other models or datasets (Cazenave et
al., 2018; Cheng et al., 2021; Humphrey et al., 2016; Johnson & Chambers,
2013; Kanzow et al., 2005; Ponte et al., 2007). Besides, except for some studies
focusing on interannual or intraseasonal variations (Piecuch et al., 2013; Quinn
& Ponte, 2012), most of these global ocean studies focus on trends or seasonal
cycles given the substantial variance attributed to these components alongside
anthropic concerns about sea-level rise.

Still, there are reasons to expect relevant signals and processes at interannual
and intraseasonal time scales. Regarding processes, the mass distribution in
the ocean is governed by the hydrostatic equilibrium, which implies that OBP
reflects the mass of the ocean-atmosphere fluid column. The effect of the atmo-
sphere tends to cancel out at timescales longer than a few days (Ponte, 1994).



Oceanic barotropic signals are supposed to be prominently related to high fre-
quencies (Gill & Niller, 1973; Quinn & Ponte, 2012; Willebrand et al., 1980) but
were also reported at intraseasonal (Afroosa et al., 2021; Rohith et al., 2019) and
interannual scales (Piecuch et al., 2013). Besides land-ocean transfers, the ocean
circulation, mass, and sea-level variations result from water density gradients or
wind-driven Ekman transport (Stammer et al., 2013). Especially at mid-high
latitudes such as in the southern ocean (Bingham & Hughes, 2008; Piecuch et al.,
2013; Quinn & Ponte, 2012; Vinogradova et al., 2007), regional-scale sea-level
variations mostly correspond to barotropic, i.e., depth-independent, wind-driven
mass variations (Fu & Davidson, 1995). At lower latitudes, OBP variations po-
tentially have a baroclinic contribution, typically at the subcentimetric level
(Piecuch et al., 2015). However, instances of regional-scale barotropic sea-level
variability were reported (Afroosa et al., 2021; Piecuch et al., 2015; Rohith et
al., 2019; Willebrand et al., 1980). Climate dynamics also impact sea level and
mass variation whatsoever the triggered mechanism (Hamlington et al., 2020;
W. Han et al., 2017). Patterns of OBP variability are often related to climatic
modes, especially the El Nifio-Southern Oscillation (ENSO) in the Pacific (e.g.,
Chambers, 2011; Volkov et al., 2017).

Hence, by investigating GRACE(-FO) beyond seasonality and trends, we expect
to reveal less understood patterns that would remain hidden otherwise and
relate them to the above-mentioned processes discussed in regional studies. Our
decomposition method for identifying patterns in interannual and intraseasonal
GRACE(-FO) signals is based on Principal Component Analysis (PCA), also
known as Empirical Orthogonal Functions (EOF) (von Storch & Zwiers, 1999).
This method was applied in regional GRACE(-FO) study cases (Chambers &
Willis, 2008; Liau & Chao, 2017; Piecuch et al., 2021; Wang et al., 2017) or
globally as a collection of regional EOF (Marcos et al., 2011). Our approach
differs as it is combined with a method to select the significant modes followed
by a Varimax rotation (Kaiser, 1958; Vejmelka et al., 2015). As far as the
dataset allows, the PCA-Varimax produces regionally concentrated patterns,
thus comparable with regional case studies for further insights.

2 Data
2.1 GRACE(-FO) Data

We use JPL GRACE(-FO) RL06v02 mascons solution (DOI: 10.5067/TEMSC-
3JC62, Watkins et al., 2015; Wiese et al., 2016) because of its fine representation
of ocean dynamics. The trend, seasonal harmonics at the yearly and six-month
periods, and the 161-days tidal alias resulting from S2 semidiurnal solar tide
corrections (Chen et al., 2009) were subtracted by a least-squares fit. The
time-domain covers 175 months from April 2002 to October 2020. Missing time-
steps are those initially missing in the data or removed because of an incomplete
and asymmetric sub-monthly coverage, as identified from the product metadata
(Supplementary Table S1).

From the original 0.5°x0.5° grid, we sampled 10255 time-series over ocean area



beyond 200 m depth, evenly distributed at the 16002 summits of an icosahedron.
We removed areas affected by earthquakes above magnitude 8.8: Sumatra 2004,
Chile 2010, and Japan 2011. Unrelated with ocean mass variation, earthquakes
introduce sharp ruptures, the coseismic effect, and/or changes of trend, the
postseismic effect, in the time-series (de Linage et al., 2009). Finally, time-series
were standardized to have a zero mean and a unit standard deviation.

2.2 Co-related datasets: wind stress curl, sea level anomaly, and climate indices

The barotropic component of sea-level variability linearly responds to the Wind
Stress Curl (WSC) under the assumption of quasi-geostrophic balance (Fu &
Davidson, 1995). Wind data and Sea-Level Anomaly (SLA) were accessed
through the Copernicus Climate Change Service (C3S). Both datasets were
monthly averaged and coarsened from the 0.25°x0.25° to the 0.5°x0.5° grid
of GRACE. Wind stress data are computed from ERA5 10 m zonal U and
meridional V wind component (Hersbach et al., 2019). SLA is defined from
multi-mission satellite altimetry as the deviation from the mean sea surface
height from 1993-2012 (Taburet et al., 2019). The SLA dataset only covers the
latitude range +/- 66 N°. The SLA and WSC time-series are five time-steps
shorter than the GRACE(-FO) time-series due to the unavailability of the most
recent time steps at the time of acquisition.

In addition, 42 climate indices were selected from the NOAA Physical Sciences
Laboratory or Climate Prediction Center portals. The entire climate indices list
is reported in the supplementary materials (Table S2). The main manuscript
focuses on a smaller set of important indices being discussed: Arctic Oscilla-
tion (AO), Antarctic Oscillation (AAQO), Multivariate ENSO Index version 2
(MEIv2), North Atlantic Oscillation (NAO), and Pacific Decadal Oscillation
(PDO). For a consistent comparison, all time-series from the co-related datasets
are processed with the same treatment as the GRACE(-FO) data (section 2.1).

3 Spatiotemporal pattern definition

Following Vejmelka et al. (2015), we identified GRACE-(FO) spatiotemporal
patterns using rotated Principal Component Analysis (PCA-Varimax; Kaiser,
1958). PCA selects an orthogonal coordinate system of reduced dimensions
capturing most of the variance of the data. This coordinate system is expressed
in eigenvectors and eigenvalues, defining the axes’ orientation and importance
in terms of captured variance. Following PCA, the Varimax rotation tends to
concentrate the energy on a minimum amount of time-series, i.e., to produce
regionally concentrated patterns. In the end, PCA-Varimax components are
associated with a spatial pattern and a time dimension as the original GRACE-
(FO) dataset.

Regarding PCA, the number of coordinate axes or components is regularly set
based on heuristic thresholds on the captured variance. Vejmelka et al. (2015)’s
approach proposes an objective basis to define this number by comparison with
random substitutes of the original dataset containing independent time-series.
Such random substitutes, known as surrogates, are built to preserve some dy-



namical traits of the original dataset (Schreiber & Schmitz, 2000). In our case,
the surrogate models result from autoregressive processes of order p (ARp), with
p determined independently for each series to minimize the Bayesian Informa-
tion Criterion (Schwarz, 1978), and the coefficient fit on the time-series using
the Linear State-Space model framework (Durbin & Koopman, 2012; Seabold
& Perktold, 2010).

4 Results

Figure 1 illustrates the selection of the number of principal components: Fig.
la maps the distribution of the p orders of the surrogate models, while Fig. 1b
shows the comparison between the GRACE(-FO) PCA eigenvalues and those
from the decomposition of 100 surrogate datasets. The results led us to select
23 components (0 to 22), capturing together 72% of the original variance.
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Figure 1. Selection of the 23 PCA components. (a) Order of the surrogates
model (Eq. 1), and (b) Comparison of eigenvalues magnitude between the
decomposition of GRACE(-FO) and the surrogate dataset.

Figure 2 displays the resulting 23 Varimax spatial patterns by showing the
above-98t" percentile filled contour of the load. Since it is a percentile, contours
represent equal areas despite possible variations in the patterns’ concentration.



For more details, spatial and temporal patterns are shown individually in the
supplementary materials (Fig. S1, S2). The patterns’ labels are centered on
the maximum load location and ordered by decreasing percentages of captured
variance in the standardized GRACE(-FO) dataset (CV,4 column in Table 1).
Providing that PCA-Varimax is applied on the standardized dataset, CV,4 gives
an estimate of the spatiotemporal importance of the identified dynamics regard-
less of their physical magnitude. From the CV,4’s perspective, the Western
Equatorial Pacific pattern #0 is the most important, while pattern #22, over
the Hudson and Baffin Bay, Labrador Sea, North Atlantic, and Mediterranean
Sea, is the least significant.

Table 1 also displays LWE, ., reflecting the importance of the patterns in mass
variations (cm of liquid water equivalent or LWE). LWE__ is the average co-
variance between the standardized GRACE(-FO) PCA-Varimax temporal pat-
terns (Fig. S2) and the original GRACE(-FO) time-series, without trends and
seasonality, over the 98" percentile envelope shown in Fig. 2. From that
perspective, the Arctic pattern #12 is the most important, followed by the
Australian-Antarctic pattern #11. Conversely, the intertropical Atlantic Pat-
tern #1 and #9 are the least important in terms of mass deviations, despite
their high captured variance in the normalized data set (C'V,).

The last two columns of Table 1, (#,SLA) and (#,WSC), report absolute
values of Pearson’s correlation coefficients between the GRACE(-FO) temporal
pattern and the respective temporal projection of the SLA and WSC datasets
(section 2.2). They indicate the coherence between the spatiotemporal pattern
of mass variations for sea-level dynamics and the surface WSC. We tested the
99% significance by confronting the statistic to those obtained with 200 ARp
surrogates of the GRACE(-FO) PCA-Varimax temporal pattern. In the supple-
mentary materials, Fig. S3 and S4 show the spatial patterns of correlations for
SLA and WSC, while Fig. S5 and S6 report the spatial patterns of correlations
for zonal (7,) and meridional wind stress (7).

Finally, Fig. 3 shows the result of the cross-correlation analysis for time lags
between -12 and +12 months for the five selected climate indices: Arctic Oscil-
lation (AO), Antarctic Oscillation (AAO), Multivariate ENSO Index version 2
(ENSO MEIv2), North Atlantic Oscillation (NAQO), and Pacific Decadal Oscilla-
tion (PDO). More indices are tested in the supplements (Table S2 and Fig. S7).
Below, Fig. 3b shows the auto-correlation of each PCA-Varimax GRACE-(FO)
time-series. Results are presented in the form of cross-correlation clocks. In
Fig. 3a, given the arrow of time, significant dependencies in the left quadrants
denote a potential causal effect of the climate indices on the PCA-Varimax
GRACE(-FO) patterns.
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Figure 2. The 23 patterns obtained from the Varimax rotation of the PCA
coordinate systems. Each pattern is sorted by decreasing captured variance and
labeled accordingly from 0 to 22, with the label box located at the Varimax
pattern’s maximum concentration. The colored contour shows the extent of the
area between 98% and the maximum. The gray background contours represent
the ocean SRTM15+ bathymetry in meters (Tozer et al., 2019). White areas
represent either land, shallow ocean (>-200m), or earthquake-impacted areas
excluded from the analysis. The colormap was generated using colorgorical
(Gramazio et al., 2017).

Table 1. Summary statistics and summary correlation statistics for the 23
PCA-Varimax patterns.



Lat. LWECOV CVstd | (#7 SLA) | | (#7 WSC) |
°N cm % [0-1] [0-1]
Lat. LWECOV CVstd | (#7 SLA) | | (#7 WSC) |
°N cm % [0-1] [0-1]
0.39
0.40 0.20
0.37
0.57
0.36
0.26
0.34%* 0.55
0.23
0.67 0.69
0.58%* 0.49
0.35
0.24
0.40 0.61
0.73 0.38
0.71 0.33
0.64 0.70
0.30
0.42 0.26
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Figure 3. Cross-correlation analysis between the PCA-Varimax GRACE(-FO)
patterns and (a) the climate indices Arctic Oscillation (AO), Antarctic Oscil-
lation (AAO), Multivariate ENSO Index version 2 (ENSO MEIv2), North At-
lantic Oscillation (NAO), and Pacific Decadal Oscillation (PDO); and (b) the
auto-correlation of the pattern. The results are presented on 25-segments clocks.
Only significant dependencies are colored, based on 200 ARp surrogates compar-
ison. 12 o’clock indicates instantaneous correlation. The left quadrants relate
to negative lags of the climate indices (a) or the pattern (b), counterclockwise
down to -12 months. The right quadrants contain positive lags clockwise up to
+12 months.

5 Discussion

Overall, the significant patterns show spatial consistency, often matching bathy-
metric contours (Fig. 2), or having their limits over bathymetric features, in
line with the known ability of oceanic slopes to trap barotropic transients (e.g.,
Rohith et al., 2019). Yet, relationships with the SLA and WSC are not systemat-
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ically significant (Table 1, |p(#, SLA)|,|p(#, WSC)|), whereas such a relation
is expected from the literature (Fu & Davidson, 1995). This implies signif-
icant remote forcing of SLA by WSC, as already evidenced in some regions
of the world Ocean (e.g., Afroosa et al., 2021; Rohith et al., 2019), and/or a
prominent fraction of SLA variability that is baroclinic in nature. In Fig. 4,
correlations between WSC and load patterns from Table 1 are plotted against
latitude. The linear fit shows an overall poleward increase of correlation in both
hemispheres, from insignificant values close to the equator to values above 0.2
at higher latitudes.
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Figure 4. Graphical analysis of the statistics of Table 1. The correlation
(#,WSC) between temporal PCA-Varimax GRACE(-FO) patterns and tempo-
ral projections of WSC onto the PCA-Varimax system is reported against the
absolute latitude of spatial pattern maximum’s concentration (Fig. 2). Markers
with a black edge have a significant correlation. The markers’ size and color re-
spectively map to CV 4 and LWE__ . The pattern index from Fig. 2 is labeled
in blue.

The mid-latitude patterns #11, #16, #17, and #19 in the Southern Ocean and
#15 in the North Pacific Ocean echo to a highly significant driving by regional
winds, associated with strong mass variations (LWE. ) with a dominant high
frequency (Fig. 3.b). Their load patterns concentrate at medium and high
latitudes, as discussed in the literature (Piecuch et al., 2013, 2015; Quinn &

Ponte, 2012).
At the North Pole, the high absolute variance Arctic pattern #12 owes its
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coherence to the semi-enclosed character of the Arctic Ocean and is wind-driven.
It has been the subject of substantial literature (Fukumori et al., 2015; Peralta-
Ferriz et al., 2014; Volkov & Landerer, 2013). In the Northern Atlantic, the
Artic pattern is related to #22, as WSC plays an important role in the mass
exchange among the Arctic and North Atlantic Ocean (Fukumori et al., 2015,
and Fig. S4 to S6). This pattern #22 extends to the semi-enclosed Canadian
lakes and the Mediterranean Sea. It was discussed in several studies about
its link to NAO (Fig. 3) or the Atlantic Meridional Overturning Circulation
(AMOC) (Fukumori et al., 2007; Piecuch & Ponte, 2015; Tsimplis et al., 2013;
Volkov et al., 2019). It shows a smaller consistency (CV,.,) in Table 1 and Fig.
4, probably due to its extensive and fragmented spatial distribution. To the
South, pattern #13 appears to be driven by the wind stress and statistically
related to the AMOC as well as to NAO and AO (Landerer et al., 2015; Piecuch
& Ponte, 2014b, and Fig. 3).

In the North Pacific, patterns #12 and #21 are connected through the Bering
Strait (Peralta-Ferriz & Woodgate, 2017; Volkov & Landerer, 2013). The sub-
polar pattern #15 was reported in previous studies focusing on interannual,
annual, or seasonal scales (Bingham & Hughes, 2006; Chambers, 2011; Cham-
bers & Willis, 2008; Song & Qu, 2011; Song & Zlotnicki, 2008). Accordingly,
#15 would be coupled with pattern #7, which is forced by the ENSO-influenced
northern subtropical Pacific gyre (Fig. 3). This same pattern #7 is an area of
maxima in terms of dynamic topography subject to steep changes in sea level,
with the mass component related to the variability of Easterlies (Fig. S5) and
of the North Equatorial Current over decadal timescales (Moon & Song, 2013;
Qiu & Chen, 2010; Timmermann et al., 2010), in phase with PDO (Cheng et
al., 2013, and Fig. 3).

In the southern hemisphere, besides the afore-mentioned highly significant pat-
terns (#11, #16, #17, and #19), the South Pacific Gyre pattern #5 correlates
significantly with SLA and WSC (Table 1 and Fig S4 to S6). Together with the
Indian Ocean (~#2), this area is exposed to heat uptake and decadal sea-level
change where heat transfers are related to Ekman pumping (Llovel & Terray,
2016; Roemmich et al., 2016; Volkov et al., 2017). It is also associated with
transport from the Antarctic Bottom Water into the Pacific Ocean (Mazloff &
Boening, 2016; Volkov et al., 2017). The South Indian Ocean pattern (~#2)
involves both barotropic and baroclinic processes at the annual scale (Piecuch
& Ponte, 2014a). Other recent studies present further evidence of barotropic
processes at intraseasonal timescale over the Indian Ocean (Afroosa et al., 2021;
Manche et al., 2021; Rohith et al., 2019). In a region close to our pattern #14,
a sea-level trend associated with the Atlantic subtropical gyre has been shown
by Drouin et al. (2021) and Ruiz-Etcheverry & Saraceno (2020). The Antarctic
Pattern #8 is driven by the zonal wind stress (Fig. S5.i) driving meridional Ek-
man transport and related to the AAO climate index (Ponte & Quinn, 2009, and
Fig. 3). This pattern has been well documented and studied using the GRACE
dataset (Feng et al., 2013; Liau & Chao, 2017; Ponte & Piecuch, 2014).
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Despite their spatially significant dynamical consistency, the remaining ten pat-
terns (#0 to #4, #6, #9, #10, #18, and #20) are not significantly associated
with WSC based on our indicator (Table 1, Fig. 4), which does not mean that
they are uncorrelated with the wind stress, as the correlation is often significant
over remote regions located outside patterns’ boundaries (see Fig. S4 to S6).
They are also less documented in the literature. Still, Pattern #20, correspond-
ing to the eddy-influenced area of the Agulhas current, is discussed in Kuhlmann
et al. (2013), whereas patterns #10 and #18 correspond to the Coral Sea and
the Tasman Sea, both bordered by steep bathymetric features to the East and
the North, and known to be influenced by remote WSC from the Maritime Con-
tinent at intra-seasonal timescales (Afroosa et al., 2021). The mechanisms of
patterns #0, #3, and #6 remain unclear and may be related to the barotropic
response of OBP to remote WSC. They show long memory and are related to
ENSO (MEIv2) or PDO (Fig. 3). Besides, these patterns may not be physically
large enough (LWE,_,,) to allow identification of significant correlations with
WSC and SLA; especially for the weakest ones in the Equatorial Atlantic (#1,
#9). Possibly, a part of the OBP response in GRACE(-FO) could be baroclinic
but this phenomenon should be marginal (<0.4 cm) and mostly annual (Piecuch,
2013, 2015; Piecuch et al., 2015; Piecuch & Ponte, 2014a).

6 Conclusions

We have shown that the spatiotemporal decomposition method, Principal Com-
ponent Analysis followed by a Varimax rotation (PCA-Varimax), can objec-
tively evidence in a global analysis the GRACE(-FO) patterns that are usually
extracted by Empirical Orthogonal Function (EOF) or PCA alone within ar-
bitrary regional bounding boxes. The resulting 23 significant interannual and
intraseasonal GRACE(-FO) patterns are spatially coherent and scattered over
the global ocean, with mass deviations ranging between 0.54 cm and 2.15 cm.
Thirteen of them significantly relate to wind stress curl and echo to barotropic
OBP variations documented in the literature. Conversely, the remaining ten
patterns are mainly intertropical and are less documented in the published lit-
erature, although our analysis shows that they represent coherent dynamical
modes with centimetric mass signatures. Those in the Pacific Ocean are mainly
related to the Pacific Decadal Oscillation (PDO) and El Nifo Southern Os-
cillation (ENSO). In addition to this empirical analysis, the patterns we have
identified would benefit from being studied from a mechanistic perspective, e.g.,
relying on Ocean Global Circulation Models. In this sense, these particular
patterns call for dedicated ocean modeling investigations.
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Open research

GRACE/GRACE-FO Mascon data are available at http://grace.jpl.nasa.gov.
Wind data from ERA5 (Hersbach et al., 2019) and Sea Surface Anomaly
data (Taburet et al., 2019) were acquired from Copernicus Climate
Change Service (C3S) portal (cds.climate.copernicus.eu). Climate Indices
data can be downloaded from the following links on the NOAA por-
tal:  Arctic Oscillation (psl.noaa.gov/data/correlation/ao.data), Antarctic
Oscillation (psl.noaa.gov/data/correlation/aao.data), Multivariate ENSO
Index (psl.noaa.gov/enso/mei/data/meiv2.data), North Atlantic Oscillation
(psl.noaa.gov/data/correlation/nao.data), and Pacific Decadal Oscillation
(psl.noaa.gov/data/correlation/pdo.data).

The analysis was conducted using Python: the scikit-learn package for PCA
and the Varimax rotation (Pedregosa et al., 2011), and the statmodels pack-
age for Autoregressive Model fitting, and surrogate data generation (Durbin &
Koopman, 2012; Seabold & Perktold, 2010).
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