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Abstract13

Simulations of human behavior in water resources systems are challenged by uncertainty14

in model structure and parameters. The increasing availability of observations describ-15

ing these systems provides the opportunity to infer a set of plausible model structures16

using data-driven approaches. This study develops a three-phase approach to the infer-17

ence of model structures and parameterizations from data: problem definition, model18

generation, and model evaluation, illustrated on a case study of land use decisions in the19

Tulare Basin, California. We encode the generalized decision problem as an arbitrary20

mapping from a high-dimensional data space to the action of interest and use multi-objective21

genetic programming to search over a family of functions that perform this mapping for22

both regression and classification tasks. To facilitate the discovery of models that are23

both realistic and interpretable, the algorithm selects model structures based on multi-24

objective optimization of (1) their performance on a training set and (2) complexity, mea-25

sured by the number of variables, constants, and operations composing the model. Af-26

ter training, optimal model structures are further evaluated according to their ability to27

generalize to held-out test data and clustered based on their performance, complexity,28

and generalization properties. Finally, we diagnose the causes of good and bad gener-29

alization by performing sensitivity analysis across model inputs and within clusters. This30

study serves as a template to inform and automate the problem-dependent task of con-31

structing robust data-driven model structures to describe human behavior in water re-32

sources systems.33

1 Introduction34

Human behavior represents a significant source of uncertainty in simulation mod-35

els of water resources systems (Konar et al., 2019), as humans interact with and depend36

on water systems in numerous ways (Lund, 2015). Examples include urban and agricul-37

tural water demand (Chini et al., 2017; Marston & Konar, 2017), population displace-38

ment (Müller et al., 2016), and the nonstationary behavior of decision-makers and reg-39

ulatory institutions across multiple sectors and scales (Mason et al., 2018; Monier et al.,40

2018; Muneepeerakul & Anderies, 2020). Many different modeling approaches have been41

adopted for this problem, including: dynamical systems models, as in socio-hydrology42

(Sivapalan et al., 2012); hydro-economic models (Harou et al., 2009); and agent-based43

modeling (An, 2012). Each approach employs a structurally distinct perspective to link44

human decisions to the state of the hydrologic system (Schill et al., 2019). These approaches45

are not necessarily exclusive, and can be connected through a common experimental fram-46

ing. Across all, the goal is to accurately describe observed dynamics of the system while47

managing the complexity of the spatial and temporal representation (Baumberger et al.,48

2017; Höge et al., 2018).49

The increasing availability of multi-sectoral data describing water resources sys-50

tems provides the opportunity to learn a set of plausible model structures using data-51

driven approaches (Brunton et al., 2016; Montáns et al., 2019). Data-driven methods are52

particularly useful for handling heterogeneous or unstructured data, and where existing53

theory may insufficiently explain available observations. In the latter case, however, care54

must be taken in the interpretation and application of the resulting models (Knüsel et55

al., 2019). There is growing interest in applying data-driven methods to calibrate pa-56

rameters of integrated human-water models, such as smart-meter data (Cominola et al.,57

2019), water demand modeling (Oyebode et al., 2019), groundwater irrigation decisions58

(Hu et al., 2017), and water reservoir operations (Giuliani & Herman, 2018). While even59

simple data-driven models can sometimes outperform theory-driven models (Haughton60

et al., 2016), performance alone does not engender trust; model interpretability in the61

context of available theory is also needed to support both design and evaluation, though62

this may be limited in some systems (Baumberger et al., 2017; Lipton, 2018).63
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Several recent studies highlight the value and range of applications for data-driven64

approaches in water resources. For example, Giuliani et al. (2016) generate adaptive be-65

havioral rules from historical climate and land use data by coordinating reservoir deci-66

sions with downstream cropping decisions from an economic model. Similarly, Quinn et67

al. (2018) employ policy emulation methods for coupled reservoir and irrigation decisions68

to reduce the computational cost of exploring a range of future hydroclimate scenarios.69

Worland et al. (2019) combine heterogeneous attributes of stream gauge networks to re-70

construct observed flow duration curves under human influence with high accuracy us-71

ing multi-output neural networks. Zaniolo et al. (2018) use data-driven variable selec-72

tion across hydroclimate indicators and observed state variables to automatically design73

Pareto-optimal drought indices (i.e., constructing a function) to balance tradeoffs between74

complexity and performance. These studies have underscored the significant potential75

for data-driven methods to advance model design, while also identifying key challenges76

related to structure and complexity.77

While data-driven approaches are adept at identifying parameters of a given model78

structure, there has generally been less focus on the identification of the structure itself,79

which is often not well-known (Blöschl et al., 2019). Model structural uncertainty arises80

from a lack of knowledge regarding the system, its behavior, and interactions between81

components (Walker et al., 2003). This is broadly the domain of data-driven system iden-82

tification methods, which search both model structures and parameters to find candi-83

date representations. System identification originated in the automatic control field to84

discover the components of interpretable mathematical models solely through data (black-85

box models), or by combining data with prior mechanistic knowledge about the system86

(gray-box models) (Ljung, 2017). Methods have been tested for systems in which the tar-87

get relationships are known, such as the double pendulum (Schmidt & Lipson, 2009a)88

and the Navier-Stokes equations (Rudy et al., 2017). In hydrology, methods related to89

system identification have been applied for the general exploration of structural uncer-90

tainty in process-based modeling (Clark et al., 2015a, 2015b). Hydrologic studies have91

also considered data-driven approaches to system identification, such as the discovery92

of neural network structures for rainfall-runoff modeling (Hsu et al., 1995), the compar-93

ison of multiple regression methods for streamflow prediction (Wu et al., 2009), and the94

learning of transfer functions with symbolic regression (Klotz et al., 2017). Opportuni-95

ties remain to leverage these developments for the identification of descriptive model struc-96

tures of dynamic human behavior in water resources.97

Several specific challenges arise in the process, as have been observed in hydrologic98

modeling where the question of structural uncertainty has been more widely studied (Young,99

1998; Clark et al., 2008; Fenicia et al., 2011, e.g.,). First, data-driven system identifica-100

tion can result in many candidate models with varying levels of performance and com-101

plexity (Hogue et al., 2006; Bastidas et al., 2006; Pande et al., 2009). Second, additional102

criteria may be required for model evaluation (Beven & Freer, 2001; Höge et al., 2018;103

Eker et al., 2018), such as interpretability in the case of black-box models. For exam-104

ple, the introduction of deep learning methods into water resources has resulted in non-105

parsimonious models that often perform inexplicably well on unseen data (Shen, 2018).106

Conversely, data-driven system identification also allows for the testing of multiple model107

structures and parameterizations as competing hypotheses (Beven, 2019), often through108

search methods capable of adding complexity as needed. There remains a need to ex-109

plore these challenges in the context of models of human behavior, where the goals of110

interpretability and parsimony apply simultaneously with the need for a broad spectrum111

of possible representations (Schill et al., 2019).112

This study investigates the generation and evaluation of model structures for rep-113

resentations of human behavior for water resources systems. We propose a data-driven114

system identification approach to explore many candidate models as competing hypothe-115

ses. This approach operationalizes a preference for parsimonious model structures in com-116
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binatorial search spaces, along with the decomposition and diagnostic assessment of plau-117

sible model sets to determine driving structure. General modeling objectives are quan-118

tified at different phases of the experiment: generality, performance, complexity, and the119

importance of features and structural elements. This approach provides a foundation for120

future studies of model structural uncertainty and integrated systems modeling, partic-121

ularly regarding the role of these issues in decision support for coupled human-water sys-122

tems.123

2 Methodological Background124

We extend prior developments in environmental systems modeling to investigate125

structural uncertainty in models of human behavior through data-driven experimenta-126

tion (Figure 1). This framing automates the identification and evaluation of plausible127

model structures within a general problem definition, quantifying a number of model-128

ing objectives in the process. The phases presented here share similarities with the prob-129

lem of constructing emulators (surrogates) of environmental systems models (Castelletti130

et al., 2012; Kleijnen, 2015). While system identification also seeks to generate models131

that accurately reproduce observed data, system identification has the additional goal132

of generating models that can support new understanding of the system.133

Model Generation

    Define search procedure

    Search parameters and structures

    Construct metrics to rank models

Problem Definition

    Formulate question

    Identify relevant data and scales

    Specify a family of models

Model Evaluation

    Analyze metric tradeoffs

    Decompose models into components

    Identify parametric/structural drivers

Figure 1. Flowchart of methodological steps involved in generating model structure from

data.

2.1 Problem Definition134

Problem definition for data-driven modeling includes the formulation of a question135

about the system, the collection and organization of available data at relevant spatial136

and temporal scales, and the specification of a family of models to answer the question.137

A data-driven system identification approach to problem definition can avoid human-138

intuited priors in the form of model structure and feature engineering, in favor of dis-139

covering useful constructions of both the data and the model simultaneously (Knüsel et140
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al., 2019). First, the heterogeneous feature types common to integrated settings and ob-141

served human behavior can be considered across spatio-temporal scales. Feature engi-142

neering is then performed by transforming the observations, typically along with some143

form of dimension reduction such as eigenvalue decomposition (Giuliani & Herman, 2018).144

Variables at incongruent spatial and temporal scales and categorical variables can also145

be incorporated, for example through encoding schemes (Cerda et al., 2018).146

In formulating the question, the model φ must be identified to map predictor vari-147

ables X (input samples) to the response variable y in a multivariate regression problem:148

φ : Rn → R1. For modeling dynamical systems, the problem might involve learning149

the next state or derivative of a state variable in time given the current and previous states.150

The goal is to automatically reverse-engineer structure in φ that enables novel insights151

of the system (Bongard & Lipson, 2007). Discovering the optimal φ without pre-specifying152

the form of the function invokes exploration over both the structure and parameteriza-153

tion of φ. This multivariate regression problem, an instance of supervised learning, can154

also be used in a control context, or to learn the behavior of agents in an environment155

given stochastic, noisy rewards (Barto & Dietterich, 2012).156

There are a number of model families from which functions could be drawn to per-157

form this mapping, such as linear additive models or neural networks. Functions can be158

most generally encoded as trees or graphs, either of which can be used to represent a uni-159

versal approximator (e.g. Breiman, 2001; Huang et al., 2006) of highly complex, non-160

linear human behavior. A common approach for the automatic construction of models161

of arbitrary mathematical structure and complexity is to combine objects from a prim-162

itive set of basic functions. As an instance of a process influencing the natural system,163

human behavior is integrated in model computation graphs, the network representing164

model operations and numerical fluxes (Gupta & Nearing, 2014; Khatami et al., 2019),165

by defining representational nodes and specifying links. Taken together, nodes and links166

in a model’s graph form a natural measure of model integration (Claussen et al., 2002).167

2.2 Model Generation168

Model generation requires a search procedure over model parameters and struc-169

ture, with performance represented by one or more metrics such as accuracy and com-170

plexity. Relatively few studies in the water resources field have considered an optimiza-171

tion over model structures, and most of these focus on normative rather than descrip-172

tive modeling. Many of these studies come from applications of data-driven methods to173

direct policy search (Rosenstein & Barto, 2001; Giuliani et al., 2014). For example, Herman174

and Giuliani (2018) test operating rule structures via the optimization of binary trees175

using genetic programming. In general, heuristic methods such as evolutionary algorithms176

have proven useful for this task (Reed et al., 2013), given the potentially non-convex or177

discontinuous objective surface that results from optimizing both structure and param-178

eters.179

The two primary tools for generation of model structures are neuro-evolution, the180

evolution of neural network topologies (Stanley & Miikkulainen, 2002), and symbolic re-181

gression via genetic programming, the evolution of nonlinear regression models composed182

of symbolic mathematic elements from a primitive set (Koza, 1992, 1995). Regarding neu-183

roevolution, Stanley and Miikkulainen (2002) introduced a method for parsimonious neu-184

ral network generation by initializing small random networks and adding connections with185

random nodes and weights when performance improved. The space of possible network186

configurations is intractably large for most applications, making the method relatively187

slow to converge. Deep neural networks generated using evolution strategies (e.g. Lehman188

et al., 2018; Miikkulainen et al., 2019) for reinforcement learning (e.g. Conti et al., 2018)189

have generated comparable results to deep Q-networks (e.g. Mnih et al., 2015) and other190

fixed networks trained through backpropagation, but are not completely gradient-free.191
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Gradient-free genetic algorithms have been used for faster training of deep neural net-192

work weights (e.g. Such et al., 2017), but not successfully for the discovery of structure,193

as originally intended in Stanley and Miikkulainen (2002). The selection of search method194

will dictate the success of finding appropriate models to describe human behavior in a195

high-dimensional search space.196

Symbolic regression similarly uses linear and nonlinear operators as base functions,197

and can, for example, learn to compose nested functions and automate the process of198

feature engineering. Symbolic trees can also incorporate noise (Schmidt & Lipson, 2007),199

can be seeded with relations of interest during optimization (e.g. Schmidt & Lipson, 2009b;200

Chadalawada et al., 2020), and can be strongly-typed to incorporate and handle hetero-201

geneous data types or function outputs (Montana, 1995). Model evaluations of symbolic202

regression trees are generally faster than traditional feed-forward neural networks be-203

cause each model evolves a sparse input representation based only on the inputs that im-204

prove performance. These factors make symbolic trees suited for iterative and exploratory205

model generation when using a gradient-free optimization method. The primitive set of206

structures for building symbolic trees determines the size of the search space, which of-207

ten grows combinatorially with the number of primitives (Vanneschi et al., 2010). The208

selection of search method should consider the breadth of the resulting space of possi-209

ble model structures. In applications where the target functions are not known, as in the210

modeling of complex and highly nonlinear human behavior, the space of possible model211

structures can be broadened to include a large number of possible functional relation-212

ships.213

2.3 Model Evaluation214

Model evaluation consists of performance metrics, component-level behavior, and215

the identification of parametric and structural drivers. This section reviews different ap-216

proaches and perspectives regarding model evaluation for data-driven system identifi-217

cation, recognizing that the implementation of this phase is problem-dependent, and that218

integrated systems models including human behavior may be difficult to validate against219

theoretical or conceptual results depending on their scale.220

The minimization of one or more error metrics between the model and data defines221

its proximity to the “true” model (Haussler & Warmuth, 1993; Kearns et al., 1994; Valiant,222

2013). The different methodological and philosophical details of model evaluation in these223

settings are reviewed by Höge et al. (2018). Accordingly, the most prominent issue re-224

garding model evaluation is the test error, the indicator of a model’s ability to gener-225

alize to unseen data by balancing model bias and variance (Friedman, 1997; Pande et226

al., 2009; Höge et al., 2018). Generalization to unseen data is required to appropriately227

accommodate non-stationarity in data, a necessity when seeking to describe dynamic hu-228

man behavior over long time periods. Finally, standard error metrics can be supplemented229

by additional criteria such as the information content learned from a model (Nearing &230

Gupta, 2015; Nearing et al., 2020), or when functional relationships are known, the eval-231

uation of structural error through tradeoffs between predictive and functional performance232

(Ruddell et al., 2019).233

For data-driven model structures describing human behavior, several extensions234

arise that deserve consideration during the model evaluation phase. The first is model235

complexity, recognizing that additional components or parameters do not necessarily re-236

sult in the ability to represent increasingly complex system behavior (Sun et al., 2016).237

Instead, the goal is to find a parsimonious model, or the simplest model that still describes238

the data accurately. This has been identified as a challenge for heuristic approaches to239

data-driven system identification (Bongard & Lipson, 2007; Schmidt & Lipson, 2008, 2009a;240

Schmid, 2010). The second extension is model equifinality, or lack of uniqueness, which241

occurs when many model structures produce comparable predictions even after being tuned,242
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trained, constrained, or optimized (Beven, 1993). This can suggest possible redundancy243

or over-simplification in the model, meaning that the parsimonious model may not have244

been found or the collected data is not diverse enough to fully represent the underlying245

process. For data-driven system identification this is especially challenging given the large246

space of possible model structures and conflicting performance metrics (Curry & Dagli,247

2014). The concept of equifinality has been widely explored in hydrology and water re-248

sources (Khatami et al., 2019), but has been less emphasized in studies of human behav-249

ior modeling with competing structures and is more likely when less prior structural in-250

formation is provided.251

Finally, when model generation results in a large number of plausible model struc-252

tures, a range of diagnostic tools can be applied to further assess the common structures253

and parameters driving model behavior. For example, Pruyt and Islam (2015) use clus-254

tering to partition exploratory model parameterizations based on their behavior as trans-255

fer functions mapping input to output. In the absence of well-characterized uncertainty,256

sensitivity analysis can diagnose model prediction behavior and provide a metric by which257

to justify the inclusion of parameters (Pianosi et al., 2016; Gupta & Razavi, 2018; Wa-258

gener & Pianosi, 2019). Dobson et al. (2019) design a scenario resampling strategy to259

show the importance of contextual uncertainty in the performance of operational rules260

of water systems. These and similar approaches assist with the evaluation of models of261

human behavior in the abstract, through which key structural elements can be identi-262

fied post-optimization.263

3 Experiment264

Figure 2 outlines the computational steps for the three experimental phases: prob-265

lem definition, model generation, and model evaluation. The Problem Definition phase266

includes the definition of prediction tasks, feature engineering, and the specification of267

function primitives. The Model Generation phase includes the selection of an encoding268

representation and search procedure, the definition of metrics to use for evaluating mod-269

els during search, and the search over candidate model structures in a multi-objective270

space. The Model Evaluation phase for these experiments focuses on the collection and271

analysis of many plausible model sets across many random trials. Clustering and sen-272

sitivity analysis techniques are employed to determine driving structure and features in273

different regions of the performance space.274

3.1 Problem Definition275

3.1.1 Case Study276

This approach is applied to the problem of understanding dynamic agricultural land277

use patterns in the Tulare Basin region of California. In this case study, we use data-278

driven system identification to discover a mathematical function to predict the year-to-279

year change in tree crop acreage for all continuously planted square-mile sections of land280

in the Tulare Basin from 1974 to 2016. This is a human response variable that is of par-281

ticular interest for water resources management because of a strong historical trend to-282

wards tree crops (Figure 3) that has exacerbated groundwater overdraft, especially in283

times of drought (Jasechko & Perrone, 2020).284

3.1.2 Problem Definition285

The state of the system xt is defined as an n-tuple drawn from Rn that includes286

the current and previous state of tree crops (at, at−1, . . . ) and non-tree crops, the lagged287

change of tree-crops (a′t−1, a
′
t−2, . . . ) and non-tree crops since the current change is be-288

ing predicted, and other current and lagged information such as the current crop price,289

agricultural pumping, and surface water deliveries.290
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Figure 2. Schematic of experimental setup and workflow

xt :=
(
at, bt, ct, . . . , at−1, a

′
t−1, bt−1, ct−1, . . .

)
(1)

where at = at−1 +a′t−1. Given the state of the system xt representing all current and291

previous information at a given spatial index, in learning the dynamics of the system we292

aim to predict the annual change in acreage at the same spatial index, a′t, as a function293

of previous changes, current and previous states, and other features:294

Dxt
:=

∆xt
∆t

= F (xt) (2)
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Figure 3. Historical change in crop type in the Tulare Basin, California from 1974 to 2016.

Each grid cell is 1 mi2, and tree crops are defined as in Mall and Herman (2019).

The notation Dxt
is used to refer to the difference in tree crops a′t that would ad-295

vance the tree crop state forward in time, at+1 = at+a
′
t. xt includes lagged responses296

such as Dxt−1
, the response of the previous state at the same index. The problem of learn-297

ing model structure is therefore to determine the function F that maps a given set of298

features to the annual change in state. xt includes potentially high-dimensional infor-299

mation describing the current state and any number of previous states (Lusch et al., 2018).300

When the dynamics of F are unknown, general function forms are initialized randomly301

and trained to approximate system dynamics by learning from observed or measured data.302

We explore two different prediction tasks related to this problem, regression and303

classification. In the regression formulation, models predict the magnitude and direction304

of the annual change in tree crop acreage. In the classification problem, models predict305

the direction of change only - positive, negative, or no change - as displayed under Pre-306

diction Task in Figure 2. Regression is generally considered a more difficult problem as307

functions must predict a continuous value, whereas this classification task requires pre-308

dicting the most likely of three classes.309

3.1.3 Feature Engineering310

Feature data describing land use, water availability, and economics were organized311

into samples to train and test candidate model structures. Land use data was taken from312

the California Pesticide Use Reports, available digitally beginning in 1974 and extracted313

by Mall and Herman (2019). Annual crop type data are taken from 1974-2016 at the square-314
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mile scale for over 3000 grid cells in the Tulare Basin. Water availability data were taken315

from the C2VSim-IWFM groundwater model output representing pumping and deliv-316

ery estimates (Kourakos et al., 2019). Lastly, county-level crop prices were taken from317

the California County Agricultural Commissioner reports, digitized beginning in 1980318

across Tulare, Fresno, Kings, and Kern counties, the four counties represented in the study319

area (USDA National Agricultural Statistics Service - California Field Office, 2019). Crop320

prices were adjusted for inflation using the producer price index for agriculture, based321

on the year 2016, published by the U.S. Bureau of Labor Statistics (U.S. Bureau of La-322

bor Statistics, 2019). A summary of trends for this heterogeneous data set is presented323

in Figure 4.324
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Figure 4. Historical trends in heterogeneous feature data. (A) Tree crop acreage, non-tree

crop acreage, and total acreage planted; (B) Yearly total agricultural water deliveries and pump-

ing; (C-D) Inflation-adjusted prices and total crop values for a selection of crops.

Additional features were included to account for the space-time dependence of the325

problem. Samples were organized such that each grid-cell sample was tagged with its data,326

the previous six years of data, and the same data from each of 5 neighboring grid cells327

in space. Since economic information is only available from 1980 onward and spatially328

distributed at the county scale, this space-time extension was only implemented for land329

and water data. Absolute data, such as the year and location, were excluded from the330

set of features to avoid overfitting. The resulting dimensions of the data were on the or-331

der of 500 predictor variables and 130,000 samples. No explicit dimension reduction steps332

were implemented, primarily to maintain the interpretation of feature variables and their333

eventual use within model structures. Samples were split into 50% training and 50% test,334

and both the features and response variable were standardized to N (0, 1). Other than335

the bias introduced by constructing variables representing temporal lags and spatial neigh-336

borhoods, no empirical or theoretical priors were provided to inform the search.337
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3.1.4 Model Structural Elements338

In addition to the feature variables, the primitive set of functions composing the339

feasible model structures must also be specified. The primitive set includes the math-340

ematical relationships detailed in Table 1:341

Functions

[float] = add([float],[float]) [float] = sin([float])
[float] = subtract([float],[float]) [float] = cos([float])
[float] = multiply([float],[float]) [float] = negative([float])
[float] = divide([float],[float]) [bool] = less than([float],[float])

[float] = if then else([bool],[float],[float])

Constants

(1,[bool]) (RandInt(0,100)/10.,[float])
(0,[bool]) (RandInt(0,100)/1.,[float])

Table 1. The primitive set functions and constants, as defined for both regression and classi-

fication experiments. The space of feasible models is constrained by strong typing. The function

RandInt(a, b) generates a uniform random integer on (a, b).

To include relational and logical operators in addition to mathematical operators342

in the primitive set, the functions are strongly typed, meaning that intermediate vari-343

ables must match data types for the input and output of each component function. Con-344

stants are also defined as either boolean or floating point values as indicated in Table345

1 and appear as terminal nodes in an expression, as do the model inputs (features). Con-346

stants are drawn from a distribution, though the resulting model is deterministic after347

the constants have been generated. However, the distributions themselves can be included348

in the primitive set, allowing the automatic construction of stochastic models (Schmidt349

& Lipson, 2007). In addition, search over the model space can be biased by providing350

a specific set of operators, inputs, or constants as seeds (Schmidt & Lipson, 2009b). By351

defining the primitive set and input space in this way, we ensure that search over the model352

space covers a broad general space of models, including linear and higher-order combi-353

nations of inputs and discontinuous functions.354

3.2 Model Generation355

3.2.1 Search Objectives356

For the regression problem, the performance objective used to train model struc-357

tures is the mean squared error (MSE), a commonly-used error metric that emphasizes358

larger residuals. A baseline performance value for MSE on the response variable—standardized359

to N (0, 1)—is 1.0, which results from using the average prediction (zero) for every sam-360

ple. For a given regressor F : Rn → R1:361

MSEtrain := avext∈Xtrain(D̂xt −Dxt)
2 (3)

–11–



manuscript submitted to

In the classification experiment, the multi-class output is addressed via ensemble362

learning, a common method in genetic programming studies (Espejo et al., 2010). The363

performance objective is the percent of misclassified samples. This is equivalent to 1−364

Accuracy, where accuracy is the percentage of classes predicted correctly. A baseline per-365

formance for misclassification percentage for this application is approximately 0.54, which366

results from predicting the most common class (no change) for every sample. The mis-367

classification percentage can be calculated using the Hamming loss, l(ŷ, y), which takes368

the value 1 for predictions that do not match the response and 0 otherwise. For a given369

classifier F : Rn →{Negative,No Change, Positive}:370

MCPtrain := avext∈Xtrain
l(D̂xt

, Dxt
) (4)

A second objective, model complexity, is formulated and optimized concurrently371

with the performance objectives above using multi-objective optimization. The complex-372

ity metric is taken to be the representation length, a commonly used surrogate for com-373

putational or algorithmic complexity of a model, which in this case is the number of el-374

ements (nodes) in the ordered list representing the model. The complexity value is nor-375

malized by the maximum depth of recursive function calls in Python (90) to roughly match376

the scale and precision of the performance objectives.377

3.2.2 Search Algorithm378

The search over candidate model structures and parameterizations employs genetic379

programming, an evolutionary approach that encodes mathematical expressions in a tree380

structure to support symbolic regression. Mutation and crossover operators act on list381

representations of the models to generate new structures from promising candidates. In382

this study, the mutation operator adds a randomly initialized sub-tree of depth 1-2, and383

single-point crossover randomly selects a location along two separate model element lists.384

Mutation explores the model space by introducing new model structures, and crossover385

exploits the attributes of current models by testing new combinations of existing model386

structures. The mutation and crossover operations can result in invalid models accord-387

ing to the strong typing criteria, where intermediate data types among tree operations388

do not match; these are discarded before evaluation.389

During training, the performance and complexity objectives were both minimized,390

and deterministic crowding was used for model selection (Deb et al., 2002). This has two391

implications: (1) the minimum complexity (maximum interpretability) model is preferred392

among two models with the same performance, (2) if the space of possible models is searched393

exhaustively, the resulting tradeoffs between models should be the minimum complex-394

ity model for a given level of performance. An archive of Pareto-approximate model struc-395

tures is maintained and updated through non-dominated sorting of the archive and pop-396

ulation together among the two objectives. The use of deterministic crowding is intended397

to promote diversity within populations by spacing models out along the Pareto front.398

Diversity is important to promote within populations for a number of reasons, but pri-399

marily to ensure that no single model dominates in all objectives and is used to gener-400

ate all new individuals in the next generation.401

Experiments were run with the Distributed Evolutionary Algorithms in Python pack-402

age, or DEAP (De Rainville et al., 2012), using the UC Davis College of Engineering HPC1403

Cluster with 96 processors. DEAP supports distributed computing, a number of evolu-404

tionary strategies, symbolic regression via genetic programming, and multi-objective op-405

timization. Each population of models is made up of 96 individuals, and each tree is ini-406

tialized randomly with depth 1-3. Trials run for a maximum of 20,000 generations, with407

a stagnation criterion of 2,500 generations. 21 iterations of the training-test split were408

performed. The code to reproduce this study can be found at DOI: 10.5281/zenodo.3887360.409
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3.3 Model Evaluation410

Following the model training, candidate structures are evaluated in three ways: trade-411

offs between performance objectives, model behavior in the metric space, and decom-412

position and sensitivity of the underlying structure and features. The approach to model413

evaluation taken during this phase depends on modeling decisions during problem def-414

inition and model generation. In these experiments, the feature data and primitive set415

together define a combinatorially large space of possible models, creating substantial un-416

certainty that must be acknowledged in the analysis that follows.417

3.3.1 Performance-Complexity Tradeoff418

After evaluating performance on the test set, models are placed in a three-dimensional419

performance-complexity tradeoff, as illustrated under Model Evaluation in Figure 2. Along420

the Pareto front, training error within a given trial will strictly decrease as complexity421

increases. However, as complexity of the model increases, test error can diverge from train-422

ing error if the model overfits. If error performance changes relatively little across a broad423

range of model structures, this is an indicator of equifinality. To investigate this outcome424

further, candidate models can be clustered into groups with similar behavior. Specifi-425

cally, k-means clustering is used to separate models according to training error, test er-426

ror, and complexity.427

3.3.2 Model Decomposition and Sensitivity Analysis428

The collection of Pareto-optimal sets of models constitutes a new high-dimensional429

data set of structured model components and their associated performance metrics. Among430

many network analysis tools for structural and dynamic analysis of graphical models,431

model decomposition is a very simple initial step. The driving structural properties of432

each model—number of metrics, attributes, inputs, functions, and constants—are linked433

to their behavior cluster as described above. Each model is also tested for its sensitiv-434

ity to individual features and their interactions through global sensitivity analysis. Along435

with the assessment of model responses to observed conditions in the training and test436

data, each model is re-evaluated with 1000 samples scaled by the cardinality of its unique437

feature set to ensure sufficient coverage of the sample space. Sobol sensitivity analysis438

is performed using the Python package SALib (Herman & Usher, 2017).439

4 Results440

Figure 5 shows the tradeoff between performance and complexity across the Pareto441

set of candidate model structures for both regression and classification experiments. Each442

point represents the performance of a model on the test data, while the gold shading shows443

the distribution of performance for the same models on the training data. Figure 5 high-444

lights four different regions: Parsimonious, Overfit, Equifinal, and Dominated model clus-445

ters. Initial structure building during each trial occurs in the Parsimonious cluster in both446

Figure 5a and 5b. The Overfit clusters in Figure 5 are highlighted as the regions where447

models begin to rely on spurious structure discovered at any point during the trial and448

maintain a level of robustness on test data. The Equifinal cluster in Figure 5a represents449

a region where multiple model structures exist at roughly the same level of performance.450

The Dominated cluster in Figure 5b represents models that are both equifinal and do451

not generalize well to unseen data.452

These results indicate several points. First, regression trials in Figure 5a exhibit453

better robustness to test data, with most models remaining within the region of the train-454

ing error displayed in the gold background. Classification experiments show diminish-455

ing returns to increasing complexity much faster than regression experiments. Optimiza-456

tion trials are locked into a specific model structure by the development in the Parsimo-457
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Figure 5. Tradeoff between performance (test error) and complexity for model structures

across (A) all regression trials and (B) all classification trials. Light gold shading indicates the

distribution of the same models evaluated on the training data. Models are clustered according to

their behavior in this three-dimensional space (training error, test error, and complexity).

nious clusters; if this structure is developed before enough exploration has happened, it458

may explain why significant overfitting occurs in Figure 5b. Equifinal model structures459

are observed in both cases, as many models with increasing complexity demonstrate sim-460

ilar performance.461

Figure 5b shows model structures with a variety of macroscopic behavior that can462

be investigated further. We proceed with the classification results to determine the drivers463

of behavior in the three highlighted clusters in Figure 5b. The Parsimonious cluster rep-464

resents the initial set of low-complexity models prior to their divergence into either the465
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Overfit cluster or the Dominated cluster, so we examine the structure of three models466

from the Parsimonious cluster that perform well on both training and test data in Fig-467

ure 6.468
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Figure 6. Parsimonious cluster training and test error (B), a selection of robust classifiers

(C-E), and histograms of feature data represented in the models (A). Feature constructions are

annotated as {State/Change | Neighbor 0–5 | Lag 1-5}.

The three classifiers shown in Figure 6 depend on a variety of feature data and con-469

structions. A single construction of the tree acreage change—the previous change in the470

same location—was used by all three classifiers, whereas many different constructions471

of sparsely distributed (mostly zero) and asymmetric water data were used among the472

three models. In two of the models, this construction of tree acreage change occurs mul-473

tiple times. Additionally, the tree acreage change feature tends to occur closer to the out-474

put of models, and is less engineered than the water data as a result. In inspecting in-475

dividual models, the lag-1 tree acreage change is often used directly when appearing near476

the output of models, whereas additional complexity is often used to engineer other fea-477

ture data as nonlinear scaling of the lag-1 tree acreage change.478

Across all model structures, there is a clear dependence on the lag-1 tree acreage479

change, indicating that decision-making agents are informed by past decisions. Lack of480

consensus regarding other feature constructions indicate that these structural connec-481
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tions may be spurious. The distribution of features used in models must be interpreted482

in the context of spatio-temporal resolutions. For example, the lack of consensus on the483

use of economic data could be due to its coarser resolution in space and limited cover-484

age in time, or the inability of the search method to find advantageous structure beyond485

the lag-1 tree acreage change. In this case, we aim to identify the structural drivers sep-486

arating robust models in the Parsimonious and Overfit Clusters from models that do not487

generalize well in the Dominated cluster. First, we start by decomposing the models in488

each cluster into their components to assess the structural differences in the occurrence489

of feature variables and function primitives in each cluster, displayed in Figure 7.490
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Figure 7. Total feature occurrence distributions within each category of inputs by model

cluster (A) and function occurrence (B) across all classification models found during search. In

(A), each feature category holds a number of feature constructions of input data from that cate-

gory, leading to a distribution of total occurrences across all models in a given cluster within each

category of feature data.

For feature variables (Figure 7a), all clusters show a dependence on the group of491

inputs related to tree acreage data (all lagged and neighboring states and values for tree492

crops). The lag-1 tree acreage change in the same location (categorized under Tree Acreage)493

appear in every model across all clusters, indicated by the range of the whiskers at the494

top of Figure 7a. The Overfit cluster contains more instances of inputs from each cat-495

egory as compared to the Dominated and Parsimonious clusters. Almost the opposite496

is true for function occurrence, where the Dominated cluster learns greater function de-497

pendence than the Overfit cluster from the Parsimonious cluster for almost all primitives.498

The Overfit cluster exhibits a more even distribution of function occurrence across prim-499

itives than the Parsimonious and Dominated clusters, suggesting an increase in the di-500

versity of function primitives relative to the Parsimonious cluster. Both the Overfit clus-501

ter and Dominated cluster learn a dependence on the two conditional primitives.502

The occurrence of the features does not by itself describe the response of the model503

output to the values of the features, which is the goal of the sensitivity analysis step. Re-504

sults for total sensitivity indices are presented in Figure 8 as non-exceedance curves for505

two categories, tree acreage and non-tree acreage.506
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Figure 8. Empirical distribution of total-order sensitivity indices for two categories of feature

variables: tree acreage and non-tree acreage, separated by metric space clustering (color).

Both the Overfit and Dominated cluster models show decreased sensitivity to both507

features relative to the Parsimonious cluster, indicating that the original occurrences of508

inputs become less influential as training proceeds. In the case of tree acreage inputs,509

over 70% of sensitivity indices to features in the Overfit cluster were small (ST < 0.2)510

compared to less than 50% for the model structures from the Dominated and Parsimo-511

nious clusters. However, at least 20% of tree acreage inputs to both the Overfit and Dom-512

inated cluster models are high (ST > 0.8), illustrating the existence of a spectrum of513

sensitivities to tree acreage data across the set of models. The transition between learn-514

ing small and large sensitivities to tree acreage data in the Overfit cluster models ap-515

pears to be a unique structural driver of the Overfit cluster’s behavior in the metric space516

for this problem. On the other hand, both the Overfit cluster models and Dominated517

cluster models do not show the same high sensitivities to non-tree acreage data that ap-518

pear in the Parsimonious cluster models.519

This result confirms the conclusion from Figure 7 that previous tree acreage states520

and changes are a main driver for this problem. The results also indicate a partition in521

the information important to the decision problem; since changing from tree crops and522

non-tree crops requires respecializing and alternate scheduling, it runs counter to intu-523

ition to note that over 80% of non-tree crop input occurrences had negligibly small im-524

pacts on the decision to change towards tree crops, and there were very few input oc-525

currences among the Overfit or Dominated model clusters with sensitivity indices greater526

than 0.6.527

Finally, the average total-order sensitivity indices within each category of feature528

variables are displayed across clusters in Figure 9.529

Models from the Overfit cluster exhibit relatively equal sensitivities across all fea-530

ture categories as compared to models from the Parsimonious or Dominated clusters. Fig-531

ure 9 also reveals that models from the Overfit cluster learn to be more sensitive on av-532
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Figure 9. Average total-order sensitivity indices of feature variables across input categories

for each cluster of model structures. In the feature grouping labels, “data” refers to the combina-

tion of state, change, temporal lags, and spatial neighbors for each type of feature.

erage to the prices of tree crops and non-tree acreage data than models from the Dom-533

inated cluster. In general, the behavior that allows models in the Overfit cluster to gen-534

eralize to new data is the incorporation of more occurrences of all categories of feature535

variables, but without becoming too sensitive to individual occurrences from any one cat-536

egory by over-engineering with function structure. However, it is noted that averaging537

across the set of models may obscure the sensitivities of individual models, the distri-538

bution of which is better shown in Figure 8.539

5 Discussion540

There is a distinct need for integrated systems models when descriptions of the phys-541

ical system are incomplete without consideration of the human component (Konar et al.,542

2019; Schill et al., 2019; Herman et al., 2020). This must include feedbacks that may not543

be represented by combinations of existing model structures (Calvin & Bond-Lamberty,544

2018). This study proposes methods to automate the exploration of model structure to545

describe human behavior along the canonical tradeoff between performance and com-546

plexity. In this illustrative case study focused on agricultural land use and water demand,547

no priors or constraints were placed on the space of possible model structures. However,548

enumerating the range of optimal performance with increasing complexity provides con-549

text for any prior-informed solutions that might arise in the same context. The relative550

performance demonstrated here thus forms a basis for the analysis of model structural551

uncertainty (Walker et al., 2003) through casting of models as hypotheses (Beven, 2019).552

These outcomes follow from the quantification of a number of general model evaluation553

goals summarized in Figure 10.554

Generating candidate model structures includes automatic feature selection and555

requires no prior knowledge of the system’s mechanics, constraints, or information re-556

quirements beyond the basic provision of data and primitives (Bongard & Lipson, 2007;557

Schmidt & Lipson, 2009a; Knüsel et al., 2019). Though more concise problem framings558

(e.g. Dobson et al., 2019), generation schemes (e.g. Chadalawada et al., 2020), or post-559

search analysis tools (e.g. Worland et al., 2019) could uncover more specific emergent560

phenomena in the data and resulting models, framing model structural experimentation561

according to this generic framework enables a baseline contextualization of the complex562

integrated systems problem. In this way, a data-driven approach to generating model563

structure could support the design of agent-based or hydro-economic models.564
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Figure 10. Model evaluation phases, general model evaluation goals, the approaches used to

address each goal, and how the assessment was encoded in each approach.

Describing the human decision in this case study was encumbered by two primary565

sources of difficulty: (1) the difficulty of search in combined parametric-structural model566

spaces, and (2) the difficulty when incorporating noisy or incomplete heterogeneous fea-567

ture data appropriate to the temporal and spatial scale of the problem. First, the search568

space of candidate model structures grows combinatorially, making it extremely unlikely569

to identify unique optimal solutions. In this study, the sudden failure to improve in per-570

formance past a given level of complexity in the classification experiment (Figure 5b),571

a saturation often interpreted as convergence, could be driven by a structural boundary572

beyond which improvements could not easily be found. Studies have argued for an up-573

per limit on the description length of a model (Vanneschi et al., 2010) as done in Chadalawada574

et al. (2020), though it is difficult to know without doing an unconstrained search what575

the upper limit should be. Hybrid methods, such as evolutionary strategies to approx-576

imate a gradient, are promising for tractable search in vast model spaces (Conti et al.,577

2018; Miikkulainen et al., 2019). Even when model complexity is considered, black-box578

models do not guarantee interpretability, and the results presented here indicate that more579

strategic analysis can be done to interpret how models are making predictions, such as580

explaining the importance of features and structure in neural networks (e.g. Montavon581

et al., 2018; Worland et al., 2019), and using sensitivity analysis to explicate structural582

dependence in space and time (e.g. Quinn et al., 2019).583

Second, the performance-complexity tradeoff of candidate model structures is tied584

to the choice of feature variables at the appropriate scale, and observed with the nec-585

essary accuracy, to generate acceptable test performance (Höge et al., 2018). This is also586

the case when the relations that would model such data do not exist or are not included587

in the primitive set (Kearns et al., 1994). This study incorporates land use and economic588

data across multiple decades and at a relatively fine spatial resolution to derive a sin-589

gle decision model, which may be better served by developing multiple functions across590

the spatial region. Additionally, while the feature engineering applied to the data helps591

discern the importance of certain autocorrelated structure, it is also obfuscatory, as the592

representation of an agent’s decision-making context using neighborhoods could be im-593

proved upon to further explore spatial dependence while avoiding unnecessary correla-594

tions within samples. The feature data itself may not provide the right signal to adequately595

model the underlying process in this setting, due to noise in measurement or observa-596

tion error, or the choice of inadequate features. However, examining multiple problem597
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formulations allows the comparison of relative performance, as in the regression and clas-598

sification experiments in this study; while classification is the easier problem, it shows599

higher potential for overfitting and may be underrepresenting the complexity in the data.600

Making use of heterogeneous data to identify the model structure of integrated systems601

is not simple or straightforward, but the explanation of decisions made by complex be-602

havioral agents based on multiple sources of information is enabled by the methodolog-603

ical template presented here.604

6 Conclusion605

This study develops an approach to the inference of model structures and param-606

eterizations from data describing human behavior in water resources systems. Three phases607

are considered: problem definition, model generation, and model evaluation, demonstrated608

on a case study of land use decisions in the Tulare Basin, California. No prior model struc-609

ture is assumed, beyond the feature engineering to build a high-dimensional dataset re-610

flecting land use, water use, and crop prices. Results indicate a tradeoff between model611

performance and complexity, with substantial equifinality in model structures that re-612

quire additional diagnostic analysis. To this end, model structures are clustered accord-613

ing to similar behavior, and driving structural features are diagnosed by considering func-614

tion importance and input sensitivity. Specific challenges arise due to identifying spa-615

tially distributed decisions from heterogeneous, multi-sectoral data, generally prevent-616

ing the identification of a single “best” model from the performance-complexity trade-617

off. This provides a basis for analyzing structural uncertainty under broadly-defined prob-618

lem contexts, and a possible path forward for the generation of model components from619

observed data to support integrated representations of human actors in water systems.620
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J. R., & Howitt, R. E. (2009). Hydro-economic models : Concepts , design ,794

applications , and future prospects. Journal of Hydrology , 375 (3-4), 627–643.795

Retrieved from http://dx.doi.org/10.1016/j.jhydrol.2009.06.037 doi:796

10.1016/j.jhydrol.2009.06.037797

Haughton, N., Abramowitz, G., Pitman, A. J., Or, D., Best, M. J., Johnson, H. R.,798

. . . Vuichard, N. (2016). The plumbing of land surface models: Is poor799

performance a result of methodology or data quality? Journal of Hydrom-800

eteorology , 17 (6), 1705-1723. Retrieved from https://doi.org/10.1175/801

JHM-D-15-0171.1 doi: 10.1175/JHM-D-15-0171.1802

Haussler, D., & Warmuth, M. (1993). The probably approximately correct (pac)803

and other learning models. In A. L. Meyrowitz & S. Chipman (Eds.), Founda-804

tions of knowledge acquisition: Machine learning (pp. 291–312). Boston, MA:805

Springer US. Retrieved from https://doi.org/10.1007/978-0-585-27366-2806

9 doi: 10.1007/978-0-585-27366-2 9807

Herman, J., & Giuliani, M. (2018). Policy tree optimization for threshold-based wa-808

ter resources management over multiple timescales. Environmental Modelling809

& Software, 99 , 39-51. Retrieved from https://www.scopus.com/inward/810

–23–



manuscript submitted to

record.uri?eid=2-s2.0-85031504985&doi=10.1016%2fj.envsoft.2017.09811

.016&partnerID=40&md5=b9f887f1108ad06c668352e2fc9e70f4 (cited By812

12) doi: 10.1016/j.envsoft.2017.09.016813

Herman, J., Quinn, J., Steinschneider, S., Giuliani, M., & Fletcher, S. (2020).814

Climate adaptation as a control problem: Review and perspectives on dy-815

namic water resources planning under uncertainty. Water Resources Re-816

search, 56 (2). Retrieved from https://www.scopus.com/inward/record817

.uri?eid=2-s2.0-85081030619&doi=10.1029%2f2019WR025502&partnerID=818

40&md5=402e907ca2b2d2e9a1275d3cc0c4e0e6 (cited By 1) doi: 10.1029/819

2019WR025502820

Herman, J., & Usher, W. (2017). Salib: An open-source python library for sensi-821

tivity analysis. Journal of Open Source Software, 2 (9), 97. Retrieved from822

https://doi.org/10.21105/joss.00097 doi: 10.21105/joss.00097823
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