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ABSTRACT: Submesoscale currents, comprising fronts and mixed-layer eddies, exhibit a dual

cascade of kinetic energy: a forward cascade to dissipation scales at fronts and an inverse cascade

from mixed-layer eddies to mesoscale eddies. Within a coarse-graining framework using both

spatial and temporal filters, we show that this dual cascade can be captured in simple mathematical

form obtained by writing the cross-scale energy flux in the local principal strain coordinate system,

wherein the flux reduces to the the sum of two terms, one proportional to the convergence and the

other proportional to the strain. The strain term is found to cause the inverse energy flux to larger

scales while an approximate equipartition of the convergent and strain terms capture the forward

energy flux, demonstrated through model-based analysis and asymptotic theory. A consequence

of this equipartition is that the frontal forward energy flux is simply proportional to the frontal

convergence. In a recent study, it was shown that the Lagrangian rate of change of quantities

like the divergence, vorticity and horizontal buoyancy gradient are proportional to convergence at

fronts implying that horizontal convergence drives frontogenesis. We show that these two results

imply that the primary mechanism for the forward energy flux at fronts is frontogenesis. We

also analyze the energy flux through a Helmholtz decomposition and show that the rotational

components are primarily responsible for the inverse cascade while a mix of the divergent and

rotational components cause the forward cascade, consistent with our asymptotic analysis based

on the principal strain framework.
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1. Introduction25

Most of the kinetic energy (KE) in the earth’s oceans is found in mesoscale eddies consequent26

of which, understanding the mechanisms and pathways of their generation and dissipation is of27

fundamental importance (Ferrari and Wunsch 2009). Since they are approximately in geostrophic28

balance, classical geostrophic turbulence theory (Salmon 1998) provides a paradigm wherein29

available potential energy (APE) created by the action of large scale wind stress and surface30

buoyancy fluxes is converted into kinetic energy through baroclinic instability. Nonlinear eddy-31

eddy interactions then induce an inverse cascade of this kinetic energy to larger eddy scales, with32

their dissipation primarily limited to occur at the boundaries, both at the ocean bottom and, as has33

been demostrated recently, the air-sea interface (Ma et al. 2016; Renault et al. 2016, 2018, 2019;34

Rai et al. 2021). Studies over the past two decades have, however, found that mesoscale eddies35

can have significant energy exchanges with smaller and faster oceanic components comprising36

submesocale mixed layer eddies (MLEs) and fronts (Thomas et al. 2008; McWilliams 2016), and37

inertia gravity waves (IGWs) (Thomas 2012; Xie and Vanneste 2015; Taylor and Straub 2016;38

Alford et al. 2016; Jing et al. 2017; Barkan et al. 2017; Rocha et al. 2018; Thomas and Daniel 2021;39

Barkan et al. 2021). Mesoscale eddies have horizontal length scales in the range O(10km-100km)40

and time scales of weeks to a months. MLEs typically have O(1-10km) while cross-frontal scales41

can be as small as tens of metres. While MLEs can last a few days, frontal time scales can overlap42

with those of IGWs that are physically constrained to be faster than the local Coriolis frequency.43

Like mesoscale eddies, MLEs are also formed through baroclinic instability but of the near-44

surface mixed layer (Boccaletti et al. 2007), which is deeper during the winter season due to surface45

cooling driven convective mixing (Mensa et al. 2013; Brannigan et al. 2015; Callies et al. 2015;46

Thompson et al. 2016). In fact layered quasi-geostrophic models that have been a long standing47

framework for studying mesoscale eddies also reproduce MLEs with a shallow upper layer, but not48

fronts (Callies et al. 2016). Fronts, which are highly anisotropic structures, are formed through a49

multitude of mechanisms (Hoskins and Bretherton 1972;McWilliams 2017; Srinivasan et al. 2017)50

that involve the background gradients provided by both mesoscale eddies and MLEs, but also the51

turbulence in themixed layer (McWilliams et al. 2015;Wenegrat andMcPhaden 2016;McWilliams52

2017). Energetically, the generation of both fronts and MLEs involves a conversion of mixed layer53

APE to KE, but unlike MLEs, fronts also have a significant ageostrophic flow component in the54
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cross-front direction i.e. the ageostrophic secondary circulation (ASC). Frontal ASCs are highly55

asymmetric, with strong downwelling and weak upwelling, and this manifests as a large visible56

negative value of the divergence in the mixed layer, 𝛿 = 𝑢𝑥 + 𝑣𝑦 (𝑢 and 𝑣 are the velocities along the57

zonal, 𝑥, and meridional, 𝑦, directions). Heuristically one might expect that the similarity in the58

generation and balance of mesoscale eddies and MLEs might lead to similar nonlinear dynamics.59

A recent study by Schubert et al. (2020) employed a coarse graining approach (Aluie et al. 2018)60

to explicitly demonstrate that MLEs undergo an inverse energy cascade to mesoscales, echoing the61

inverse energy transfer of mesoscale eddies themselves to larger scales. In particular they were able62

to provide a visual and dynamical demonstration of the absorption of MLEs into mesoscale eddies.63

They also show that the energy transfer at smaller scales occurs primarily at frontal features and is64

forward i.e. from large to small scales. This is consistent with previous studies that suggest that65

ageostrophic motions might be responsible for forward energy cascades found at submesoscales66

(Capet et al. 2008).67

In this study we examine the cross scale flux of kinetic energy in realistic submesoscale resolving68

numerical simulations of the North Atlantic. Instead of the traditionally used spectral energy69

flux approach (Scott and Wang 2005; Scott and Arbic 2007; Capet et al. 2008; Molemaker et al.70

2010; Barkan et al. 2015; Wang et al. 2019; Ajayi et al. 2021), we employ the filter-based coarse71

graining framework to compute energy fluxes across both spatial (Aluie et al. 2018; Srinivasan72

et al. 2019; Schubert et al. 2020) and temporal (Barkan et al. 2017, 2021; Garabato et al. 2021;73

Zhang et al. 2021b,a) scales. Figure 1 shows the spatial structure of the spatial KE flux from our74

500 m horizontal resolution run (details in Section 2) for a filter-scale of 4km (Π4
ℎ
, representing75

the horizontal KE transfer from scales larger than 4km to those smaller) during the month of76

January. Echoing the results of Schubert et al. (2020), we find that the flux is largest at the frontal77

features which can be identified as regions of strong convergence (−𝛿) and buoyancy gradient,78

|∇𝑏 |. Furthermore, while some of the regions of strong forward transfer are clearly at fronts that79

lie on the edges of large mesoscale anticyclones (leading to the possibility that these are generated80

through strain-induced frontogenesis) most other regions are at fronts associated with smaller scale81

eddies or sometimes none at all. This indicates that the mechanism of energy flux at fronts is82

agnostic to the mechanism of frontal generation. The choice of 4km filter-scale in Fig. 1 is not83

specific and represents a typical length scale in the submesoscale range (in Sec 4a we show that84
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this actually corresponds to an equivalent spectral length scale of 𝜆𝑠𝑝 = 9.6 km). In the rest of the85

paper, we employ a wide range of filter-scales for analysis starting from the grid scale till beyond86

mesoscale eddy length scales.87

Fig. 1. A snapshot of horizontal cross-scale energy flux Π4
ℎ
[m2s−3] on January 7th (i.e. the winter season),

where the superscript indicates a filterscale of 4 km, the energy transferred from scales larger than 4 km to finer

scales at a ocean surface [Note that this is equivalent to an effective spectral scale, 𝜆𝑠𝑝 = 9.6 km (see Section

4a)]. Also shown are the surface vorticity [s−1], 𝜁 = 𝑣𝑥 − 𝑢𝑦 and the divergence [s−1], 𝛿 = 𝑢𝑥 + 𝑣𝑦 normalized

with the Coriolis paramter, 𝑓 and the magnitude of the horizontal buoyancy gradient, |∇𝑏 | [s−2].
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Fig. 2. Plots, as a function of depth [m], of (a) Π4
ℎ
[m2s−3], the horizontal energy flux from scales larger

than 4km to smaller scales, (b) −𝛿4 [s−1], the convergence smoothed at a 4km scale and, (c) E ′4 [m2s−2], the

kinetic energy of scales finer than 4 km, either spatially averaged over the entire flow domain shown in Fig. 1

(marked by the subscript, ‘global’ and in blue) or spatially averaged only on fronts defined by the region having

|∇𝑏 | > 1.5×10−7s−2 (marked by the subscript, ’fronts’ and in red); temporal averaging is also performed over the

winter months of January, February and March on top of the indicated spatial averaging. (d) A plot of Π4
ℎ, 𝑓 𝑟𝑜𝑛𝑡𝑠

in a) versus −𝛿4
𝑓 𝑟𝑜𝑛𝑡𝑠

E ′4
𝑓 𝑟𝑜𝑛𝑡𝑠 [the product of b) and c)].
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To make the association between fronts and the energy flux stronger and foreshadow the results100

in our paper ahead, we compare the energy flux across the 4 km scale (Π4
ℎ
) averaged over the flow101

domain seen in Fig. 1 with that conditionally averaged on fronts only (given by the region satisfying102

∇𝑏 > 1.5×10−7s−2) as a function of depth (Fig. 2a). We note that both the frontal-averaged flux (red103

curve) and the domain-averaged flux (blue curve) are positive over this depth, i.e. a positive energy104

flux from scales larger than 4km to smaller or equivalently a forward flux. The front-averaged105

forward flux is also two orders of magnitude larger, supporting the visual inference from Fig. 1 that106

the energy flux at this scale is predominantly at fronts. The vertical structure of the front-averaged107

flux closely resembles that of the front-averaged convergence, −𝛿4
𝑓 𝑟𝑜𝑛𝑡𝑠

(where 𝛿4 is the divergence108

smoothed at the same 4 km scale for consistency) and the kinetic energy at scales smaller than 4109

km, E′4, averaged at fronts, E′4
𝑓 𝑟𝑜𝑛𝑡𝑠. It should be noted that the rate of change of E′4 due to the110

energy exchange with larger scales is precisely, Π4
ℎ
, i.e.111 (

𝐷E′4

𝐷𝑡

)
𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟

= Π4ℎ . (1)
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By plotting the Π4
ℎ, 𝑓 𝑟𝑜𝑛𝑡𝑠

against −𝛿4
𝑓 𝑟𝑜𝑛𝑡𝑠

E′4
𝑓 𝑟𝑜𝑛𝑡𝑠 (a natural choice, given that the two quantities112

have identical dimensions) we find the simple result that the relationship is linear, so that Π4
ℎ
∝113

−𝛿4
𝑓 𝑟𝑜𝑛𝑡𝑠

E′4
𝑓 𝑟𝑜𝑛𝑡𝑠. But from (1) we get114

1
E′4

𝑓 𝑟𝑜𝑛𝑡𝑠

(
𝐷E′4

𝐷𝑡

)
𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟, 𝑓 𝑟𝑜𝑛𝑡𝑠

∝ −𝛿4𝑓 𝑟𝑜𝑛𝑡𝑠 . (2)

The results above can be summarized as follows: the rate of change of kinetic energy(the energy115

flux) at around 4km scales during the winter season in this region is predominantly at fronts while116

the relative rate of change of frontal kinetic energy is simply governed by the convergence as give117

by (2).118

The entire analysis above was based on a combination of dimensional considerations and simple119

model-based heurestics, but is a key result of this study. We show that (2) can in fact be derived from120

first principles by writing the energy flux in principal strain coordinates (Section 3) followed by a121

combination of detailed model-based analysis (Section 4, including an analysis of the energy flux122

using the Helmholtz decomposition in Section 4c) and asymptotic theory (Section 5). Section 5123

connects the results here with the theory of frontogenesis proposed by Barkan et al. (2019)124

demonstrating that convergence drives frontogenesis, a result that we show here also applies to the125

cross-scale energy flux through the form of (2). In this paper we do not explore the seasonality126

of the forward and inverse energy cascades as has been suggested in recent work (Garabato et al.127

2021) that analyses temporal energy transfers from observational data (in particular the OSMOSIS128

current meter array) and find an inverse energy cascade in winter from submesoscales tomesoscales129

but a forward energy transfer in late spring. We instead limit our attention to the winter season in130

the North Atlantic when the submesoscales are strongest and examine the cross-scale KE fluxes and131

their structure at submesoscale spatial and temporal scales. We also briefly discuss a potentially132

alternative pathway for forward energy cascade, namely symmetric instability accompanied by133

some analysis and discussions involving the vertical component of the energy flux, Πℓ
𝑣, and the134

corresponding geostrophic shear production, Πℓ
𝑣𝑔 (Section 6b). In concurrent (Barkan et al. 2021)135

and upcoming studies we also examine the energy exchanges between eddies, fronts and IGWs.136
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Fig. 3. A snapshot of the normalized surface vorticity, 𝜁/ 𝑓 , on February 8, obtained from the 2 km (outer

nest) and 500 m (inner nest) horizontal resolution nested ROMS simulations. The 2km run, forced by a 6 km

resolution North Atlantic run (not shown here), spans the North Atlantic region between Greenland and Iceland.

The actual analysis region (shown in Fig. 1) for the 2 km and 500 m runs in this work is a square region spanning

about two-thirds of the inner 500 m nest here.

138

139

140

141

142

2. Numerical methodology137

Numerical solutions are conducted using the Regional Ocean Modeling System (ROMS) a143

split-explicit hydrostatic primitive model (Shchepetkin and McWilliams 2005). A nested grid144

hierarchy with one-way nesting is employed; a 6km resolution parent grid run forced on its external145

boundaries by climatology is run beginning 1 January, 1999 for two years with only the third146

year run used to force a 2 km run at the boundaries; the 2 km run is then subsequently used to147
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force and run a submesoscale-permitting 500 m resolution run. A surface vorticity snapshot in148

early February is plotted in Fig. 3 highlighting the 2 km-500 m nested hierarchy and the stronger149

submesoscale field of the 500 m resolution model. The actual analysis domain employed in this150

work is an approximately 430 km× 430 km region within the 500m nested grid, displayed in Fig. 1.151

The air-sea interface is forced with the Climate Forecast System Reanalysis (CFSR) atmospheric152

product low pass filtered using a one-day filter to eliminate high frequency forcing that would153

generate Near-inertial internal waves (NIWs). We only use the winter months (January, February154

and March 2001) of the 500 m and 2 km runs for analysis in this study since these are the months155

when submesoscale MLEs and fronts are especially active. The solutions used for analysis in this156

paper have been validated extensively in our concurrent study (Barkan et al. 2021) against satellite157

altimetry and current meter observations in the region so we refer the readers to that paper.158

3. Dynamics in principal strain coordinates159

We compute the energy flux across scales using the so-called coarse graining approach which160

entails a method for decomposing the flow field into small and large scales for spatial transfers161

(Eyink and Aluie 2009; Aluie et al. 2018), and fast and slow scales for temporal transfers (Barkan162

et al. 2017). These are accomplished using a simple low-pass filtering (or smoothing) operator.163

In this study we separately compute cross-scale transfers across spatial and temporal scales rather164

than a joint spatio-temporal approach. While previous studies have been limited to computing165

either spatial (Aluie et al. 2018; Schubert et al. 2020) or temporal scale-to-scale transfers (Barkan166

et al. 2017, 2021), we compute both to demonstrate the robustness of our analysis framework.167

Furthermore, in the abscence of IGWs (which is true for the simulations employed here) slower168

(faster) scales correspond to larger (smaller) ones and this should be reflected in the cross-scale169

energy fluxes.170

a. Scale-to-scale energy flux171

We decompose the velocity fields into scales smaller (faster) and larger (slower) than a given172

length scale ℓ (time scale 𝜏) with a low-pass filtering function; this is chosen to be a uniform173

filter (also referred to as a boxcar or tophat filter) for the spatial filtering (Aluie et al. 2018)174

and a Butterworth filter for the temporal (Barkan et al. 2021). The uniform filter is sharp in175
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physical space but the Butterworth is spectrally sharp. These filter choices and their implications176

are discussed in Section 4a (in particular, see the discussion around Fig. 6.). Since the theory177

applies to both spatial and temporal filters, we identify the slower (larger) component as 𝑢̄𝑖 and178

the faster (smaller) component as 𝑢′
𝑖
where 𝑖 ∈ [1,2] and (𝑢1, 𝑢2) ≡ (𝑢, 𝑣). In other words, because179

𝑢𝑖 = 𝑢̄ℓ + 𝑢′ℓ = 𝑢̄𝜏 + 𝑢′𝜏 ≡ 𝑢̄ + 𝑢′, we derive our expressions in general and for presentation of our180

results, we use 𝜏 (units in hours) superscript for the temporal transfers and ℓ (units in km) for the181

spatial. We call the 𝑢̄ and 𝑢′ fields as coarse and fine fields respectively. The energy transfer from182

scales finer than a certain scale to coarser scales is then (Aluie et al. 2018)183

Π = −(𝜏𝑢𝑢𝑢̄𝑥 + 𝜏𝑢𝑢 (𝑢̄𝑦 + 𝑣̄𝑥) + 𝜏𝑢𝑢 𝑣̄𝑥)︸                                  ︷︷                                  ︸
Πℎ

−(𝜏𝑢𝑤𝑢̄𝑧 + 𝜏𝑣𝑤 𝑣̄𝑧)︸               ︷︷               ︸
Π𝑣

.

(3)

where Πℎ and Π𝑣 are the vertical and horizontal energy flux terms. The Leonard’s stress term184

(Leonard 1975) is 𝜏𝑢𝑣 = 𝑢𝑣−𝑢 𝑣, and similarliy for the other terms. Since for filters, 𝑢′, 𝑣′ ≠ 0 (i.e.185

the filter operator is not a Reynolds’ operator), 𝜏𝑢𝑣 ≠ 𝑢′𝑣′. The horizontal component can be further186

expressed in the form,187

Πℎ = −τ : S = −

𝜏𝑢𝑢 𝜏𝑢𝑣

𝜏𝑢𝑣 𝜏𝑣𝑣




𝑢̄𝑥 (𝑢̄𝑦 + 𝑣̄𝑥)/2
(𝑢̄𝑦 + 𝑣̄𝑥)/2 𝑣̄𝑦,

 (4)

where the : operator represents a tensor dot product operation (a term-by-term product followed188

by summation).The expression in (4) can be identified as “the stress of the finer scales times the189

strain of the coarser scale”.190

We rotate our (𝑥, 𝑦) coordinate axis along the vertical by angle 𝜃 (𝑥, 𝑦) at every point in space,191

such that in the new local coordinate system, the strain tensor, 𝑆𝑖 𝑗 , is diagonal. Such a 𝜃 (𝑥, 𝑦)192

always exists because 𝑆𝑖 𝑗 is a symmetric tensor. It is straightforward to show that that the precise193

form this diagonal tensor takes is194

[𝑆] =

(𝛿+ 𝛼̄)/2 0

0 (𝛿− 𝛼̄)/2

 (5)
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Where the coarse-scale divergence, 𝛿 = 𝑢̄𝑥 + 𝑣̄𝑦 and the strain magnitude, 𝛼̄2 = (𝑣̄𝑦− 𝑢̄𝑥)2+ (𝑣̄𝑥 + 𝑢̄𝑦)2195

are both quantities that are invariant to a rotation of coordinate system and can be effectively treated196

as scalars. Clearly, in the limit of 𝛿 → 0, the diagonal terms reduce to ±𝛼̄/2, so that the latter can197

also be referred to as the “non-divergent” strain though we drop the characterization in our usage198

here. In this rotated coordinate system the energy flux takes the form199

Πℎ = −[𝜏𝑢𝑢 (𝛿+ 𝛼̄)/2+ 𝜏𝑣𝑣 (𝛿− 𝛼̄)/2] , (6)

= (𝜏𝑣𝑣 − 𝜏𝑢𝑢)
𝛼̄

2
− (𝜏𝑣𝑣 + 𝜏𝑢𝑢)

𝛿

2
, (7)

= E′𝛾𝛼̄︸︷︷︸
Π𝛼

− E′𝛿︸︷︷︸
−Π𝛿

. (8)

where E′ = (𝜏𝑣𝑣 + 𝜏𝑢𝑢)/2 is the energy of finer scales, and 𝛿 and 𝛼̄ are the divergence and strain of200

the coarse field. The parameter201

𝛾 ≡ 𝜏𝑣𝑣 − 𝜏𝑢𝑢

𝜏𝑣𝑣 + 𝜏𝑢𝑢
(9)

is the anisotropy of finer scales in principal strain coordinates (Huang and Robinson 1998; Srini-202

vasan and Young 2014). It is important to emphasize the coordinate system when discussing 𝛾203

because unlike 𝛼̄, 𝛿 and E′, 𝛾 is not invariant to rotation. The termΠ𝛼 in related contexts is referred204

to as the deformation shear production (DSP) (Thomas 2012) but the Π𝛿 is new and is in general205

only relevant when 𝛿 is significant i.e. for submesoscale currents and so we call it the convergence206

production (CP). Note that −1 ≤ 𝛾 ≤ 1 which gives the bounds −𝛼E′ ≤ Π𝛼 ≤ 𝛼E′. The expression207

in (8) can also be written in coordinate invariant form as208

Πℎ = (𝜏𝑣𝑣 − 𝜏𝑢𝑢)
𝜎̄𝑛

2
− 𝜏𝑢𝑣𝜎̄𝑠︸                     ︷︷                     ︸

Π𝛼

− (𝜏𝑣𝑣 + 𝜏𝑢𝑢)
𝛿

2︸        ︷︷        ︸
−Π𝛿

, (10)

The Π𝛿 expectedly remains unchanged as it is the product of two coordinate invariant quantities,209

E′ = (𝜏𝑣𝑣 + 𝜏𝑢𝑢)/2 and 𝛿 = 𝑢̄𝑥 + 𝑣̄𝑦 but the two terms comprising Π𝛼 associated with the normal210

strain, 𝜎𝑛 = 𝑢̄𝑥 − 𝑣̄𝑦 and shear strain, 𝜎𝑠 = 𝑢̄𝑦 + 𝑣̄𝑥 are not invariant and therefore have no separate211

meaning. While the principal strain form of Π𝛼 in (8) has a very simple elegant form, estimating212

11



𝛾 in principal strain coordinates is not straightforward and we mostly use the coordinate-free form213

specified in (10).214

Eq. (10) with 𝛿 = 0 was derived by Polzin (2010), for studying the interactions between IGWs215

and mesoscale flows, in straightforward fashion from (3). Even with 𝛿 ≠ 0, starting from (10) and216

showing that Πℎ is equivalent to the form in (3) is easily done. However directly inferring the217

form of Πℎ in (10) from (3) is not obvious and the principal strain coordinates helps arrive there218

naturally. The treatment of Πℎ in principal strain coordinates outlined above follows that by Jing219

et al. (2017) in their study of near-inertial mesoscale eddy interactions, who derived the form in220

(7) for 𝛿 = 0; in essense, Πℎ ∝ 𝛼, where 𝛼 is the mesoscale strain field. Our treatment extends the221

result to submesoscale flows for finite 𝛿 and we use it in the more general coarse-graining context.222

b. Frontogenetic equations223

The primary focus of this study is to examine the connection between energy transfer at fronts224

and frontogenesis. To this end we consider the evolution equation for the buoyancy gradient,225

|∇𝑏 |2 = 𝑏2𝑥 + 𝑏2𝑦, also referred to as the frontogenetic tendency equation (Hoskins and Bretherton226

1972),227

1
2
𝐷 | |∇𝑏 | |2

𝐷𝑡
=−(𝑏2𝑥𝑢𝑥 + 𝑏2𝑦𝑢𝑦) + 𝑏𝑥𝑏𝑦 (𝑢𝑦 + 𝑣𝑥)︸                                   ︷︷                                   ︸

Bℎ

−𝑏𝑧 (𝑤𝑥𝑏𝑥 +𝑤𝑦𝑏𝑦)︸                 ︷︷                 ︸
B𝑣

(11)

Then we can write (Barkan et al. 2019)228

Bℎ = −B : S , (12)

where S is the strain tensor while229

B =


𝑏2𝑥 𝑏𝑥𝑏𝑦

𝑏𝑥𝑏𝑦 𝑏2𝑦

 (13)

is a dyadic, a special kind of second rank tensor formed by the outer product of two vectors, in230

this case of (𝑏𝑥 , 𝑏𝑦) with itself. Comparing (12) with (4) we note that the horizontal component231
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of the buoyancy gradient tendency can be written in the same form as the horizontal component232

of the fine-scale energy tendency (4), with the fine scale stress tensor, τ replaced by the buoyancy233

gradient tensorB. As before we switch to the principal strain coordinates, and retracing the steps234

from (5) to (8) for (12) we get235

Bℎ = ( |∇𝑏 |2𝛾𝑏𝛼− |∇𝑏 |2𝛿)/2 . (14)

where 𝛾𝑏 is the buoyancy gradient anisotropy in principal strain coordinates236

𝛾𝑏 ≡
𝑏2𝑥 − 𝑏2𝑦

𝑏2𝑥 + 𝑏2𝑦
, (15)

and the coordinate free form of (14) in analogy with (10)237

Bℎ = (𝑏2𝑦 − 𝑏2𝑥)
𝜎𝑛

2
− 𝑏𝑥𝑏𝑦𝜎𝑠︸                      ︷︷                      ︸

𝐵𝛼

− (𝑏2𝑦 + 𝑏2𝑥)
𝛿

2︸       ︷︷       ︸
−𝐵𝛿

. (16)

Recently (Balwada et al. 2021) derived the evolution equations for square of the gradient of a238

passive scalar (|∇𝑐 |2) in principal strain coordinates, which is essentially the same as that of |∇𝑏 |2239

derived above, although the authors do not express the result in the 𝛼 − 𝛿 form that we prefer240

or in the coordinate-free form in (16). In general, an equation like (16) can be written for any241

physical quantity whose rate of change takes the form in (12). Beyond scalar fields like 𝑏, we state242

(without elaboration) that similar forms can be written for the evolution equations of the square243

vertical shear, 𝑢2𝑧 +𝑣2𝑧 [employed in the study of topographic submesoscale wakes (Srinivasan et al.244

2021) and front-surface wave interactions (Hypolite et al. 2021)] and the magnitude of the velocity245

gradient tensor, |∇u|2 [used as another proxy for frontogenesis by Barkan et al. (2019)]246

4. Results from the numerical model247

a. Spatiotemporally averaged fluxes248

We compute the fluxes Πℎ, Π𝛼 and Π𝛿 from (10) at multiple depth levels between 0 and 100 m257

for two model runs at 2 km and 500 m resolutions. For each of the two runs and at each depth258

we use a range of scales for computing the fluxes - the spatial filter sizes are varied between the259
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Fig. 4. Horizontally and temporally averaged temporal energy fluxes [m2s−3] (a)-(f) as a function of depth

and inverse filterscale [hr−1] and (g), (h) vertically averaged over the top 50m. The top row shows fluxes at 500

m resolution and the second row at 2 km resolution. The curves in the bottom row are the total horizontal flux

Π𝜏
ℎ
(black), the deformation shear production Π𝜏

𝛼(red) and the convergence production Π𝜏
𝛿
(blue).

249

250

251

252

lowest grid scale (500 m and 2 km for the two models) to around 100 km while the temporal scales260

are varied between 1 hr and 100 hrs. Computing the fluxes on a cluster (XSEDE (Towns et al.261

2014)) using the Ray multiprocessing library 1 allows us to use a significantly larger number of262

filters, 54 filters in space and 27 fiters in time at a large number of depths, compared to recent263

studies. The coarse-graining approach has the advantage over spectral methods in not needing a264

windowing function for ensuring periodicity at the boundaries, but a consistent treatment of the265

filter at the boundaries is still required. Whenever the spatial (uniform) filter hits the boundary, we266

use a mirroring of the velocity field outward, preserving the structure of the flow. For the temporal267

1https://github.com/ray-project/ray
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Fig. 5. Horizontally and temporally averaged spatial energy fluxes [m2s−3] (a)-(f) as a function of depth and

inverse filterscale [km−1] and (g), (h) vertically averaged over the top 50m. The top row shows fluxes at 500 m

resolution and the second row at 2 km resolution. The curves in the bottom row are the total flux Πℓ
ℎ
(black), the

deformation shear production Πℓ
𝛼(red) and the convergence production Πℓ

𝛿
(blue).

253

254

255

256

(Butterworth) filter, after filtering, we discared the first 120 hours (being about twice the length of268

the largest filter used) in January and last 120 hrs in March to avoid edge efftecs.269

We first show Πℎ, Π𝛼 and Π𝛿 spatially averaged over the domain and temporally averaged over274

the winter season (sans the edge data for the temporal case) in Figs. 4a-f (temporal transfer) and275

5a-f (spatial transfer). These represent the average energy transferred over the whole domain and276

during the winter months from scales larger to smaller. Thus positive values represent an energy277

transfer to smaller scales (or a forward cascade) and negative values represent an inverse energy278

cascade. Both figures show broadly similar patterns, in particular inverse cascade at larger (slower)279
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Fig. 6. Horizontally and temporally averaged temporal energy flux (Π𝜏
ℎ
[m2s−3]) at the surface as a function of

filterscale, 𝜏 [hr] for the choice of two filters, the Butterworth (red) and uniform (blue) filters. The green curve

is simply the blue curve plotted against 2.4𝜏, i.e. by rescaling the abscissa by a factor of 2.4. The red curve is

precisely the surface value in Fig. 4a although the abscissa here is 𝜏 instead of 𝜏−1.

270

271

272

273

scales and forward cascade at smaller (faster) scales. The transition from forward to inverse transfer280

is at 10km and around 50 hrs at the surface.281

These transition scales need to be interpreted with some care given the different filter choices282

in the two cases, the spatially sharp uniform filter and the spectrally sharp Butterworth filter in283

time. To evaluate the importance of these filter choices on the flux, we also compute a temporal284

scale-to-scale flux with the uniform filter at the surface and compare it with the flux obtained using285

the Butterworth filter. Fig. 6 highlights the result that the forward-to-inverse transition timescale286

obtained from the Butterworth filter is around 2.4 times larger than what one might expect from287

the uniform filter flux calculation as demonstrated by plotting the flux obtained using the uniform288

filter against 2.4𝜏 instead of the actual filterscale, 𝜏. Given the lack of an obvious implementation289

of the Butterworth filter to two dimensions, we continue using the uniform filter, in line with recent290

studies (Aluie et al. 2018; Schubert et al. 2020) with the knowledge that forward cascade region in291

Fig. 5 occupies a larger range of scales and the actual transition scale is at a scale of 24km, rather292
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than 10km result found in Fig. 5. In particular, we introduce an equivalent spectral scale for the293

spatial flux calulations 𝜆𝑠𝑝 = 2.4ℓ and report it along with the actual filter scale ℓ. Later, in Sec. 6a294

we again demonstrate the effective spectral resolution of the uniform filter, but by comparing295

energy spectra instead of fluxes (see Fig. 13). A similar result was found by Schubert et al. (2020)296

by comparing the traditional spectral flux (in space) with the result from the coarse-grained fluxes297

from the uniform filter as done here although they obtained a factor of 2 instead of 2.4. We surmise298

that this is a consequence of the larger number of filters sizes used here, making it easier for us to299

estimate this factor accurately.300

While the temporal transition scale is around 50 hr, a majority of the forward cascade (Figs. 4a301

and 6) is actually found within 24hr timescales. A recent study (Ajayi et al. 2021) computed302

(spatial) spectral energy fluxes at different regions of the North Pacific for a 1km resolution ocean303

model and found that using daily averages instead of snapshots substantially suppressed the forward304

energy cascade signal. Our temporal flux results explicate why this might be, assuming that in the305

absence of waves, the scales of motion associated with the temporal forward flux correspond to306

those that result in the spatial forward energy flux.307

Both the forward and inverse cascade are weaker in the 2 km model run consistent with the308

notion that the 500 m model resolves both submesoscale MLEs and fronts better. The peak inverse309

energy flux is at ℓ=30 km (𝜆𝑠𝑝 = 72 km) in the spatial though it is slower than the largest temporal310

filter width used here (i.e. slower than around 3 days which is still consistent with average MLE311

lifetimes of around a few days). In subsequent discussions we exclusively focus on the 500 m nest312

given the inadequecy of the 2 km nest in resolving submesoscales.313

The most interesting results concern the breakup of Πℎ into Π𝛼 and Π𝛿. Specifically, the inverse317

energy transfers in both the spatial and temporal cases are almost entirely due to theΠ𝛼 (or the DSP318

term); while the forward energy fluxes are approximately equipartitioned in the temporal case, the319

Π𝛿 (the CP term) is slightly larger in the spatial case. However, looking at the vertically integrated320

transfers, we notice that for scales smaller than 5 km (𝜆𝑠𝑝 = 12 km) and slower than around 10 hrs,321

both the Π𝛿 and the Π𝛼 do in fact seem to converge, this being especially evident for the temporal322

case. We use the scaling for frontogenesis used in Barkan et al. (2019) to support the hypothesis323

that for small enough scales, there is an equipartition between Π𝛼 and Π𝛿. In general, the fact that324

the Π𝛿 = −E′𝛿 is positive at the smallest, fastest scales in is line with our expectations about fronts,325
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whose strong near-surface convergence (i.e. negative 𝛿) should lead to positive values for Π𝛿. This326

also offers clear evidence for the hypothesis by Capet et al. (2008) that the forward energy cascade327

is due to ageostrophic motions (geostrophic flows have negligible 𝛿). However the cause of the328

forward cascade contribution of Π𝛼 are less clear. We plot the spatial and temporal energy spectra329

for the 2 km and 500 m winter runs (Fig. 7). Both show a larger level of energy at all scales in330

the 500 m model run relative to 2 km model. This is broadly consistent with the stronger inverse331

energy cascade in the 500 m model relative to the 2 km model from MLEs to larger scales. The332

500 m model has a larger energy even at small scales in spite of having a stronger forward cascade.333

This is because both frontal dynamics and mixed layer instability are accompanied by a conversion334

of APE to KE, energizing the surface mixed layer. A quantitative explanation of the equilibrium335

structure of the energy spectrum would require a full spectral kinetic energy budget, which is not336

the focus here.337

b. The spatial structure of energy fluxes338

To shed greater light on the transfers, following Fig. 1, we visualize the spatial structure ofΠ𝛼 and345

Π𝛿 in for different filter scales, along with the other components that constitute (8): 𝛼̄, 𝛿, E′ and the346

principal strain anisotropy in the form 𝛾E′ = (𝜏𝑣𝑣 − 𝜏𝑢𝑢)/2. For a filter scale of ℓ = 4𝑘𝑚 (𝜆𝑠𝑝 = 9.6347

km) we plot this breakup in Fig. 8. An immediate observation is the close similarity of the Π𝛼 and348

Π𝛿 fields to the extent that they almost look identical at first glance. This further lends credence to349

the hypothesis that at frontal spatial scales, there is an approximate equipartition between the two350

terms. The largest positive values in the Π𝛼 and Π𝛿 fields are found in regions where 𝛿 is strongly351

negative (i.e. regions of strong convergence). The small scale kinetic energy is also collocated352

with the convergent regions , as is the anisotropy 𝛾E′ which suggests that that these two quantities353

are associated with the ageostrophic secondary circulation of the fronts, whose signature is the354

convergent region. The large scale strain 𝛼̄ also has a distinctly frontal structure but encompasses355

regions of both positive and negative divergence and has a broader extent than the other fields. It356

is important to keep in mind that this section explains the forward energy cascades at fronts purely357

based on the structure of fronts themselves; this is obvious in the case Π𝛿 but a little more nuanced358

in the case of Π𝛼. We provide a simple theoretical framework explaining this connection between359

the forward cascade at fronts and frontogenesis in the Sec. 5. The correspondence between Π𝛼 and360
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Fig. 7. (a) Spatial [m2s−2/(cycles/m)] and (b) temporal [m2s−2/(cycles/s)] kinetic energy spectrum averaged

over the winter months of January, February and March for the 2 km run (thin line) and the 500 m run (thick

line).
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Fig. 8. The same snapshot as Fig. 1 showing the various components of Equation (8): the convergence

production,Π4
𝛿
[m2s−3], the deformation shear productionΠ4𝛼, where the superscript indicates ℓ = 4 km (𝜆𝑠𝑝 = 9.6

km), i.e. Π4 is the energy transferred from scales larger than 4 km to finer scales at a ocean surface. Also shown

are the energy of the smaller scales E ′4 [m2s−2], the anisotropy of the final scales in the local principal strain

coordinates 𝛾E ′4, the larger scale divergence, 𝛿 and the larger scale strain, 𝛼̄ normalized by the Coriolis paramter,

𝑓 .

339

340

341

342

343

344

Π𝛿 breaks down at larger filter scales as is evident from Fig. 9 where a 12 km filter scale is used361

(𝜆𝑠𝑝 = 28.8 km). Π𝛿 is expectedly large where 𝛿 is large and negative, however, Π𝛼 is no longer362

correlated with the same in spite of structural similarities between the two fields; at larger scales363

(i.e. at scales of MLEs), even these similarities in spatial patterns break down.364

c. Rotational and divergent components of the cross-scale energy flux365

Given that theΠ𝛼 andΠ𝛿 terms do not cleanly seperatemechanisms of inverse and forward energy366

fluxes, we decompose the horizontal velocity field into its rotational and divergent components,367
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Fig. 9. Same as Fig. 8 but with a filter scale of ℓ = 12 km (𝜆𝑠𝑝 = 28.8 km).

i.e. a Helmholtz decomposition, and subsequently compute energy transfers. Thus, we write368

𝑢 = 𝜙𝑥 +𝜓𝑦 , (17)

𝑣 = 𝜙𝑦 −𝜓𝑥 , (18)

where 𝜙 and 𝜓 are the velocity potential and streamfunction respectively. 𝜙 and 𝜓 are solved by369

inverting the Poisson equations ∇2𝜙 = 𝛿 and ∇2𝜓 = −𝜁 assuming the simple Dirchlet boundary370

condition 𝜙 = 0 at the boundary. We associate (𝑢𝑟 , 𝑣𝑟) ≡ (𝜓𝑦,−𝜓𝑥) as the rotational component371

of the velocity and (𝑢𝑑 , 𝑣𝑑) ≡ (𝜙𝑦, 𝜙𝑥) as the divergent component. Note that once the Poisson372

equation for 𝜙 is inverted to obtain (𝑢𝑑 , 𝑣𝑑), (𝑢𝑟 , 𝑣𝑟) are obtained by simply subtracting the divergent373

components from the full velocity field so that the Poisson equation for 𝜓 does not actually need to374

be solved. To keep the analysis simple, we first compute the energy fluxes through (10) using only375

the rotational components i.e. both the consituent fine-scale stresses and the coarse-scale strains that376
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Fig. 10. (a) Spatiotemporally averaged energy flux Π
ℓ,𝑟
𝛼 [m2s−3] (=Πℓ,𝑟

ℎ
) term computed purely using the

rotational component of velocity. The corresponding Πℓ,𝑟

𝛿
using only rotational components is trivially zero.

(b) The difference between Πℓ
𝛼 and Π

ℓ,𝑟
𝛼 interpreted as the forward flux component of Πℓ

𝛼. (c) The net forward

energy flux component in Πℓ
ℎ
obtained by adding the result in (b) with that obtained in Fig. 5b; this is same as

the difference between Πℓ
ℎ
and its purely rotational component, Πℓ,𝑟

ℎ
.

380

381

382

383

384

make up the energy flux are entirely rotational. We refer to the resulting horizontal energy transfer377

as Πℓ,𝑟

ℎ
, where the superscript refers to “completely rotational”, noting that Πℓ,𝑟

ℎ
= Π

ℓ,𝑟
𝛼 +Πℓ,𝑟

𝛿
.378

However, because Πℓ
𝛿
∝ 𝛿, we have that Πℓ,𝑟

𝛿
≡ 0 and thus379

Π
ℓ,𝑟

ℎ
= Πℓ,𝑟

𝛼 (19)

We plot the spatiotemporally averaged rotational component Πℓ,𝑟
𝛼 in Fig.10a and find it to be385

entirely upscale. The residual Πℓ
𝛼−Π

ℓ,𝑟
𝛼 (Fig.10b) which includes a mix of rotational and divergent386

components, is almost entirely forward, implying that the purely rotation component, Πℓ,𝑟
𝛼 (equiv-387

alently Πℓ,𝑟

ℎ
from (19)) accounts for the entirety of the inverse cascade of Πℓ

ℎ
. We associate this388

with the energetic interactions between MLEs through the mechanism demonstrated by Schubert389

et al. (2020) and also mesoscale eddies themselves. Adding this residual forward flux term to the390

other forward flux term found earlier, Πℓ
𝛿
(Fig. 5c) gives us the total forward flux associated with391

the flow and this works out to be392

Πℓ
𝛿 +Π

ℓ
𝛼 −Πℓ,𝑟

𝛼 = Πℓ
ℎ −Π

ℓ,𝑟

ℎ
(20)
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where we used the fact that Πℓ,𝑟

𝛿
is identically zero. The total forward flux is plotted in Fig. 10c.396

In summary, using the helmholtz decomposition, we can decompose the total horizontal transfer397

Πℓ
ℎ
into the inverse energy flux, given by Π

ℓ,𝑟

ℎ
comprising interactions among purely rotational398

components and the forward energy flux Πℓ
ℎ
−Π

ℓ,𝑟

ℎ
which includes a mix of the rotational and399

divergent components. This decomposition is dynamically relevant unlike an attempted forward-400

inverse decomposition by Schubert et al. (2020) who separately average the negative values and401

positive values ofΠℓ
ℎ
to separate the forward and inverse fluxes. It is notable that the peak values of402

the forward (Fig. 10c) and inverse (Fig. 10a) fluxes are in fact comparable though the latter spans a403

larger range of spatial scales and has a deeper vertical extent. The reason of course is that forward404

energy flux is highly localized at fronts. But a casual examination of the spatiotemporal energy405

spectra (Fig. 11a-b) of the divergent and rotational fields can give the impression that the divergent406

component is dynamically insignificant compared to the rotational (note the order of magnitude407

smaller spectral density at submesocales), in contrast with the picture that emerges from Fig. 10c.408

Though of secondary importance to the present study, a key question is how both the magnitude409

of the forward flux and the ratio of the rotational and divergent spectra change with increasing410

horizontal resolutions. We address this in detail in an upcoming study.411

At this point it must be clear that the results in this section could have been obtained directly from412

(4) or (10) without employing the principle strain coordinates or the 𝛼− 𝛿 decomposition; all that413

was required was the Helmholtz decomposition. However, the real strength of this decomposition414

lies in the theoretical connections that are readily established with the asymptotic framework for415

frontogenesis discovered by Barkan et al. (2019) as discussed in Section 5.416

5. The connection between energy flux at fronts and frontogenesis417

Barkan et al. (2019) provided a broad theoretical framework for frontogenesis based on general418

scaling considerations for frontal Rossby number, 𝑅𝑜 = 𝑉/ 𝑓 𝑙 and the frontal anisotropy, 𝜖 = 𝑙/𝐿,419

where𝑉 is the along front velocity scale and 𝑙 the frontal width, and 𝐿 the along front length scale.420

Under the assumptions of421

𝑅𝑜 ∼𝑂 (1) , 𝜖 � 1 , (21)
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Fig. 11. (a) Spatial [m2s−2/(cycles/m)] and (b) temporal kinetic energy spectrum [m2s−2/(cycles/s)] of the

rotational (red lines) and divergent (blue lines) components of the flow averaged over the winter months of

January, February and March for the 2 km (thin lines) and 500 m (thick lines) run.
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both of which are defining frontal characteristics, Barkan et al. (2019) were able to show after422

neglecting dissipative terms, that for fronts 2,423

𝐷𝛿

𝐷𝑡
∼ −𝛿2 , (22)

𝐷𝜁

𝐷𝑡
∼ −𝜁𝛿 (23)

𝐷 |∇𝑏 |2
𝐷𝑡

∼ −2|∇𝑏 |2𝛿 . (24)

Eq. (22) can be solved directly in a Lagrangian reference frame and was shown by Barkan et al.424

(2019) to have a finite-time singularity similar to the result by Hoskins and Bretherton (1972)425

derived under the less general semi-geostrophic approximation. Of course, the actual singularity426

cannot manifest and the rapid increase in the convergence −𝛿 is arrested in practice by frontal427

instabilities (like symmetric or shear instabilities), or numerical dissipation in ocean models. From428

(23) and (24), both 𝜁 and ∇𝑏 also have finite-time singularities.429

The equations for the fine-scale kinetic energy, from (8), can be written in the form (Aluie et al.430

2018),431

𝐷E′

𝐷𝑡
+∇ ·T = −𝛿E′+𝛾E′𝛼̄ (25)

where T is the fine-scale kinetic energy transport flux (for detailed forms, see Aluie et al. (2018)432

or the Appendix B in Barkan et al. (2017)). The similarities in the dominant terms describing the433

evolution of |∇𝑏 |2 and E′ as seen in (10) and (16) suggest that (25) can be written in a form similar434

to (24) under the frontal scalings (21). Here we neglect the vertical shear terms in both cases,435

which is justified in the scaling analysis of Barkan et al. (2019), supported by our model analysis;436

in particular Π𝑧 [defined in (3)] is on average about 5 times smaller than Πℎ (see Fig. 14). As437

a reminder, we note that while (25) involves coarse-grained quantities 𝛿 and 𝛼̄, the frontogenetic438

equations (22)-(24) involve the actual fields themselves. Therefore these quantities are comparable439

in the limit when the filter-scale is smaller than the average frontal scale (in our case, ℓ ≤ 10 km or440

equivalently, 𝜆𝑠𝑝 ≤ 24 km).441

While the principal strain coordinates lead to very compact forms for the energy transfer, the442

Π𝛼 term can be difficult to interpret, principally owing to the opaqueness of the anisptropy term443

2Two additional terms appear at leading order in the vorticity and divergence equations. These terms turn out to be subdominant as they cancel
out with the vertical mixing terms through the turbulent thermal wind (TTW) balance that are not formally included in inviscid theory.
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𝛾. Instead, for the remainder of this section we work in a front aligned coordinate system, with444

the 𝑦-axis being along the frontal axis and 𝑥 being the cross-frontal axis. The along and crossfront445

velocities are 𝑣 and 𝑢 respectively. Working in this coordinate system, we employ the coordinate-446

free forms of energy transfer (10) and frontogenetic tendency (16). The frontal scaling assumptions447

(21) need to be supplemented by one for the velocities,448

𝑢 ∼ 𝑅𝑜𝑣 . (26)

which crucially differs from the semigeostrophic approximation of Hoskins and Bretherton (1972)449

who always have 𝑢 � 𝑣. But because oceanic fronts have 𝑅𝑜 = 𝑂 (1), 𝑢 ∼ 𝑣 i.e. the alongfront450

and crossfront velocities have similar order. This is a crucial observation about oceanic fronts451

that separates the analysis in Hoskins and Bretherton (1972) and Barkan et al. (2019). For frontal452

coarse graining scales, we also assume that the coarse and fine velocities scale similarly. i.e.453

𝑢̄ ∼ 𝑣̄ , 𝑢′ ∼ 𝑣′. (27)

Thus we can infer that454

𝜏𝑢𝑢 ∼ 𝜏𝑣𝑣 ∼ 𝜏𝑢𝑣 ∼ (𝜏𝑢𝑢 + 𝜏𝑣𝑣)/2 = E′ . (28)

Furthermore the crossfront gradients and alongfront gradients are related as455

𝜕𝑦 ∼ 𝜖𝜕𝑥 ⇒ 𝜕𝑦 � 𝜕𝑥 , (29)

reflecting the crossfront gradients at fronts are a lot larger than alongfont gradients. From (29), we456

can infer that457

𝛿 = 𝑢̄𝑥 + 𝑣̄𝑦

∼ 𝑢̄𝑥 ∼ 𝑣̄𝑥

∼ 𝑣̄𝑥 − 𝑢̄𝑦 = 𝜁 ,

(30)

i.e. 𝛿 ∼ 𝜁 and that 𝛼̄2 ∼ 𝛿2+𝜁2. Thus the strain comprises both divergent and rotational components.458

We can use the above scaling estimates to assess the energy transfer term Π𝛼 using the coordinate459
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free form (10). First to estimate Π𝛼,460

Π𝛼 =(𝜏𝑢𝑢 − 𝜏𝑣𝑣) (𝑢̄𝑥 − 𝑣̄𝑦)/2− 𝜏𝑢𝑣 (𝑢̄𝑦 + 𝑣̄𝑥)

∼ −𝜏𝑢𝑣 𝑣̄𝑥/2 ∼ −E′𝑢̄𝑥

∼ −E′𝛿 = Π𝛿 ,

(31)

where we neglect the first term (because 𝜏𝑢𝑢 ∼ 𝜏𝑣𝑣) and the 𝑦-derivative in the second term (from461

(29)). ThusΠ𝛼 ∼Π𝛿, supporting the model-based observation thatΠℎ has an equipartition at small462

scales. The scaling arguments used to infer this result fall short of an actual explanation for the463

striking similarity of the Π𝛼 and Π𝛿 observed in Fig. 8 but provide a strong heuristic for the same.464

Then (25) can be written as465

𝐷E′

𝐷𝑡
+∇ ·T ∼ −2𝛿E′ , (32)

where we use Π𝛼 ∼ Π𝛿 = −E′𝛿. Thus the evolution equation (32) takes the same form as (24).466

Because the equipartition demonstrated here is asymptotic, the precise numerical factor of 2467

multiplying −𝛿E′ is not expected in general. In the simple model-based computation in Fig. 2, for468

example, the numerical factor is actually around 2.5 although that calulation depended on some469

specific choices for the frontal averaging which could affect the factor obtained. We also note470

the connection between the result obtained here, namely −2𝛿E′ as the forward cascade at fronts,471

and that from the Helmholtz decomposition, Πℓ
ℎ
−Π

ℓ,𝑟

ℎ
; the latter expression consists of a mix of472

rotational and divergent components which is consistent with the fact that although 𝛿 is purely473

divergent, E′ comprises both rotational and divergent velocity fields.474

For completeness, we derive (24) starting from the coordinate-free form in (16). From (29),475

using 𝑏2𝑦 � 𝑏2𝑥 and 𝑏𝑥𝑏𝑦 � 𝑏2𝑥 , we get476

B𝛼 = (𝑏2𝑥 − 𝑏2𝑦) (𝑢𝑥 − 𝑣𝑦)/2− 𝑏𝑥𝑏𝑦 (𝑢𝑦 + 𝑣𝑥)

∼ −𝑏2𝑥𝑢𝑥/2

∼ −(𝑏2𝑥 + 𝑏2𝑦)
𝛿

2
=B𝛿 ,

(33)

which leads to (24). Interestingly, as in the case of (31), (33) also demonstrates an equipartition in477

the 𝛼 and 𝛿 terms but the dominant terms are different. Now, because we associate the evolution478
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of ∇𝑏 through (24), it also follows that we associate the forward energy cascade at fronts as being479

primarily caused due to frontogenesis. This is, in retrospect, expected because the rapid increase in480

the convergence through (22) can be interpreted as a correspendingly rapid shrinkage in the frontal481

scale, 𝑙 associated with the frontal velocities, 𝑢 and 𝑣. In other words, frontogenesis is the primary482

cause of forward energy cascade at fronts.483

The mechanism elucidated above can be connected to the broader energetics of the surface mixed484

layer as follows: Mixed layer instabilities which are strongest during the winter convert mixed layer485

available potential energy to kinetic energy of fronts and MLEs. Frontogenesis transfers energy at486

fronts to smaller scales by the mechanism proposed by Barkan et al. (2019) as demonstrated here,487

while mixed layer eddies undergo an inverse cascade of energy to mesoscales as shown by Schubert488

et al. (2020). Of course, this framing presumes that no competing mechanisms are present, chief489

among them being symmetric instability which is likely not resolved at the 500 m model resolution490

employed here. We discuss this last point further in Section 6b.491

6. Discussion492

a. The dependence of energy transfer on effective flow resolution493

The 2 km solution, as seen in Figures 5 and 4 fails to not only resolve the forward cascade but498

underestimates the submesoscale inverse cascade signal too. The reason for this is that the 2 km499

model has a larger amount of numerical dissipation, which in ROMS is a grid dependent implicit500

biharmonic dissipation i.e. lower resolutions are more dissipative and therefore can suppress501

advective dynamics that lie closer to the grid resolution. Other studies have noted this increase502

in upscale energy flux as the resolution is increased towards submesoscale-permitting resolutions503

Kjellsson andZanna (2017);Qiu et al. (2014). When computing energy transfers fromobservations,504

however, the key issue is one of spatiotemporal resolution of the measured data (unlike models505

where the issue is innacurate physics). To study how spatial sampling affects the energy transfer506

without the added effects of spurious physics (through higher numerical dissipation), we treat the507

500 m run as the ground truth solution and smooth the flow fields with systematically larger filter508

sizes and compute the crosscale energy fluxes of the smoothed fields. The actual fidelity of the 500509

m run is not of particular importance; while it plausibly resolves the MLE inverse energy cascade510

accurately, it is likely that higher resolution runs would modify the forward energy flux.511
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Fig. 12. Spatiotemporally averaged horizontal energy flux [m2s−3] for the 500 m resolution run, with uniform

smoothing performed on the velocity fields before computing the fluxes. The subscripts denote the smoothing

filterwidth with values (a) 2 km (b) 4km and (c) 8km. These results are directly comparable to the unsmoothed

energy transfer in Fig. 5a.

494

495

496

497

Figure 12 shows the spatiotemporally averaged fluxes for increasing values of smoothing scale (a517

simple uniform filter is applied in each case). Comparing Fig. 12a, which has a 2 km smoothing,518

with the corresponding results from the 2 km model (Fig. 5d) and the 500 m model (Fig. 5a), we519

find that about half of the forward cascade and most of the inverse cascade region is accurately520

captured. The 4km smoothed fields have fluxes that resemble the 2 kmmodel fluxes without a trace521

of the forward flux captured while the upscale flux is also diminished. The 8km smoothed fields522

(Fig. 12c) have almost no forward fluxes and substantially weaker upscale fluxes, suggesting that523

observations would need an average spatial resolution of at least 8km at this latitude to capture any524

fraction of the submesocale energy fluxes. In Fig. 13 we also plot the spatial spectra corresponding525

to these smoothed fields. An interesting observation is the effect of the uniform filter on the spatial526

spectrum of the flow. For example, the 2km filter smoothed field has a rapid spectral drop off527

between 4 km and 5 km allowing us to infer that spectral cutoff is between 2 and 2.5 times the filter528

scale. However, it can be difficult to discern a single length scale as the effective spectral cutoff of529

the uniform filter given the continous drop off starting from around 5 km scales of the 2km-filtered530

field (the red curve in Fig. 13). Unlike the spectrum however, the energy flux is a direct diagnostic531

of the dynamics allowing us to infer the effective spectral cutoff of the uniform filter, as has been532

done in Fig. 6 (Sec. 4a) where a factor of 2.4 was found.533
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Fig. 13. (a) Spatial energy spectra [m2s−2/(cycles/m)] of the velocity fields used to compute the energy flux

for smoothing performed by different uniform filter sizes in Fig. 12. The red, green and blue curves correspond

to Fig. 12a, b and c respectively. The black curve is the spectrum of the unsmoothed velocity field, replotted

from Fig. 7a for reference. Note that the 2km-smoothed field (red) starts dropping off between 4 km and 5km

scales.

512

513

514

515

516

b. Symmetric instability: A competing and downstream mechanism for forward energy flux534

Symmetric Instability (SI) is a form of negative potential vorticity (PV) instability (Hoskins535

1974; Jones and Thorpe 1992; Thomas et al. 2013; Bachman and Taylor 2014; Yu et al. 2019)536

which occurs in the surface mixed layer when the potential vorticity of fronts is decreased through537

the action of surface wind stresses or diabatic cooling. Because frontal PV can be written as538

(assuming geostrophic fronts)539

𝑞 = 𝑓 (𝜁 + 𝑓 )𝑏𝑧 − |∇𝑏 |2 (34)
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fronts with stronger buoyancy gradients are more likely to undergo SI. In the event that strong540

fronts do develop negative PV due to the action of surface forcing the front undergoes SI (referred541

specifically as forced SI), transferring energy to three-dimensional fine scalemotions (i.e. a forward542

energy flux) through the vertical flux term Πℓ
𝑣 (more specifically the vertical flux term with the543

geostrophic coarse scale vertical shear, or the geostrophic shear production, GSP) in the process544

bringing the frontal PV to zero and restratifying the mixed layer.545

Unlike the frontal forward mechanism demonstrated in this manuscript, SI is not a generic546

mechanism and depends crucially on the strength of fronts and the local surface forcing therein.547

For example a surface wind stress can generate negative PV fluxes through the so-called Ekman548

buoyancy fluxes but are strongly contingent on the direction of the wind stress relative to the front549

alignment; downfront winds being most favorable for inducing forced SI (Thomas and Lee 2005).550

Furthermore, the boundary layer turbulence mediated ageostrophic secondary circulation, also551

referred to as a turbulent thermal wind (TTW) balance (McWilliams et al. 2015; Wenegrat and552

McPhaden 2016; McWilliams 2017; Crowe and Taylor 2018), acts as a source of PV in the surface553

mixed layer which could potentially offset SI at oceanic fronts (Wenegrat et al. 2018). Given that554

the TTW mechanism is pervasive in submesoscale-resolving ocean models (McWilliams et al.555

2015; Wenegrat et al. 2018; Barkan et al. 2019), this could be a relevant offsetting mechanism for556

SI. In our present model runs, the vertical flux, Πℓ
𝑣 is on average 4 times smaller than Πℓ

ℎ
as is557

evident in Fig. 14a. Πℓ
𝑣 also has a rather different structure than Πℓ

ℎ
(Fig. 5a) with a forward flux558

close to the surface and a near-surface upscale flux. The spatiotemporally averaged geostrophic559

shear production,560

Πℓ
𝑣𝑔 = −(𝑢′𝑤′𝑢𝑧,𝑔 +𝑢′𝑤′𝑣𝑧,𝑔) , (35)

where the geostrophic shear is (𝑢𝑧,𝑔, 𝑣𝑧,𝑔) ≡ (−𝑏𝑦, 𝑏𝑥)/ 𝑓 , is plotted as a function of ℓ in Fig. 14b.565

Πℓ
𝑣𝑔 is largest at frontal scales but is upscale instead of downscale as might be expected if SI566

was a dominant process on average at these scales in our 500 m model run during winter. Note567

that this does not preclude the local importance of SI at strong density fronts with favorable wind568

stress. The structure of Πℓ
𝑣 (Fig. 14a) is likely a consequence of interactions between mesoscale569

and submesoscale eddies and IGWs (Barkan et al. 2021) and are not like the cascade processes that570

determine the structure of Πℓ
ℎ
. While IGWs in the present class of runs are rather weak, some level571

are likely present through the interaction of currents with bottom topography and the projection of572
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Fig. 14. Spatiotemporally averaged a) vertical shear energy flux, Πℓ
𝑣 [m2s−3] and b) the geostrophic shear

production, Πℓ
𝑣𝑔, (defined in (35)) for the 500 m resolution run during winter months. Note that the colorbar

ranges are 4 times smaller than the corresponding horizontal flux figures in the rest of this study. i.e. Πℓ
𝑣 is on

average 4 times smaller than Πℓ
ℎ
.

561

562

563

564

the daily forced wind stress onto inertial motions. In the presence of wind and tide-generate IGWs,573

however, Πℓ
𝑣 is of similar order to Πℓ

ℎ
(Barkan et al. 2021).574

Recently Dong et al. (2021b) studied an idealized front forced by downfront wind that subse-575

quently underwent SI. They found that in the absence of a SI-specific paramterization (Bachman576

et al. 2017) supplementing the surface boundary layer parameterization (in their case, as in ours,577

KPP) SI is suppressed and the GSP term is underestimated. We expect a similar lack of SI in our578

model results given the lack of an SI parameterization, an issue that we expect to remedy in future579

studies. Also, another recent paper (Dong et al. 2021a) used a global submesoscale permitting580

model solution to estimate the horizontal scale of SI in the ocean which would also correspond581

to the horizontal resolution at which SI could be potentially resolved in ocean models. They find582

that in general, the resolutions required are below 100 m in a majority of the ocean, consideraly583

higher than the 500 m model used here. Although, concurrent work by (Jing et al. 2021) did find584

evidence for SI along the fronts flanking the mesoscale eddies that formed part of the subtropical585

countercurrent (STCC) during the summer (when the STCC eddies are most energetic) in the586
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Northwest Pacific, in a 500 m horizontal resolution model run. Because the STCC is a zonal587

current, favorable downfront winds make the presence of SI in the summer in that region likely.588

Whether such favorable surface forcing conditions exist in this region and their role in triggering589

SI remains to be examined. Also of importance is the role of the mechanism of frontogenesis - in590

summer mesoscale strain-induced frontogeneris is more likely to be important (as in the case of591

STCC) whereas in winter mixed-layer instability in conjunction with TTW is more plausible; as592

explained above, TTW can offset SI.593

7. Summary594

In this study we examine the flux of kinetic energy across spatial and temporal scales in subme-595

soscale resolving simulations of the North Atlantic Ocean, focusing on the Iceland basin region.596

Instead of the traditionally used spectral energy flux approach, we use the coarse-graining method597

to compute the fluxes (Aluie et al. 2018). The coarse-graining approach involves a decomposition598

of the flow into slow (large) and fast (small) components using a temporal (spatial) smoothing filter;599

the equations for the kinetic energy of the coarse (large or slow) and fine (small or fast) components600

are then written and the terms corresponding to the energy exchange (or equivalently the energy601

flux from coarse to the fine scales) between the two components are identified. Following recent602

work (Aluie et al. 2018; Schubert et al. 2020; Barkan et al. 2021), we analyze the cross-scale energy603

flux in two ways. First, we average the flux over the horizontal domain and over the analysis time604

period (here the winter months of January to March) and examine the average flux as a function605

of filterscale and depth. Second, for specific filter scales and at a specific depth (here, near the606

surface) we visualize the spatial structure of the flux and examine its patterns relative to observed607

flow structures like mesoscale and mixed-layer eddies and submesoscale fronts. Our objective here608

is to identify the nature of the cross-scale energy flux at O(1-10) km length scales, that typically609

correspond to submesoscale currents in the ocean, comprising mixed-layer eddies (MLEs) and610

fronts that are generally limited to the near-surface mixed layer and particularly strong in the winter611

months due to the presence of deep mixed layers.612

A plethora of studies over the past two decades, starting from Capet et al. (2008) have found that613

submesoscales have a dual cascade of energy, an inverse cascade to mesocale eddies and a forward614

energy cascade to dissipation scales. Recent work by Schubert et al. (2020) also employing the615
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coarse-graining approach used here, were able to show that MLEs undergo an inverse cascade of616

energy to mesoscales, in particular providing a visual demonstration of the ‘absorption’ of MLEs617

into mesoscale eddies. They also highlighted a forward energy flux at fronts without providing a618

physical explanation for this phenomenon. In this study we provide the mechanism for the frontal619

forward cascade through model-based analysis and by extending a recently proposed asymptotic620

theory for frontogenesis (Barkan et al. 2019).621

In order to shed light on the mechanism of the frontal forward flux we pursue two concurrent622

approaches building on the coarse-graining framework. First we decompose the flow field into623

rotational and divergent components i.e. a Helmholtz decomposition. We then compute the624

cross-scale flux purely due to the rotational velocity components. This rotational flux is found,625

on spatio-temporal averaging, to be almost entirely upscale (i.e. an inverse cascade) in the upper626

ocean. The difference between the total flux and the rotational flux is found to be, on average,627

entirely downscale (i.e. a forward cascade). In other words the Helmholtz decomposition neatly628

decomposes the inverse and forward energy flux components of the flow.629

Concurrently, we write the cross-scale energy flux in the principal strain coordinates, where the630

coarse (or smoothed by the filter) field strain tensor is diagonalized. This allows the flux to be631

written in a simple sum of two components where the first component is proportional to the coarse632

strain, 𝛼̄ and the second component is proportional to the convergence (i.e. negative divergence) of633

the coarse field, −𝛿, where (·̄) denotes the filter-based smoothing operator. Calculating these two634

components in the model data, we find that the 𝛼̄ component consists (on average) of most of the635

inverse energy flux but the total forward flux is equipartioned between the 𝛼̄ and 𝛿 components. We636

then use the asymptotic theory of frontogenesis proposed by Barkan et al. (2019) to theoretically637

demonstrate the equipartition of the forward energy flux at fronts between the 𝛼̄ and 𝛿 terms638

(Section 5) for fronts. But this equipartion also means that, because the 𝛿 component of flux639

is proportional to the convergence, −𝛿, so is the 𝛼̄ component and consequently so is the total640

energy flux at fronts (which is just a sum of the two components). Note that because fronts are641

convergent flows (𝛿 < 0), this essentially provides a theoretical and numerical basis for the forward642

energy flux at fronts. Furthermore, in the asymptotic theory of frontogenesis by Barkan et al.643

(2019), a crucial result was that the Lagrangian rate of change (i.e. 𝐷/𝐷𝑡) of frontal quantities644

like vorticity, divergence and buoyancy gradient were all proportional to −𝛿 which at fronts is645
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positive. This causes a finite time singularity in the convergence and correspondingly in the other646

frontal quantities i.e. frontogenesis. The fact that the rate of change of the fine scale kinetic energy,647

i.e. the cross-scale energy flux is also proportional to −𝛿 allows us to infer that the cause of the648

forward energy flux at fronts is actually frontogenesis (noting that 𝛿 and 𝛿 are similar when the649

coarse-graining scale is around frontal scales). Heuristically this is because the sharpening of650

fronts due to frontogenesis essentially transfers the frontal energy to smaller scales resulting in a651

forward energy flux.652
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