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Key Points:6

• Artificial neural networks skillfully predict sea surface temperatures on decadal7

timescales.8

• The networks identify predictability by assigning lower uncertainty to initial states9

that lead to lower prediction error.10

• More predictable initial states coincide with combinations of phases of large scale11

decadal variability.12
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Abstract13

Predictable internal climate variability on decadal timescales (2-10 years) is associated14

with large-scale oceanic processes, however these predictable signals may be masked by15

the noisy climate system. One approach to overcoming this problem is investigating state-16

dependent predictability - how differences in prediction skill depend on the initial state17

of the system. We present a machine learning approach to identify state-dependent pre-18

dictability on decadal timescales in the Community Earth System Model version 2 by19

incorporating uncertainty estimates into a regression neural network. We leverage the20

network’s prediction of uncertainty to examine state dependent predictability in sea sur-21

face temperatures by focusing on predictions with the lowest uncertainty outputs. In par-22

ticular, we study two regions of the global ocean - the North Atlantic and North Pacific23

- and find that skillful initial states identified by the neural network correspond to par-24

ticular phases of Atlantic multi-decadal variability and the interdecadal Pacific oscilla-25

tion.26

Plain Language Summary27

As the climate warms with anthropogenic climate change, it is increasingly impor-28

tant to predict long term climate variability in order to prepare for possible extremes.29

However, the Earth’s climate is chaotic and deciphering predictable long-term signals30

from this noisy system has proven challenging. Here we leverage times where predictable31

signals rise above the noise and the long-term forecasts have less error. We present a ma-32

chine learning approach to identify these times when the climate is more predictable and33

show that these are related to particular patterns of heat in the Atlantic and Pacific Oceans.34

1 Introduction35

Predicting the evolution of the climate on decadal timescales (2-10 year) has far36

reaching implications for both climate science and society. On these timescales, changes37

in climate patterns are associated with either the forced response to anthropogenic emis-38

sions, or internal variability in ocean (Meehl et al., 2021). For example, the forced re-39

sponse from climate change can manifest as the steady increase of global mean temper-40

ature which provides some predictability of future temperatures. Decadal predictabil-41

ity of oceanic variability arises from the ocean’s ability to store, distribute and trans-42

port heat on decadal timescales. Major modes of variability in the Pacific and Atlantic43
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Oceans are therefore linked to decadal predictability as they indicate the spatial distri-44

bution of heat in these basins. Furthermore, this internal variability in the ocean can act45

to either mask or amplify the forced response from climate change (Trenberth & Fasullo,46

2013). The Pacific Ocean exhibits long-term variability via the interdecadal Pacific os-47

cillation (IPO Power et al., 1999; Meehl et al., 2013) and its related mode Pacific decadal48

variability (PDV, Mantua et al., 1997; Y. Zhang et al., 1997) and the Atlantic Ocean ex-49

hibits long term variability via Atlantic multi-decadal variability (AMV, Enfield et al.,50

2001; Xie & Tanimoto, 1998). Because these modes of variability are associated with decadal51

predictability, decadal prediction is traditionally focused on either investigating and pre-52

dicting the processes themselves, (e.g. Meehl et al., 2016; Gordon et al., 2021; R. Zhang53

et al., 2019), or exploring the predictability that arises from the atmospheric teleconnec-54

tions driven by these modes (e.g. R. Zhang & Delworth, 2006; Simpson et al., 2018, 2019).55

Predictability in the climate system can vary drastically depending on region, timescale,56

and initial state (Christensen et al., 2020; Meehl et al., 2021; Mariotti et al., 2020) thus57

recent studies have encouraged a shift of focus towards the concept of state-dependent58

predictability (Merryfield et al., 2020; Mariotti et al., 2020; Mayer & Barnes, 2021). This59

paradigm intrinsically acknowledges that some initial states lead to more predictable be-60

havior than others, that is, predictability depends on the initial state of the system. The61

aim is therefore to identify these more predictable initial states, as they provide the op-62

portunity to make more skillful forecasts. Examples of state-dependent predictability have63

been shown to exist on decadal timescales for example, it has been found that anoma-64

lously strong ocean heat transport in the North Atlantic ocean is associated with skill-65

ful predictions of sea surface temperature (SST) in the North Atlantic Subpolar Gyre66

for lead times up to 8 years (Brune et al., 2018; Borchert et al., 2018). So enhanced heat67

transport in the North Atlantic could be considered a more predictable initial state for68

predicting North Atlantic SSTs.69

With this increased focus on state-dependent predictability, it is necessary to ex-70

plore methods that can objectively identify state-dependent predictability. Machine learn-71

ing is one such method that shows promise for identifying more predictable initial states.72

In fact, on subseasonal timescales, classification artificial neural networks (ANNs) have73

been shown to objectively identify states of the Madden-Julian oscillation that lead to74

enhanced predictability of circulation in the North Atlantic (Mayer & Barnes, 2021) by75

leveraging the network’s confidence in a prediction to identify state-dependent predictabil-76
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ity. Furthermore, on decadal timescales it has been demonstrated that ANNs can skill-77

fully predict decadal processes (Gordon et al., 2021; Labe & Barnes, 2022) and identify78

states of enhanced predictability of surface temperature over land (Toms et al., 2021).79

This study introduces the identification of state-dependent predictability on decadal80

timescales using a regression-based neural network to predict sea surface temperatures81

(SSTs) across the globe within the Community Earth System Model, version 2 (CESM2,82

Danabasoglu et al., 2020). We demonstrate a powerful technique for incorporating un-83

certainty into the prediction of regression neural networks which has previously only been84

used a handful of times in climate science (Foster et al., 2021; Guillaumin & Zanna, 2021;85

Barnes & Barnes, 2021). We further leverage this uncertainty output to identify which86

initial states are associated with the lower uncertainty predictions. This allows for the87

identification of state-dependent predictability, and furthermore, by linking predictable88

initial states to major modes of variability, we are able to identify certain combinations89

of IPO and AMV phases that correspond to skillful decadal forecasts.90

2 Data and Methods91

2.1 Data92

We use sea surface temperature (SST) and ocean heat content (OHC) output from93

the CESM2 pre-industrial control run for the Coupled Model Intercomparison Project94

phase 6 (CMIP6; Eyring et al., 2016). OHC is interpolated to a 4◦×4◦ grid, while SST95

is interpolated to a 5◦×5◦ grid. We use monthly output of the 2000 year run with the96

first 100 years removed to allow the ocean circulation to spin-up. Both OHC and SST97

are then de-seasonalized by removing the mean annual cycle from each grid point. Fur-98

thermore, to account for model drift, after deseasonalizing we calculate the third degree99

polynomial trend via least squares and subtract this from each grid point. This means100

that each variable’s statistics are approximately stationary for the remaining 1900 years101

of data. OHC is smoothed using a 60 month backward running mean to smooth high102

frequency variability. We divide the pre-processed data into training, validation and test-103

ing. The first 70% (∼1300 years) is used for training, the next 15% (∼300 years) for val-104

idation and the last 15% (∼300 years) for testing. We calculate the mean and standard105

deviation for every point on both the OHC and SST grids in the training set. We then106

use these values to standardize all of the training, validation and testing data.107
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Figure 1. a. Schematic of the artificial neural network architecture. b. Scatter plot of pre-

dicted SST anomaly (y axis) vs true SST anomaly (x axis). Dots represent predicted µ values,

while vertical lines represent the 1σ range. c. Prediction mean absolute error (MAE) as a func-

tion of prediction confidence (see text). Both b. and c. utilize the same network trained to

predict SST in the North Atlantic Ocean (52.5◦N, 325◦E).

.
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2.2 Artificial Neural Network108

Artificial neural networks (ANNs) are used to predict the average SST anomaly109

at a lead time of 1-5 years and 3-7 years. A schematic of our neural network architec-110

ture is provided in Figure 1a and a brief overview of ANNs for geoscience applications111

can be found in e.g. Toms et al. (2020). The predictors are three OHC grids, where each112

grid is OHC integrated to a different depth (100 m, 300 m and 700 m). We chose vary-113

ing depths of OHC because each contains information corresponding to different forms114

of climate variability. For example, the upper levels of the ocean integrate atmospheric115

forcing, and hence capture atmospheric variability as well as surface ocean dynamics (Frankignoul116

& Hasselmann, 1977). The variability in lower levels of the ocean is guided by a com-117

bination of slow moving ocean circulation and the incorporation of mixed layer processes118

via the annual cycle in the thermocline (Alexander & Deser, 1995). By inputting three119

OHC depths into the neural network, it can theoretically combine different oceanic and120

atmospheric processes to make its predictions. The three ocean grids are vectorized with121

points over land removed resulting in a total 7947 input pixels. This input is densely con-122

nected to a hidden layer of 60 nodes which is then densely connected to another hidden123

layer of 4 nodes (see Fig.1). All nodes in the hidden layers use the rectified linear unit124

(ReLU) activation function. Finally this second layer is connected to the output layer125

of two nodes which serve as the parameters of the predicted conditional distribution (see126

details in the next paragraph). Here the distribution is a normal distribution as we found127

allowing skewness did not significantly improve the network’s performance (not shown).128

We use the −log(p) loss function described by e.g. Barnes et al. (2021) which we129

will summarize briefly. For each input, the network outputs two values, µ and σ. To cal-130

culate loss, µ and σ are used to construct a conditional distribution, d and the negative131

log likelihood function is calculated at the true value (ytrue), i.e. loss = -log(p(ytrue|d)).132

This means that the neural network can decrease loss (decrease -log(p(ytrue|d))) in dif-133

ferent ways: either with a low σ value and µ that is close to ytrue, or predict a larger134

σ value with µ that is further from ytrue, or both. The neural network is therefore not135

penalized for high error predictions as long as it also guesses a correspondingly high σ136

value, that is, if it recognizes an input is less predictable by assigning a high σ value. The137

predictions of such an ANN are illustrated in Figure 1b, where we show an example scat-138

ter plot of prediction vs truth from an ANN trained to predict SST anomaly in the North139

Atlantic Subpolar Gyre. Note that we can plot both the predicted anomaly value (µ, col-140
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ored dots) and an uncertainty range, with the error bars indicating the ±1σ range pre-141

dicted by the ANN. During training, we use a learning rate of 1×10−4 with stochastic142

gradient descent for up to 1000 epochs with early stopping when validation loss did not143

decrease for 100 epochs. To implement regularization, we include a dropout layer between144

the input layer and first hidden layer in training. We found that a high rate of dropout145

(80% dropout rate in this experiment) forced the ANN to learn information more slowly146

and greatly reduced over-fitting on the validation set.147

2.3 AMV and IPO indices148

We compute the AMV and IPO indices within CESM2 using the deseasoned and149

detrended SST data. For the AMV index, we calculate the monthly mean SST anomaly150

over the North Atlantic ocean (0◦N to 80◦N, 280◦E to 360◦E) and then standardize by151

removing the mean and dividing by the standard deviation. Note we do not de-trend by152

the global mean SST as recommended by Trenberth and Shea (2006) because the con-153

trol run lacks a forced long term warming trend and model drift was removed during pre-154

processing. We calculate the IPO index following the tripole index proposed by Henley155

et al. (2015). We include plots of the spatial AMV and IPO patterns calculated by these156

methods in CESM2 in Supplemental Figure 1.157

3 Results158

3.1 Evaluating Performance159

In this study, 10 networks (identical architecture, only varying the initial network160

random seed) are trained at each SST grid point in the ocean and we show the results161

of the best neural network at each grid point. To designate the “best” network, we se-162

lect the ANN with the lowest mean absolute error (MAE, difference between predicted163

µ and true y) on the 10% of samples with the lowest σ predictions in the validation set.164

This means that the network has learned to identify more predictable inputs by assign-165

ing them low σ values, and achieves low error on these same predictions. With this des-166

ignation, we are leveraging a fundamental characteristic of the ANN predictions: pre-167

diction error should decrease as predicted σ decreases, so we refer to lower σ predictions168

as more confident predictions. This is demonstrated in Figure 1c where we show a net-169

work trained to predict SST in 1-5 years in the North Atlantic (52.5◦N, 325◦E). Along170
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the x-axis, we threshold by increasing confidence with the y-axis showing correspond-171

ing MAE for those predictions. For all samples, the MAE is ∼0.52 however for the 40%172

most confident predictions the MAE has dropped to 0.46. For the 10% most confident173

predictions, the MAE has dropped further to ∼0.39. This is evidence that the ANN has174

learned particular input samples, or climate states, whose evolution leads to lower un-175

certainty. Although we choose the best network to present here, the results are largely176

unchanged if we instead select the mean across all 10 networks. For some initial random177

seeds, the network fails to learn anything and always predicts zero (or very close to zero).178

These networks are removed before analysis.179

3.2 Predicting SST180

We ensure that the ANNs are learning to skillfully predict SSTs on decadal timescales181

by examining prediction error in the testing data at each grid point. Fig. 2a is the MAE182

for ANN predictions for the testing set for lead years 1-5, with black indicating grid points183

where all 10 networks failed to learn anything. The lowest MAEs are found in the North184

Atlantic Ocean, North Pacific Ocean, and the Southern Ocean around South America.185

This spatial distribution of prediction skill broadly agrees with that found in the decadal186

hindcast studies using the CESM1 decadal prediction large ensemble (Yeager et al., 2018;187

Christensen et al., 2020), which suggests that the spatially varying predictability is not188

a result of experiment design or network architecture. The prediction skill for lead years189

3-7 is shown in Fig 2b and highlights similar regions as being more predictable as in lead190

years 1-5. Furthermore, there does not seem to be a substantial loss in skill between these191

two lead times. This, coupled with the spatial spread of predictability, suggests that the192

ANNs are learning physical relationships to make their predictions.193

To contextualize the predictions of the ANNs, we benchmark them against a sim-194

ple persistence model. The persistence model predicts that the SST anomaly will be un-195

changed so that the SST anomaly at the time of input remains the same at the time of196

prediction. We calculate the MAE for the persistence model and subtract it from the197

MAE of the ANNs (∆MAE = MAEANN− MAEpersistence), and plot the results in Fig-198

ure 2e and 2f. In regions where ∆MAE is more negative, the ANN outperforms persis-199

tence (i.e. has lower error). These regions are illustrated in warm colors in Figure 2e and200

2f and illustrates that the ANNs trained in this study out-perform persistence in all lo-201

cations and at both lead times. The greatest improvement in skill above persistence oc-202
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Figure 2. Evaluation of ANN prediction error. Left column is for lead year 1-5, and right

column for lead year 3-7. Panel a and panel b are mean absolute error (MAE) for all predictions

in the testing set. Panel c and panel d show MAE for only the 20% most confident predictions in

the testing set as identified using the ANNs’s uncertainty. Panel e and panel f are the difference

between MAEANN and MAEpersistence (MAEANN−MAEpersistence) in the testing set.
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curs in the cold tongue region of the Equatorial Pacific. This is unsurprising as this re-203

gion exhibits large interannual variability due to the El Nino Southern Oscillation, and204

hence persistence performs poorly in this region.205

3.3 Identifying State-Dependent Predictability206

The predictive power of ANNs for decadal prediction is now demonstrated by us-207

ing them to identify state-dependent predictability. In Figure 2c and 2d we plot the MAE208

for only the 20% most confident predictions (20% lowest predicted σ) by the ANN for209

each SST grid point. That is, ANN objectively identifies more predictable initial states,210

and we do not directly use knowledge of the ground truth to identify these predictions.211

When comparing the most confident predictions with all predictions (Fig 2c with 2a),212

MAE is reduced everywhere for more confident predictions, implying that more confi-213

dent predictions are associated with smaller prediction errors at all locations. Similarly214

for lead year 3-7 (Figs. 2b and 2d) we see that sorting for the most confident predictions215

leads to reduced error at all locations. Interestingly, at both lead times, some regions that216

show very little skill across all predictions exhibit large increases in skill when consid-217

ering only the most confident predictions (e.g. central Pacific and the Gulf of Guinea),218

demonstrating that a region may be considered not predictable when in fact it is just219

not always predictable.220

3.4 Investigating Skillful Decadal Predictions221

By using ANN predictions to identify state dependent predictability, we can also222

investigate oceanic patterns that lead to predictability. Here we examine the predictions223

of two ANNs trained to predict SSTs in the North Atlantic and North Pacific oceans to224

investigate processes that are contributing to enhanced prediction skill in these regions.225

Figure 3 shows the 20% most confident predictions of positive SST anomaly for a point226

in the North Atlantic Sub-Polar Gyre (52.5◦N, 325◦E). We single out positive predic-227

tions because the ANN’s confident predictions are preferentially positive (583 positive228

predictions out of 680 confident testing samples), implying that the ANN detects that229

particular positive predictions lead to lower uncertainty. Here, we plot the correct and230

confident positive predictions to ensure we are analyzing the correct signals that con-231

tribute to predictability. This leaves 472 samples. Fig 3a – 3c show the composite of OHC232

input maps for correct and confident positive predictions to investigate the initial states233
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Figure 3. State-dependent predictability identified in the North Atlantic. Panels a-c: Com-

posite of OHC inputs for confident predictions of positive SST anomaly in a point in the North

Atlantic (red dot). Panel d: histogram of AMV index for testing data (dark pink) and most con-

fident predictions (light pink). Panel e: as panel d but for IPO index. Panel f: Composite of SST

map for confident predictions of SST in the North Atlantic (red dot).

that lead to predictability. At all three OHC levels there is a positive OHC anomaly in234

the subtropical to mid-latitude Atlantic Ocean. We verify that this signal was likely uti-235

lized by the ANN in its predictions by using an ANN explainability technique to inves-236

tigate the input regions that are important to the network’s prediction (see Text S1 and237

Figure S2). This shows the positive OHC anomaly in the North Atlantic at all three OHC238

levels was highlighted as contributing to the ANN’s decisions. As the positive heat anomaly239

is slightly south of the predicted grid point, this could indicate northward heat trans-240

port to achieve a positive prediction. The composite SST anomaly in Fig 3 shows the241

positive anomaly is around the predicted grid point in the North Atlantic which implies242

that this anomaly has moved northward from the initial state. From this evidence, we243

posit that the skillful SST prediction is preceded by a positive heat anomaly in North244

Atlantic ocean, which is transported into the gyre region. This is consistent with Borchert245

et al. (2018) who identified periods of enhanced heat transport in the mid-latitude as a246

state of increased predictability of SSTs in the North Atlantic subpolar gyre for up to247

8 years.248
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Figure 4. As Figure 3 but for the North Pacific

As an analogue for oceanic variability, we also consider the phases of the AMV and249

IPO during periods of increased network confidence. In Fig 3d we present the distribu-250

tion of the AMV index during the entire testing period (dark pink, mean = 0.00) with251

the light pink showing the distribution for only 20% confident predictions which has a252

mean of 0.16. From this, it appears that confident predictions are most likely to occur253

during positive AMV. When randomly drawing 20% of the samples from the AMV dis-254

tribution in testing, the likelihood of a mean of 0.16 occurring is less than 1%. This im-255

plies that more skillful SST predictions in the North Atlantic Sub-Polar Gyre coincide256

with northward heat transport from the subtropics (from 3a-c and f) coupled with the257

positive phase of AMV (from 3d). This is consistent with previous results by e.g. Christensen258

et al. (2020); Borchert et al. (2018). In 3e, we show the distribution of IPO phase for the259

testing data (dark green, mean = 0.05) and 20% most confident predictions in light green,260

with a mean of -0.58. The likelihood drawing a mean of -0.58 from the IPO testing dis-261

tribution is less than 1% which suggests that the negative phase of the IPO contributes262

to the predictability of North Atlantic SSTs. This is also apparent in Fig 3a-c which all263

show the negative IPO pattern in the Pacific Ocean. This may indicate some inter-basin264

teleconnection that contributes to the predictability of North Atlantic SSTs.265

We now perform a similar analysis for an ANN trained to predict SST in 1-5 years266

at a point in the North Pacific (42.5◦N, 175◦E). In Figure 4 we show the results for the267
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20% most confident negative predictions. For this region, 632 out of the 680 most con-268

fident samples were predictions of negative anomaly, implying the ANN designated neg-269

ative predictions as more confident. Again we plot only the correct predictions, result-270

ing in 466 samples in these composites. Fig 4a-c shows the composite OHC inputs for271

confident negative predictions, and the major signal appears to be a positive IPO/PDV272

pattern in all panels. It is likely the ANN utilized this pattern to make these confident273

negative predictions from the ANN explainability heat-maps (see Text S1 and Figure S3).274

This is supported by the histogram of the IPO index in Fig 4e which shows the distri-275

bution of IPO phase in the confident samples is shifted such that confident samples sig-276

nificantly coincide with the positive phase of the IPO. There is no such strong signal in277

the AMV index (Fig 4d). Lastly, it appears that the confident predictions appear to re-278

late to persistence in the positive IPO phase because the composite map of SST at out-279

put (Fig 4f) shows an IPO pattern in the Pacific Ocean. From this, we posit that skill-280

ful predictions of SST in the North Pacific are associated with persistence in the pos-281

itive phase of IPO (i.e. negative SST anomaly at the predicted grid point). Here, the282

ANN preferentially identifies negative SST predictions as skillful, perhaps implying that283

persistence in the positive phase of IPO is more predictable than persistence of the neg-284

ative phase.285

4 Discussion & Conclusion286

We show that artificial neural networks (ANNs) skillfully predict SST evolution on287

decadal timescales and that they can objectively identify decadal state-dependent pre-288

dictability. Specifically, we use a regression neural network where the predictions take289

the form of a conditional normal distribution which we leverage to isolate predictions290

that are more likely to have lower error. This approach allows us to investigate possi-291

ble contributing mechanisms to decadal SST predictability, particularly Atlantic multi-292

decadal variability and the interdecadal Pacific oscillation (AMV and IPO, Figs 3 and293

4). We chose to model the conditional distributions as normal distributions as alterna-294

tives did not significantly improve skill. We suggest that future studies investigating state-295

dependent predictability for other timescales and variables may benefit from the addi-296

tion of skewness to the predicted conditional distributions (Barnes et al., 2021), as well297

as further exploring alternative network architectures to tease out additional skill.298
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We investigate state-dependent predictability in two regions, the North Atlantic299

Subpolar Gyre, and the North Pacific Ocean by identifying predictions in these regions300

that the ANNs assigned the lowest uncertainty and investigating the processes that cor-301

respond to these confident predictions. This study utilizes the CESM2 long control rep-302

resentation of the climate system and the results in the North Atlantic appear to agree303

with hindcast studies of Brune et al. (2018); Borchert et al. (2018); Yeager et al. (2018)304

which use different models to that used here (MPI-ESM; Giorgetta et al. (2013) and CESM1;305

Hurrell et al. (2013)). These previous studies also incorporate observations or reanaly-306

sis to evaluate the prediction skill of the decadal hindcasts. Since our findings are con-307

sistent with the state-dependent predictability investigated in these studies, this suggests308

that the ANN predictions and mechanisms investigated here are likely relevant to real-309

istic climate variability. This is left for future work.310

Here we present a data-driven approach to diagnosing state-dependent predictabil-311

ity in an unforced model simulation. We find evidence for a state-dependent inter-basin312

teleconnection, that is, the negative phase of the IPO influencing predictability of North313

Atlantic SSTs (Fig 3). The drivers of predictability and variability in the North Atlantic314

ocean are still debated, especially the relative roles of internal variability and external315

forcing (Wu et al., 2011; Clement et al., 2015; R. Zhang et al., 2019; Mann et al., 2021;316

Fang et al., 2021; Fenske & Clement, 2022). We hence suggest that future work on decadal317

prediction should investigate the roles of internal variability and external forcing through318

the lens of state-dependent predictability.319

This study emphasizes the importance of examining state-dependent predictabil-320

ity for decadal predictions. We stress that the a priori identification of more predictable321

initial states greatly increases prediction skill and can hence aid in estimating the evo-322

lution of the internal long-term variability of the climate system.323

5 Open Research324

We use CESM2 output which is freely available from Earth System Grid https://esgf-325

node.llnl.gov/projects/cmip6 (Danabasoglu, 2019).326

Analysis was carried out in Python 3.7 and 3.9, ANNs were developed using Ten-327

sorFlow (Abadi et al., 2016), while XAI heatmaps were created with iNNvestigate (Alber328

et al., 2019). Many color maps in this work are the from CMasher package (van der Velden,329
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2020) and regridding was achieved using Climate Data Operators (CDO; Schulzweida,330

2019).331

Code used to preprocess, generate the ANNs, and produce the figures in this work332

can be found at Gordon (2022).333
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