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Introduction

This document contains supporting information for Wenegrat et al. ‘A century of observed

temperature change in the Indian Ocean’, under review for publication in Geophysical

Research Letters.
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Text S1: Vertical profile of temperature difference

Basinwide average profiles are calculated following the method detailed in Gebbie and

Huybers (2019, their supplementary information S5.4), as updated here.

The temperature difference between the historical observations and the corresponding

World Ocean Atlas (WOA) value is,

∆T (ri) = T (ri, tw)− T (ri, th), (1)

where T (ri, th) is the ith historical temperature observation at location, ri, and time,

th, and T (ri, tw) is the WOA temperature at the same location. The observations are

combined into a vector,

∆T =


∆T (r1)
∆T (r2)

...
∆T (rM)

 . (2)

Temperature changes at a given pressure are assumed equivalent to potential temperature

changes.

Basinwide-average temperature profiles:

Our goal is to extract the decadal signal of water-mass change from the historical

temperature observations

∆T =


∆θ(z1)

∆θ(z2)
...

∆θ(zK)

 , (3)

where we have defined a grid of K depths. Given knowledge of the basinwide averages,

one can make a prediction for each WOA−historical temperature difference,

∆T = H∆T+ q, (4)
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where H maps the basinwide mean onto the observational point by noting the basin of the

observations and vertical linear interpolation, q is contamination by measurement error

and signals that are not representative of the decadal-mean, basinwide-average tempera-

ture. The contamination is decomposed into three parts,

q = nT + nS + nM , (5)

where nT is contamination by transient effects such as isopycnal heave due to internal

waves or mesoscale eddies, nS is due to the irregular spatial sampling of each basin, and

nM is measurement or calibration error of the thermometer. Note that no depth correction

is made here, and temperature differences may be biased toward warming (as discussed

below in section S2).

The expected size of nT is related to the energy in the interannual and higher-frequency

bands. We use estimates from the WOCE Global Hydrographic Climatology (Gouretski

& Koltermann, 2004) to quantify this error and its spatial pattern. Errors that primarily

reflect an uncertainty due to a representativity error were previously estimated in this

climatology, where the magnitude of interannual temperature variability is 1.6◦C at the

surface, decreasing to 0.8◦C below the mixed layer, and 0.02◦C at 3000 meters depth.

Inherent in their mapping is a horizontal lengthscale of LT
xy = 450 km. This corresponds to

a vertical lengthscale of LT
z = 450 meters when applying an aspect ratio based upon mean

depth and lateral extent of the ocean. Their mapping is the degree of error necessary to

place the non-synoptic cruises of a 10-year time interval into a coherent picture. Estimated

errors are similar to those of (Wortham & Wunsch, 2014), who also note that the spatial
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scales increase as the temporal scales increase. Above 1300 meters depth, the aliased

variability is typically larger than the measurement error described below.

Next we describe the second moment matrix of temporal contamination, RTT =<

nT (nT )
T >. Note that nT depends on the difference of contamination during the two

time periods, nT (ri) = ηT (ri, tw) − ηT (ri, th), where ηT (r, t) is the difference between

temperature at a given time and the decadal average. The WGHC statistics give the

error covariance for ηT (r, tw) not nT (r). This covariance matrix is reconstructed by first

creating a correlation matrix,

Rρ =


ρ(0) ρ(δ) ρ(2δ) . . .
ρ(δ) ρ(0) ρ(δ) . . .
ρ(2δ) ρ(δ) ρ(0) . . .
...

...
...

. . .
ρ(0)

 , (6)

where the autocorrelation function, ρ(δ), is given by a Gaussian with a horizontal length-

scale of 450 km and a vertical lengthscale of 450 meters. We derive the covariance matrix

by pre- and post-multiplying the correlation matrix, Rηη = σησ
T
η ◦ Rρ, where ση is

the vector of the standard deviation of the WGHC interannual variability and ◦ is the

Hadamard product. Here the time interval of the historical cruises is about 30 years,

or three times as long as the WOCE era. Due to the red spectrum of ocean variability,

the potential for aliased variability over this longer time interval is increased. To get a

better constraint on Tratio, we have to assume a frequency spectrum. If we assume the

power density spectrum is red with a power law of f−2, then we can integrate to de-

termine the variance at frequencies greater than 1/(30 yr) and 1/(10 yr). The variance

at frequencies greater than f is proportional to 1/f, so the ratio of variance greater than

1/(30 yr) to that greater than 1/(10 yr) is Tratio = 30/10 = 3. Both the modern and
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historical intervals have variability and are assumed to be statistically independent, and

thus, RTT = (Tratio + 1)Rηη.

We assume that the variance due to spatial water-mass variability, i.e., RSS =<

nS(nS)
T >, has a magnitude that is 20% that of the temporal variability as the lo-

cal water-mass variability on interannual scales is dwarfed by heaving motions (Huang,

2015). The relevant parameter is Sratio = 0.2. These water-mass variations are assumed

to have a larger spatial scale (LS
xy = 2000 km horizontally, LS

z = 1 km vertically), as

seen in an evaluation of water-mass fractions on an isobaric surface (Gebbie & Huybers,

2010). Accounting for this spatial variability has the potential to increase the final error

of our estimates by taking into account biases that may occur due to the specific expedi-

tion tracks. Numerically, we calculate RSS in two steps. We form a new Rηη correlation

matrix that takes into account the water-mass lengthscales. Then we adjust the variance

according to Sratio via the equation, RSS = Sratio(Tratio + 1)Rηη.

Finally, we assume that the measurement covariance, RMM , is a matrix with the di-

agonal equal to the observational uncertainty, σobs = 0.14◦C, squared (Roemmich et al.,

2012).

We solve for the basinwide-average temperature profiles using a weighted and tapered

least-squares formulation that minimizes,

J = qTR−1
qq q+mTS−1m, (7)

where Rqq reflects the combined effect of the three types of errors (i.e., Rqq = RTT +

RSS + RMM). This least-squares weighting is chosen such that the solution coincides

with the maximum likelihood estimate (assuming that the prior statistics are normally
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distributed and appropriately defined). Only a weak prior assumption, reflected in the

weighting matrix, S, is placed on the solution, namely that the correlation lengthscale

is LAV G
z = 500 m in the vertical, the variance is on the order of (σS = 1◦C)2, and the

expected value is < ∆T >= 0. The least-squares estimate is then,

∆̃T = (HTR−1
qq H+ S−1)−1HTR−1

qq ∆T. (8)

The error covariance of the estimate is,

C∆̃T = (HTR−1
qq H+ S−1)−1, (9)

where the standard error is σ∆̃T =
√
diag(C∆̃T ). This method also recovers the off-

diagonal terms that correspond to the correlated errors among different parts of the

basinwide-average.

Ocean heat content change

Ocean heat content change, ∆H, is a linear function of the temperature change and can

be written as an inner vector product:

∆H = hT∆̃T, (10)

where h is a vector containing coefficients related to ocean heat capacity, seawater density,

the representative area of the Indian Ocean, and the integration of temperature change

over the vertical dimension. Here we integrate to a depth of z⋆ = 700 m so that we obtain

heat content change from the sea surface to this depth. The Indian Ocean area is assumed

to be equal to 15% of the global ocean area at all depths (ignoring the hypsometric effect).

The error covariance of ∆H is an outer product,

CH =< (hT∆̃T)(hT∆̃T)T >, (11)
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where <> refers to the expected value. CH is a scalar like ∆H. Rearranging this equation,

we obtain,

CH = hTC∆̃Th, (12)

where C∆̃T is known from the calculation of the previous section. The standard error of

the heat content change is the square root of CH . Trends are estimated from ∆H as-

suming the historical and WOA observations are representative of their mean observation

year of 1887 and 2011, respectively.

Text S2: Errors due to line-stretch

The Gazelle used hemp line for profiling, which can stretch under the weight of the

instruments and bottom-weight. This would tend to bias the reported Gazelle depths

shallow, introducing a warming bias in the modern minus historical data. The Valdivia

and Planet both used wire for profiling, which is less subject to stretch.

To assess the magnitude of this error we define two temperatures using WOA data. The

first, Trep, is found by interpolating the WOA data to the position and reported depth of

the historical observations. The second, Tadj, is found by interpolating the WOA data to

a stretch-corrected depth. Gebbie and Huybers (2019) compared bottom depths reported

by the Challenger with modern bottom depths, and inferred a 4% shallow-bias in the

reported depths, consistent with hemp line loaded to 25% breaking strength. We use this

estimate here to correct the Gazelle depths. From this we can define a temperature error

as Terr = Tadj − Trep such that positive values indicate warm biases in the modern minus

historical estimates.
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Profiles of Terr are shown in figure S3. Errors are identically zero at the surface, and

increase approximately linearly down to 750 m. Below this depth the errors decrease due

to the weak interior temperature gradients. The maximum error in the Gazelle data is

estimated to be 0.31 ◦C at 750 m depth, however this error decreases to 0.17 ◦C in the

basin-wide mean across all cruises (where we have assumed the wire used on the Valdivia

and Planet introduces no errors in reported depth).

Text S3: Aliasing of temporal variability in the historical measurements

While the focus of this work is on multidecadal temperature variability, other timescales

may be aliased into the historical observations, which could affect our estimates of 20th

century temperature change. The use of data from 3 separate cruises spread over the

period 1874–1907 may help alleviate this—and temporal aliasing is accounted for in the

estimates of the basinwide means (section S1)—however the observations from each cruise

are also not distributed uniformly through the basin (figure S1) suggesting temporal vari-

ability could alias into the observed spatial structure of the temperature change.

A prominent pattern of temperature variability here is the Indian Ocean Dipole (IOD)

(N. H. Saji et al., 1999). Positive IOD events are associated with anomalously cold SST

in the eastern Indian Ocean, and anomalously warm SST in the west. The pattern is

reversed for negative events. Figure S4 shows the SST from ERSST reanalysis averaged

over the western and eastern tropical Indian Ocean, and a Dipole Mode Index constructed

from the HadSST reanalysis (N. Saji & Yamagata, 2003). The Gazelle sampled during

the transition from a negative IOD event to neutral conditions, with a weak cool anomaly

in the western tropical basin. The cruise track however was largely confined to latitudes
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south of 30◦S, where IOD temperature anomalies are smaller (N. Saji & Yamagata, 2003).

The Planet also sampled at the onset of a more strongly negative IOD event, with obser-

vations at low latitude where temperature anomalies are strongest. However, we note that

the absolute magnitude of the temperature anomalies evident in the ERSST reanalyses

were not particularly large during this period, suggesting the effect of the IOD on the

Planet observations may be more limited than implied by the gradient-based calculation

of the Dipole Mode Index. The Valdivia cruise was during neutral IOD conditions. Fi-

nally, we note that El-Niño-Southern Oscillation (ENSO) variability also affects Indian

Ocean SST, however none of the 3 cruises appear to have been during periods of strong

ENSO events (Gergis & Fowler, 2009).

Finally, to test for possible aliasing of inter-cruise variability into the zonal-mean spatial

pattern (eg. figure 3) we recalculate the latitude-depth section removing one cruise at a

time (figures S5, S6, and S7). From this it can be seen that, notwithstanding data gaps,

the basic pattern of interior temperature change is robust to the removal of individual

cruise data.

Text S4: Statistical robustness of the temperature change pattern

The historical observations are sparse, and the calculated temperature differences are

noisy, such that significant averaging is required for statistical inference. However, it is

also apparent that there is a striking similarity between the spatial pattern of temper-

ature changes observed in the historical data and the late 20th century changes in the

modern observational record (cf. figures 3 and 4). In the main text we therefore present
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the latitude-depth section of the modern minus historical temperature changes (figure 3)

with bin sizes chosen principally for visual clarity, despite the observations being too un-

derpowered to provide meaningful statistics on this scale. The consistency of the pattern

seen in the historical data with multiple independent lines of evidence, as discussed in the

text, provides a measure of confidence in its physical interpretation.

However, we also provide here a more rigorous assessment of the broad pattern of 20th

century temperature change highlighted in the text. To do this we bin average the modern

minus historical temperature change in larger bins spanning 10◦ of latitude, and 500 m

depth (figure S8). The resulting field is broadly similar—albeit greatly smoothed— to the

less heavily averaged version in the main text (figure 3). To determine regions where the

null hypothesis of zero mean temperature change can be rejected it is necessary to control

the false discovery rate associated with multiple hypothesis testing. We use the method

outlined by Wilks (2016), where local null hypotheses are rejected if their p-values (based

on the standard t test) are smaller than a threshold value, p∗,

p∗ = max
i=1,...,N

[
p(i) : p(i) ≤ (i/N)αFDR

]
, (13)

where subscripts denote the indices of the bin p-values sorted in ascending order, N is

the number of bins, and αFDR controls the false-discovery rate (ie. the rate at which the

local null hypothesis will be incorrectly rejected). The reader is referred to Wilks (2016)

for further details of the method.

Regions where the null hypothesis cannot be rejected at αFDR = 0.15 are shown in

figure S8 by the stippling. This value of the αFDR is relatively high, but was found to give

the best balance between hypothesis testing and retaining sufficient spatial resolution to
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capture the features of interest (we note as well that the definition of significance in (13)

is more stringent than applying individual significance calculations at each bin, such that

almost all regions where the null hypothesis is rejected also have p < 0.05). The major

features of the 20th century temperature change that are discussed in the text are in

regions where the null hypothesis is rejected. This includes the strong warming near the

surface along the Antarctic Circumpolar Current, moderate warming extending through

the subtropical gyre interior, and cooling and warming on the poleward and equatorward

flank of the thermocline dome, respectively.

We also note that for this same bin-averaging and value of αFDR, the global null hypoth-

esis (that the null hypothesis is true for all bins) cannot be rejected for the temperature

differences calculated between the 1955-1964 climatology and the historical observations.
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Figure S1. Depth averaged temperature change between 2005–2017 and the observa-

tions from the Gazelle (diamond markers), Valdivia (circle markers), and Planet (triangle

markers). Depth ranges of averaging are indicated in the title of each subpanel. Modern

annual average temperature values over the same depth ranges are also shown (thin con-

tours) with a contour interval of 2◦C.
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Figure S2. As in figure S1, but for the temperature differences between the 1955–1964

climatology and the historical observations.
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Figure S3. Depth profiles of the mean temperature bias introduced across the historical

station locations by an assumed 4% shallow bias in the reported observation depths of the

Gazelle. Positive values imply estimates of modern minus historic data are biased warm.
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Figure S4. Top: Sea-surface temperature from ERSST averaged over the

West (50◦E – 70◦E, 10◦S – 10◦N) and East (90◦E – 110◦E, 10◦S – 0◦) Indian

Ocean. Bottom: The Dipole Mode Index as defined in N. Saji and Yamagata (2003,

https://psl.noaa.gov/gcos wgsp/Timeseries/DMI). In both plots the time-period of the

historical cruise observations are indicated by the blue shading.
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Figure S5. Latitude-depth slice of modern minus historical temperatures, as in figure

3, but without the Planet observations.
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Figure S6. Latitude-depth slice of modern minus historical temperatures, as in figure

3, but without the Valdivia observations.
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Figure S7. Latitude-depth slice of modern minus historical temperatures, as in figure

3, but without the Gazelle observations.
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Figure S8. Latitude-depth slice of modern minus historical temperatures, as in figure

3, but averaged over larger bins. In this plot regions of stippling indicate areas where

the null hypothesis of 0 mean temperature change cannot be rejected at the αFDR = 0.15

level.
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