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1 Reanalyses’ Relative Humidity Trend Analysis

This document aims at describing more precisely the trend analysis on reanalysis data. It is avail-
able as a Jupyter Notebook at https:/ /doi.org/10.5281/zenod0.4423267, along with the necessary
data.

Two datasets have been used for this analysis : ERA5 and JRA-55. ERAS is available on the Cli-
mate Data Store (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-
levels-monthly-means?tab=overview) and was in our case retrieved from a miror on the IPSL
servers because the amount of data necessary was very long to obtain through the CDS APL
JRA-55 was retrieve from their FTP server, now unavailable. Other means to access the data are
describe on their website : https:/ /jra.kishou.go.jp/JRA-55/index_en.html.

1.1 Data pre-processing
1.1.1 ERA5

ERA5 relative humidity data was available in monthly files containing 6-hourly time step.
For each monthly files, using nco, we (1) averaged the data over each month (ncra
$mthfile r_${date}.nc), (2) extracted the tropical zone between +/- 30° (ncks -v r -d
latitude,-30.0,+30.0 r_${date}.nc r_$[date}.nc). Then concatenated all the data in one file
(ncrcat r_x.nc r_ERA.nc). We also retrieve the corresponding land-sea mask (1sm_ERA.nc).

A python script was apply to retrieve the mean tropical profile over oceans for each month (Note
: We did not apply a weighted average assuming grid cell area differences in this region was
negligible.) :

from dynamicopy import var_load
import numpy as np

import pickle as pkl

import os

f = 'r_ERA.nc'
var_load('r', f)
var_load('level', f)
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f_1sm = 'lsm_ERA.nc'



lsm = var_load('lsm', f_lsm)

mask = 1lsm[0] < 0.1

H_masked = H * mask

H_masked [H_masked == 0.0] = np.nan

H_tropical = np.nanmean(np.nanmean(H_masked, -1), -1)

with open('H_tropical.pkl', 'wb') as handle:
pkl.dump(H_tropical, handle)

1.1.2 JRA-55

Monthly JRA-55 data was available on the FTP server, but in GRIB format. It was copied to
NetCDF using cdo -f nc copy $file ${filel}.nc, then all the file were concatenated before cut-
ting the -30°/+30° latitude zone, and the same script was applied to obtain the tropical mean
profile.

1.2 Trend computation

The trends are computed using a linear regression, and dismissing the hypothesis that the trend
might be zero.

[1]: | import pickle as pkl
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
import seaborn as sns

[2]:  #Load data
#HERAS
with open("ERA/P_ERA.pkl",'rb' ) as handle :
P_ERA = pkl.load(handle)
with open("ERA/H_tropical.pkl", "rb") as handle:
H_trop_ERA = pkl.load(handle)
t_ERA = np.arange(len(H_trop_ERA))/12 + 1979 # Time aztis in years
### Cut level above 100hPa
H_trop_ERA = H_trop_ERA[:,P_ERA >= 100]
P_ERA = P_ERA[P_ERA >= 100]

[3]: ## JRA-55
with open("JRA/P_JRA.pkl",'rb' ) as handle :
P_JRA = pkl.load(handle)
with open("JRA/H_tropical.pkl", "rb") as handle:
H_trop_JRA = pkl.load(handle)
t_JRA = np.arange(len(H_trop_JRA))/12 + 1979 # Time azis in years

To compute the trend, we use scipy.stats.linregress function, whose output is defined as fol-
lows in the documentation :



[4] :

[5]:

[6]:

[71:

Returns
slope : float
Slope of the regression line.
intercept : float
Intercept of the regression line.
rvalue : float
Correlation coefficient.
pvalue : float
Two-sided p-value for a hypothesis test whose null hypothesis is
that the slope is zero, using Wald Test with t-distribution of
the test statistic.
stderr : float
Standard error of the estimated gradient.

In particular, the “error” or uncertainty refers to the stderr which is the standard error for the
gradient estimation or 67% confidence interval, and the p-value is computed for a null hypothesis
where the slope is zero. We use 0.01 as a discriminating threshold for p-values, but p-values are
displayed for you to appreciate.

# Compute trend
##Function
def compute_linear_trend(time, H)
trends, intercepts, p_values, stderrs = [1, [, [1, [I
for p in range(np.shape(H) [1])
slope, intercept, r, p, stderr = stats.linregress(time, H[:,pl)
trends.append (slope)
intercepts.append(intercept)
p_values.append (p)
stderrs.append(stderr)
return np.array([trends, intercepts, p_values, stderrs])

## ERA

trends_ERA, intercepts_ERA, pvals_ERA, errs_ERA = compute_linear_trend(t_ERA,
—~H_trop_ERA)

mtrends_ERA = np.ma.masked_array(trends_ERA, pvals_ERA > 0.01)

## JRA

trends_JRA, intercepts_JRA, pvals_JRA, errs_JRA = compute_linear_trend(t_JRA,
~H_trop_JRA)

mtrends_JRA = np.ma.masked_array(trends_JRA, pvals_JRA > 0.01)

[Plotting commands]
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The figure above summarizes our trend analysis : On the left panel is the trend in both reanalysis
products, at each levels, with dashed line and transparent points where the p-value > 0.01 does not
allow us to conclude that the trend is not zero. Errorbars show 95% confidence interval (2 x ¢). On
the right panel is displayed the logarithm of the p-value for each trend computation, as compared
to the threshold.

1.3 Time series

Here we display a few time series to illustrate the trend. Dots indicate the monthly values, solid
line the yearly average of these values, and dashed line the linear trend corresponding to what is
above.

def yearly_avg(H)
return np.array([np.mean(H[yr*12: (yr+1)*12],0) for yr in range(int(len(H)/
=12))1)
H_ERA_yr = yearly_avg(H_trop_ERA)
H_JRA_yr = yearly_avg(H_trop_JRA)
yrs = np.arange (1979, 2020)

[Plotting commands]
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1.4 Decade differences

As an other way to check the robustness of the trend we observe here, we computed the differences
for both datasets at each levels * between the last (2010-2019) and the first (1979-1988) decades *
between the second-to-last (2000-2009) and the first decades. * between the last and the second

(1989-1999) decade.

[Plotting commands]

ax[0] .plot ((np.mean(H_trop_ERA[-120:]1,0) - np.mean(H_trop_ERA[:120],0))/3,.
~P_ERA, c= sns.color_palette("deep") [3])

ax[0] .plot ((np.mean(H_trop_JRA[-120:]1,0) - np.mean(H_trop_JRA[:120],0))/3,,
~P_JRA, c= sns.color_palette("deep") [2])

ax[1] .plot ((np.mean(H_trop_ERA[-240:-120],0) - np.mean(H_trop_ERA[:120],0))/2,
~P_ERA, c= sns.color_palette("deep") [3])

ax[1] .plot ((np.mean(H_trop_JRA[-240:-120],0) - np.mean(H_trop_JRA[:120]1,0))/2,,
~P_JRA, c= sns.color_palette("deep") [2])

ax[2] .plot ((np.mean(H_trop_ERA[-120:1,0) - np.mean(H_trop_ERA[120:240],0))/2,,
~P_ERA, c= sns.color_palette("deep") [3])

ax[2] .plot ((np.mean(H_trop_JRA[-120:]1,0) - np.mean(H_trop_JRA[120:240],0))/2,,
~P_JRA, c= sns.color_palette("deep")[2])
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Most of it is coherent, except for one noticeable difference with the second decade of ERA, where
we can see in the time series (for example at 800hPa) that relative humidity is lower during this
period, for a reason we do not know.



2 Line-by-line analysis for Section 3
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Figure S2. Difference in the “humidity forcing” for RH perturbations at different pressure heights.

Figure S2 shows the change in the “humidity forcing” for relative humidity RH perturbations at
different pressure height. We define the humidity forcing as the difference in outgoing-longwave
radiation (OLR) between an atmosphere in present-day conditions and an atmosphere in which
the absolute humidity has been adjusted to a hypothetically 1-K-warmer temperature profile while
preserving the actual temperature. This way, we can quantify the radiative forcing of the moisten-
ing of the atmosphere alone. The two lines in Figure 52 show how RH perturbations at different
heights affect the humidity forcing: one can see that the change in OLR is increased in spectral
regions close to the perturbation. We interpret this as an “anchoring effect” of the perturbation
on the effecting emission height z.. For RH perturbations well above z, (300 hPa, yellowish line)
a stronger increase of the emission height — a stronger forcing — in the atmospheric window
overpowers this effect.



3 ECS for different uniform troposheric RH and different surface tem-
peratures

In section 3 (§6) we write that decreasing Tj reduces the sensitivity to RH.
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Figure S3. for a set of runs with different initial surface temperature Ty and different uniform
tropospheric RH. All were performed with a moist adiabatic Lapse Rate. Both plots display the
same data, but on different axes.

The left panel of Fig. S3 shows this phenomenon. In general, because of the tempera-
ture-dependence effect,as highlighted by Meraner, Mauritsen, and Voigt 2013, the atmosphere
is less sensitive for lowest temperature, as we can see in left panel of Fig. S3. This effect is even
stronger in our case when using Ty > 300K, because of the closing of the atmospheric window for
such conditions.
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