
manuscript submitted to Geophysical Research Letters

Dependence of Climate Sensitivity on the Given1

Distribution of Relative Humidity2

S. Bourdin1,2, L. Kluft1,3,4, B. Stevens 1
3

1Max-Planck Institute for Meteorology, Hamburg, Germany4
2Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université5
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Abstract16

We study how the vertical distribution of relative humidity (RH) affects climate sensi-17

tivity, even if it remains unchanged with warming. Using a radiative-convective equilib-18

rium model, we show that the climate sensitivity depends on the shape of a fixed ver-19

tical distribution of humidity, tending to be higher for atmospheres with higher humid-20

ity. We interpret these effects in terms of the effective emission height of water vapor.21

Differences in the vertical distribution of RH are shown to explain a large part of the 10 %22

to 30 % differences in clear-sky sensitivity seen in climate and storm-resolving models.23

The results imply that convective aggregation reduces climate sensitivity, even when the24

degree of aggregation does not change with warming. Combining our findings with rel-25

ative humidity trends in reanalysis data shows a tendency toward Earth becoming more26

sensitive to forcing over time. These trends and their height variation merit further study.27

Plain Language Summary28

Equilibrium Climate Sensitivity is the change in surface temperature in response29

to a doubling of atmospheric CO2. We study how the assumed vertical distribution of30

relative humidity affects this sensitivity. Theoretical considerations show that the more31

moist an atmosphere is, the more it warms as a response to an increase in CO2. Adding32

water vapor to the lower troposphere has the counter effect, lowering the sensitivity. We33

emphasize the importance of climate simulations taking humidity into account, as it is34

largely responsible for the difference in projections among models without clouds. We35

note surprising trends in humidity – with substantial drying of the lower troposphere over36

the ocean – in the last four decades as reported by two reanalyses of meteorological ob-37

servations. Subject to the accuracy of these reconstructions, there appears to be a change38

with less moistening than expected, but with moistening/drying profiles which will con-39

dition Earth to become more sensitive to forcing over time. We stress the need for a study40

of observations to more critically evaluate these trends, and know better what models41

should aim for.42

1 Introduction43

The clear-sky response to an increase in greenhouse gases is a pillar of our under-44

standing of global warming (Manabe & Wetherald, 1967; Charney et al., 1979). It is gen-45

erally believed that this response is better described by an atmosphere whose relative,46

rather than absolute, humidity remains constant with warming. The distinction is cru-47

cial because in an atmosphere where RH is fixed, the response of surface temperature48

to radiative forcing (e.g., from changing CO2), is roughly twice as large as would be the49

case should absolute humidity be fixed. In an influential review of these matters, Held50

and Soden (2000) presented theoretical arguments and evidence from modelling in sup-51

port of a constant relative humidity. At the time of their review, observations were in-52

sufficient to test this hypothesis, but Held and Soden concluded that “10 years may be53

adequate, and 20 years will very likely be sufficient, [. . . ] to convincingly confirm or re-54

fute the predictions”. It is now twenty years later.55

Taken at face value, two reanalyses of meteorological observations support this point56

of view, albeit less convincingly than we anticipated. This is shown in Fig. 1, where above57

600 hPa RH is increasing with warming, at a rate of 1 %/decade to 4 %/decade.Rather58

than attempting to establish the reliability of the trends – a task for which we lack ex-59

pertise – our aim is to estimate their implication for how Earth’s equilibrium climate sen-60

sitivity may be changing. How does a moister upper, or drier lower, troposphere make61

Earth more or less sensitive to forcing? Posing this question raises even more basic ques-62

tions. For instance, to what extent does the given structure of the RH profile matter for63

the clear-sky climate sensitivity, even if it remains constant with warming?64
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Figure 1. Mean profile (left) and linear trend over 40 years (solid, right) for ERA5 and JRA-

55 reanalysis data. Error bars show the standard deviation of the linear regression. The grey

dashed line corresponds to what would be the trend in relative humidity for a constant absolute

humidity considering ERA5 tropical temperature trend.

Questions such as these have not been the topic of much study. Past work has fo-65

cused on cloud changes (Stevens et al., 2016; Sherwood et al., 2020), to a degree that66

can give the impression that clouds alone stand in the way of a meaningful quantifica-67

tion of how surface temperatures respond to radiative forcing. This impression is rein-68

forced by observations showing that outgoing long-wave radiation (OLR) varies linearly69

with temperature (Koll & Cronin, 2018), seeming to imply little role for RH. Looking70

beyond the inability of present climate models to represent clouds with fidelity, it is well71

known that: (i) water vapor strongly influences the radiation emitted from clear skies,72

and (ii) uncertainty in the clear-sky climate sensitivity is not negligible. Regarding (i),73

for the same thermal structure, OLR varies by more than 50 W m−2 with RH for present74

day tropical surface temperatures (Pierrehumbert, 1995). As for (ii), Soden and Held75

(2006) – the study often cited as being demonstrative of the constancy of clear-sky feed-76

backs – reports a range of 0.5 W m−2 K−1 in the combined water-vapor and lapse rate77

feedbacks across CMIP3 models. CMIP5 models show a smaller, but still appreciable78

(0.4 W m−2 K−1), spread (Vial et al., 2013). More disquieting are studies that isolate the79

response of the tropical atmosphere to warming, as these suggest an even larger uncer-80

tainty (Medeiros et al., 2008; Becker & Wing, 2020). Relatively little research has been81

carried out to identify the origins of this uncertainty. Exceptional is the study by Po-82

Chedley et al. (2018), who argue that changes in RH in the southern-hemisphere extra-83

tropics are a large source of model spread; here we emphasize how and why such effects84

are also substantial in the tropics.85

The idea that the climate response is sensitive to the particular distribution of rel-86

ative humidity being held fixed, can be thought of as a form of state dependence. Most87

studies addressing this issue adopt a conceptual framework that only admit surface tem-88

perature as a state variable (Meraner et al., 2013; Knutti et al., 2017). RH plays no role.89

The limitation of such an assumption becomes obvious once one considers the climate90

sensitivity of an atmosphere with RH = 0. Hence, neglecting humidity as a state vari-91

able either implies that RH is known and constant, in which case the temperature might92
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only be a proximate cause of the change in climate sensitivity, or that the limit of a dry93

atmosphere is singular.94

In the present article we report on our investigation of the influence of RH on cli-95

mate sensitivity using a 1D radiative-convective equilibrium (RCE) model, and highlight96

a phenomenon we call humidity–dependence. Such a model is attractive for our purposes97

because it captures (often with surprising fidelity) the behavior of more elaborated de-98

scriptions of the climate system in a physically transparent manner. In §2 we describe99

the model and methods. In §3 we compute the relative impact of a perturbation in the100

profile at different levels, as a function of RH. In §4 we simulate less idealized profiles101

of RH to understand and better quantify their effect on on the spread in clear-sky cli-102

mate sensitivity produced by more elaborated models. In §5 we return to the trends in103

the reanalysis RH to quantify their implications for our understanding of the clear-sky104

climate sensitivity. We conclude in §6.105

2 Model & Methods106

Calculations were performed using the 1D-RCE model konrad (Kluft et al., 2019;107

Dacie et al., 2019). We adopt a configuration that uses the RRTMG radiative scheme108

(Mlawer et al., 1997) and a hard convective adjustment (Dacie, 2020) following the moist109

adiabatic lapse rate. Only clear-sky calculations are performed. In a subset of calcula-110

tions discussed at the beginning of §3, we also used a uniform lapse rate. We used 500111

pressure levels between 1000 hPa and 0.5 hPa. Following the prescription of the Radia-112

tive Convective Equilibrium Model Intercomparison Project, RCEMIP (Wing et al., 2018),113

the solar constant is set to 551.58 W m−2 and the zenith angle to 42.05◦, resulting in an114

insolation of 409.6 W m−2. The surface albedo is 0.2, and the ozone profile is coupled to115

the cold-point tropopause. The RH follows a prescribed vertical distribution up to the116

cold-point above which the specific humidity is kept uniform at its cold-point value. The117

RH is defined with respect to saturation over water above 0 ◦C and with respect to sat-118

uration over ice below −23 ◦C. In between, a combination of both are used (ECMWF,119

2018).120

A run is defined by its RH profile. It is composed of two equilibrium computations:121

(i) a spin-up with a constant surface temperature T0 = 300 K, (ii) a new equilibrium122

after applying a sudden doubling of the CO2 concentration. In (ii) the surface has no123

longer a fixed temperature but a fixed enthalpy sink, whose value is the top of the at-124

mosphere radiative imbalance at the end of the spin-up, as Kluft (2020) argues to be best125

practice. The Equilibrium Climate Sensitivity, S of our model is defined as the differ-126

ence between the second equilibrium surface temperature and T0.127

In §3, we discuss perturbation runs. In these, the tropospheric RH profile is uni-128

form except for a 600 m thick layer, where the RH is increased or decreased (the pertur-129

bation). A perturbation run is thus defined by a base RH, a perturbation pressure, and130

a perturbation intensity δRH. The corresponding ’run’ without perturbation is called a131

control run. This is illustrated in Fig. 2.132

As a measure of the impact of a perturbation, we define the amplification factor133

a as the ratio of the S in the perturbation run, Sp, to the S in the corresponding con-134

trol run, Sc:135

a =
Sp
Sc
− 1. (1)

In reanalysis data, see Fig. 1, the RH profiles peak in the boundary layer and in136

the upper-troposphere and show a distinct minimum in the mid-troposphere. For this137

reason, we call such a profile C-shaped. In order to simulate a C-shaped RH profile, we138

developed the following piecewise model, in pressure coordinates (shown in Fig. 4):139
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Figure 2. Illustration of the perturbation runs method. The control run, with a base RH of

0.8, is shown in dashed black. Each color corresponds to a run with a perturbation δRH = 0.2

at a different level. The two left panels show the relative and absolute humidity profiles. The

right panel shows S for each perturbation run as a function of perturbation pressure alongside the

value of S for the control run (dashed vertical line).

– Linear in the boundary layer, from the surface to the lower-tropospheric peak (low140

point);141

– Quadratic in the mid-troposphere, defined by 3 points: the two peaks and the hu-142

midity at 500 hPa (mid point);143

– Linear above the upper-tropospheric peak, defined by the upper-tropospheric peak144

(top point) and the cold-point.145

The advantages of such an RH profile is that it is defined by only 5 points, corre-146

sponding to parameters that are straightforward to interpret, and it catches the main147

feature of a realistic profile better than a uniform profile. Moreover, these parameters148

give us enough degrees of liberty to fit well AMIP and RCEMIP data, as detailed in §4.149

3 Humidity–Dependence of S150

As a first set of experiments, we perform runs with different uniform tropospheric151

RH profiles, and for uniform and moist adiabatic lapse rates. Values of S for these runs152

are plotted in Fig. 3 (top panel). We find a robust increase in S with a moister tropo-153

sphere. We decomposed S into contributions from the forcing and the feedback follow-154

ing Gregory et al. (2004). This shows that changes in S arise from changes in feedback155

as the forcing tends to be much smaller and of the opposite sign.156

Let us use the effective emission height concept for the interpretation of our cal-157

culations. Let Φe be Earth’s infrared irradiance at the top of the atmosphere. It can be158

associated with radiant power emitted by a black body at a temperature, Te, such that159

Φe = σT 4
e , where σ is the Stefan-Boltzmann constant. We define the effective emission160

height to be the altitude ze such that T (ze) = Te. These ideas can be generalized to161

allow for spectrally specific effective emission heights (Seeley & Jeevanjee, 2021), i.e., ze,λ162

with λ denoting some wavelength or spectral interval.163
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To help understand the water vapor feedback, we first apply this concept to a case164

with a uniform lapse rate, dT/dz = −Γ, and grey radiation characterized by a single165

emission height. If an initial (positive) perturbation in CO2 causes an increase in the emis-166

sion height δze,i > 0, it would lead to a decrease in the emission temperature, δTe,i =167

−Γδze,i. This leads to a deficit in the Φe, and hence a positive radiative forcing. To bal-168

ance the reduced emission, the troposphere (and surface) warms until the temperature169

at ze+δze adjusts to the value it previously had at ze. As a reaction to this warming,170

if RH is to remain fixed, the absolute humidity must increases following the Clausius-171

Clapeyron law. The increase in e will in turn lead to a further change in ze, which must172

be balanced by further warming, increasing humidity, and so on. S, is the sum of the173

response from the initial forcing, plus this water vapor feedback.174

Clausius-Clapeyron implies that175

δe = RH
`ves
RvT 2

δT, (2)

where `v is the vaporization enthalpy, an Rv the water vapor gas constant. Eq. (2) shows176

that δe ∝ RH, which explains the linear relation between the S and the tropospheric177

RH for a given initial forcing (2×CO2), e.g., as displayed by the blue points in Fig. 3.178

A non-uniform lapse rate – as is the case for the moist adiabat, whereby Γ is a mono-179

tonically increasing function of T – gives rise to additional effects. One is the well known180

lapse rate feedback. Another is a moister atmosphere: a troposphere whose surface and181

cold point temperatures are spanned by a moist adiabatic, rather than a uniform, lapse182

rate, will be warmer everywhere, and hence moister for the same RH. A further effect183

is that the vertical distribution of absolute humidity will be more bottom heavy, falling184

off less with height in the lower troposphere, where the moist adiabat is less than its mean185

value, and more with height, where the moist adiabat is greater than its mean value. The186

ability of an atmosphere with a moist adiabatic temperature profile to sample higher ab-187

solute humidities results in a strong increase in the water vapor feedback at high RH.188

This effect is particularly strong in our example because at the given value of T0 the at-189

mospheric window looses its transparency (Koll & Cronin, 2018) at high humidities, a190

self-amplifying affect that explains the sharp increase in S as RH increases for the moist191

adiabatic versus the uniform lapse rate runs (Fig. 3). Repeating our calculations with192

a smaller T0 reduces the sensitivity to RH (not shown). For most values of RH, however,193

the moist adiabatic runs have a smaller S, even more so if one uses the integrated wa-194

ter vapor (IWV) as the control variable, as shown by the points highlighted in on Fig. 3.195

This is mostly indicative of the importance of the lapse rate feedback. Calculations (not196

shown) that use a ‘fixed’ moist adiabatic lapse rate, i.e., one not allowed to change with197

surface warming, also have a slightly reduced S as compared to calculations adopting198

a uniform lapse rate with the same value of IWV. This suggests that the shape of the199

humidity profile also influences S.200

To assess how the shape of the RH profile influences S we perform perturbation201

runsm as described in §2 (see also Fig. 2). Perturbation runs are performed with δRH =202

−0.1, 0.1, 0.2. From these the amplification factor, a per Eq. 1, is related to δRH through203

linear regression. Fig. 3 plots a from its regressed slope multiplied by δRH = 0.1. Val-204

ues are calculated for RH perturbations applied every 50 hPa to an otherwise constant205

RH profile. This sequence of height varying perturbation runs is computed for 0.4 ≤ RH ≤206

0.8 The impact of a positive RH perturbation is small, but discernibly positive (increas-207

ing S) in the upper troposphere, and negative (decreasing S) in the lower troposphere.208

The higher the base RH, the stronger is the sensitivity to the humidity perturbation. More-209

over, the level of sign change rises with base RH.210

The perturbation runs are consistent with our earlier discussion, but not especially211

intuitive. To understand them, and test their robustness, we performed line-by-line ra-212

diative transfer using the ARTS model (not shown) (Buehler et al., 2018). We find two213
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Figure 3. (Upper panel) S for different uniform tropospheric RH, and for experiments with

a uniform tropospheric lapse rate of 6.5 K km−1 or with a moist adiabatic lapse rate. Black

squared points correspond to experiments were integrated water vapor (IWV) was the closest to

50 kg m−2. (Lower panel) Amplification factor a (in percent) for 0.1 RH perturbation for different

humidities and different perturbation levels. Blue and red colors for changes larger than 0.5 % in

magnitude are indicative of the value’s range. Black lines represent the mid-tropospheric level at

which a changes sign.
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opposing effects. In spectral regions where ze,λ is near the height of the RH perturba-214

tion, the change in ze,λ as water-vapor adjusts to warming is lessened. It is as if the fixed215

perturbation height helps anchor ze,λ. In spectral regions where the effective emission216

height is well below the RH perturbation, the change in ze,λ as water-vapor adjusts to217

warming is heightened – increasing the strength of the water vapor feedback. The first218

(damping) effect explains the reduction in S associated with RH perturbations in the219

lower troposphere. It is also apparent at strongly absorbing wave numbers (rotational220

and ro-vibrational bands) for the perturbations in the upper troposphere. But for the221

latter case this reduction in the water-vapor feedback by the perturbation is more than222

offset by the second (amplifying) effect whereby the perturbation in the upper atmosphere223

increases the changes in ze,λ in parts of the window-region (400 cm−1 < λ < 1200 cm−1)224

where CO2 does not dominate.225

4 Implications for Model-Based Estimates of ECS226

Given the non-linearity of these effects, generalization is not automatic. Here we227

check whether results of the previous section can also be identified for less idealized per-228

turbations to RH profiles more similar to those observed and simulated by climate mod-229

els. For this purpose we use C-shaped RH profiles as defined in §2. To reduce their de-230

grees of liberty we additionally fix the low point to 925 hPa and set the slopes below the231

low point, and above the high point, to 2.0× 10−5 Pa−1 and −5.8× 10−5 Pa−1 respec-232

tively. These values are the mean of the parameters when fitting to RCEMIP profiles233

(see following paragraphs). We additionally set the RH at the cold-point to be half its234

peak (upper-troposphere) value, the level of this cold-point being computed by konrad.235

Calculations (runs) were then performed to quantify the impact of changing the remain-236

ing parameters: Starting from a 0.7/0.4/0.85 (top/mid/low) profile, we: (i) shifted the237

whole profile; (ii) changed only the RH at the top of the atmosphere; (iii) changed only238

the humidity at 500 hPa; (iv) changed only the humidity in the lower atmosphere. Hu-239

midity profiles and resulting changes in S are presented in Fig. 4. Qualitatively the re-240

sponse to these perturbations agrees well with what was learned from the response to241

more idealized perturbations: (i & ii) S increases with an increase in the upper tropo-242

spheric RH, also when this is part of a general moistening; (iv) S decreases if RH increases243

are confined to the lower troposphere; and (iii) increases in RH in the middle troposphere244

lead to little change in S, until a critical RH is reached at which point S increases markedly.245

In a second step, we performed runs with RH profiles set to fit RCEMIP simula-246

tions using storm-resolving and general circulation models (Except for UKMO-CASIM247

whose humidity profile led to a runaway) on large domains with an SST of 300 K (Wing248

et al., 2020) and CMIP5 AMIP ensembles. The fit is done by retrieving the pressure and249

humidity of the five points defining our C-shaped profile. In particular, the low and top250

points coincide with the local maxima and the cold-point pressure is retrieved from the251

temperature profile. The mid point remains fixed at 500 hPa and the surface is taken as252

the lowest point available. This enables us to assess the effect of the humidity profile alone,253

all other things being equal.254

With RCEMIP RH profiles, we find a ±26% variation around the mean S value.255

The spread in feedback is −1.25 W m−2 K−1 to −3 W m−2 K−1, slightly smaller but com-256

parable to what is found by Becker and Wing (2020). We thus explain the surprisingly257

large spread in clear-sky sensitivity in RCEMIP as being in large part a response to dif-258

ferent RH profiles simulated by the models. Becker and Wing (2020) attribute this inter-259

model spread in RH to different degrees of convective self-aggregation, hence our work260

suggests that different degrees of convective self-aggregation can influence the climate261

sensitivity, even if the convective self-aggregation does not change with warming.262

From CMIP5 AMIP output, we retrieved mean profiles over the tropical oceans (equa-263

torward of 30◦) averaged over the entire simulated period. As compared to RCEMIP RH264
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Figure 4. (Upper two rows) C-shaped RH profiles: Reference 0.7/0.4/0.85 (top/mid/low)

profile (top-left); ERA5 profile as computed for §5 (grey), and corresponding C-shaped fit (red)

(bottom-left). Four central panels correspond to the idealized experiments described in the first

paragraph of §4. Two right-most panels display the mean and extreme profiles of the AMIP (top-

right) and RCEMIP (bottom-right) datasets. (Lower panel) S for the idealized experiments and

for the experiments with a profile fitted to the AMIP or RCEMIP ensembles. Boxplots’ whiskers

are set to display the 5th and 95th percentiles. On this graph and for statistics, only one point

per model ”family” (i.e. issued by the same institute) is used, corresponding to the average of all

this family’s models. Red dashed line correspond to the S computed with ERA5 C-shaped fit RH

profile above.

profiles, those from the AMIP simulations are on average dryer, and thereby associated265

with a smaller S. The drier AMIP profiles are indicative of large-scale circulations driven266

by differences in surface temperatures, i.e., Hadley and Walker cells which give rise to267

the dry tropics. The AMIP simulations differ less in their humidity profiles and likewise268

show less spread in S, but even so differences approaching 10 % are evident269

Given observations of the RH profiles in the atmosphere, it should be possible to270

correct model estimates of climate sensitivity using calculations such as ours. From a271

comparison of Fig. 1 and Fig. 4, we note that the RCE models tend to be moister than272

the observations, the AMIP simulations are drier. Fitting the C-shaped humidity pro-273

file to the observations yields an S of about 2.25 K; this is smaller than that of most RCE274

models, but larger than for the AMIP models. Likewise, ECS estimates in early calcu-275

lations following the RH humidity profile used by Manabe and Wetherald (1967), would,276

due to an unrealistically dry upper atmosphere, be biased too low. However, for the lower277

humidities and temperatures used in that study, the fixed lapse assumption actually over278
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compensates, leading to a larger sensitivity as seen in Kluft et al. (2019). This, along279

with the upper panel of Fig. 3, is illustrative of how the lapse rate feedback depends on280

the base state RH.281

5 Impact of RH Trends in Reanalysis Data282

Based on the above analysis we return to our initial question, which is how to in-283

terpret RH trends in the reanalysis products. The profiles presented in Fig. 1 are from284

the ERA5 (Hersbach et al., 2020), and the JRA-55 (Kobayashi et al., 2015) reanalyses285

of the past forty years (1979-2019) of meteorological observations. Relative and abso-286

lute humidity, as well as temparature, are averaged over tropical oceans (equatorward287

of 30◦). Trends regressed from monthly data are significant at several levels and consis-288

tent across both reanalyses. They are also evident in the difference between the mean289

profile in the first and last decade (not shown). We were surprised that RH at low lev-290

els was robustly decreasing – something that merits further investigation – even if av-291

eraged over height δRH ≈ 0. Our analysis does not tell us how strongly these trends292

influence the expected warming over the past forty years, but it does tell us that the pat-293

tern of change, with moistening aloft and drying in the lower middle troposphere is con-294

ditioning the climate system toward greater sensitivity.295

6 Conclusions296

The response of the atmosphere to radiative forcing as a function of the assumed297

profile of relative humidity (RH) is explored using a one-dimensional radiative-convective298

equilibrium model. For profiles chosen to sample the range produced by state of the art299

climate and storm-resolving models run under idealized conditions, the calculated equi-300

librium climate sensitivity of our model (S) varies between 2 K to 3 K, depending on the301

RH profile, highlighting a humidity–dependence of the climate sensitivity: Moister at-302

mospheres were shown to have a larger S, increasingly so with warmer temperature, con-303

sistent with understanding of how water vapor influences the transmissivity of the at-304

mospheric window (Nakajima et al., 1992; Koll & Cronin, 2018; Seeley & Jeevanjee, 2021).305

S is further shown to increase with increasing humidity in the upper troposphere, but306

decreases with increases in humidity in the lower mid-troposphere.307

The use of a simple physical model, konrad, makes it easier to understand the ba-308

sic physics determining the outcome of our calculations. For instance, with the chosen309

framework it is possible to show how the the lapse rate’s influence on the total amount310

and vertical distribution of humidity for a given profile of RH influences S. We could also311

investigate how S depends on the shape of the RH profile, which expresses competing312

effects, whereby perturbations to the humidity can both reduce or increase the change313

in the emission height associated with changes in absolute humidity to maintain a con-314

stant relative humidity with warming. The former effect dominates when the humidity315

perturbation is near the emission height resulting in a slight reduction in S for bottom316

heavy humidity profiles.317

Our work emphasizes the importance of realistically representing the relative hu-318

midity profile when calculating climate sensitivity. Models that are too humid, partic-319

ularly in the mid- and upper-troposphere will have larger sensitivities, an effect which320

will amplify with increased warming. Convective self-aggregation modifies the mean rel-321

ative humidity profile, thereby reducing ECS, even if the degree of convective aggrega-322

tion itself does not change with warming. In this context, our study also encourages the323

use of RH as metric for the fidelity of the moist physics in climate models. To the ex-324

tent climate models are unable to realistically represent the observed distribution of RH,325

our methods may make it possible to estimate the quantitative effect of these biases.326
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Humidity profiles over tropical oceans as represented in reanalysis products, tend327

to be moister than those produced by models forced with observed SSTs, implying a larger328

clear-sky sensitivity. Three dimensional radiative convective equilibrium models, which329

are more physical – but less constrained by large-scale sea-surface temperature gradi-330

ents – tend to be more humid, but also have more divergent humidity profiles.331

Surprisingly large changes in RH are reported by the reanalysis products over the332

last forty years, changes which our calculations suggest will condition the climate sys-333

tem to be more sensitive to forcing in the future. This finding adds an additional dimen-334

sion to Knutti and Rugenstein’s (2015) statement that the feedback parameter is not con-335

stant, and that non-linearity in the system may be important when assessing Earth’s equi-336

librium climate sensitivity. The surprising trends in the reanalysis humidity products,337

particularly the drying in the tropical lower troposphere, reminds us of Held and Soden’s338

plea to be attentive to this issue, and merits the renewed attention of experts.339
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