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Abstract17

We investigate the impact of ocean data assimilation using the Ensemble Adjustment18

Kalman Filter (EAKF) from the Data Assimilation Research Testbed (DART) on the19

oceanic and atmospheric states of the Red Sea. Our study extends the ocean data as-20

similation experiment performed by Sanikommu et al. (2020) by utilizing the SKRIPS21

model coupling the MITgcm ocean model and the Weather Research and Forecasting (WRF)22

atmosphere model. Using a 50-member ensemble, we assimilate satellite-derived sea sur-23

face temperature and height and in-situ temperature and salinity profiles every three days24

for one year, starting January 01 2011. Atmospheric data are not assimilated in the ex-25

periments. To improve the ensemble realism, perturbations are added to the WRF model26

using several physics options and the stochastic kinetic energy backscatter (SKEB) scheme.27

Compared with the control experiments using uncoupled MITgcm with ECMWF ensem-28

ble forcing, the EAKF ensemble mean oceanic states from the coupled model are bet-29

ter or insignificantly worse (root-mean-square errors are 30% to -2% smaller), especially30

when the atmospheric model uncertainties are accounted for with stochastic perturba-31

tions. We hypothesize that the ensemble spreads of the air–sea fluxes are better repre-32

sented in the downscaled WRF ensembles when uncertainties are well accounted for, lead-33

ing to improved representation of the ensemble oceanic states in EAKF. Although the34

feedback from ocean to atmosphere is included in this two-way regional coupled config-35

uration, we find no significant effect of ocean data assimilation on the ensemble mean36

latent heat flux and 10-m wind speed over the Red Sea. This suggests that the improved37

skill using the coupled model is not from the two-way coupling, but from downscaling38

the ensemble atmospheric forcings (one-way coupled) to drive the ocean model.39

Plain Language Summary40

We investigate how combining ocean information accounting for weather processes41

can help us better understand and predict the ocean–atmospheric state of the Red Sea.42

We use a coupled ocean and atmosphere model to assimilate satellite and ship-based ocean43

observations. We assess the performance of the assimilation system using fifty different44

realizations of the atmospheric state and found that it improves the prediction of oceanic45

state compared to using the ocean model alone for assimilation and prediction. This suc-46

cess is because the combined ocean–atmosphere model provides a broader range of pos-47

sible ocean conditions. We also look at how incorporating ocean observation informa-48

tion may potentially impact weather forecasts in the coupled model.49

1 Introduction50

Numerical models have been used to analyze and predict ocean states for decades.51

Realistically configured numerical models can simulate oceanic conditions that are gen-52

erally consistent with observations, but there can be substantial differences when com-53

paring with observations at specific times and locations (Edwards et al., 2015). Even with54

a perfect model, the differences can result from uncertainties of initial conditions, per-55

turbations, parameterizations, and forcings. Because of this, data assimilation (DA) is56

used to constrain the model solutions using observational data, including observation un-57

certainty and model representational error (Edwards et al., 2015).58

The Ensemble Kalman Filter (hereafter EnKF) provides an efficient framework for59

ocean data assimilation (Evensen, 1994). It has gained popularity because of its simple60

conceptual formulation and relative ease of implementation, requiring no derivation of61

tangent linear or adjoint models, with only forward model integration in time (Evensen,62

2003). Furthermore, its computational requirements scale with ensemble size, and so can63

be affordable and comparable with other popular sophisticated assimilation methods (Evensen,64

2003). EnKF based data assimilation systems have been developed for many applica-65

tions. For example, Evensen and Van Leeuwen (1996) assimilated altimeter data in the66
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Agulhas region using a quasi-geostrophic model; Sakov et al. (2012) and Hoteit et al. (2013)67

respectively produced realistic estimates of the ocean circulation in the North Atlantic68

and the Gulf of Mexico; Sanikommu et al. (2020) investigated the impact of atmospheric69

forcing and model physics perturbations using an Ensemble Adjustment Kalman Filter (EAKF).70

In addition to ocean data assimilation, EnKF is used for operational atmospheric assim-71

ilation at the Canadian Meteorological Centre (Houtekamer et al., 2005) among many72

other applications (e.g., Lawson & Hansen, 2004; Leeuwenburgh et al., 2005; Bannister,73

2017).74

A major component of EnKF data assimilation systems is the background error75

covariance estimated from the ensembles (Bannister, 2008a, 2008b; Song et al., 2010).76

EnKFs can suffer from the collapse of the ensemble spread, which unrealistically reduces77

the background error covariance in the data assimilation system (e.g., J. Anderson & An-78

derson, 1999; Hoteit et al., 2002). This is often mitigated using covariance inflation tech-79

niques to increase the ensemble spread to better describe the background covariance (J. An-80

derson & Anderson, 1999; Hoteit et al., 2002; F. Zhang et al., 2004; Whitaker & Hamill,81

2012; Luo & Hoteit, 2012). A more representative approach is to account directly for un-82

certainties in the model, such as the forcing and boundary conditions. Diverse high-resolution83

forcings that represent the uncertainty of the atmosphere are indeed desirable for ocean84

ensemble data assimilation system. Many studies have demonstrated improved forecasts85

and analyses when driving ensemble ocean data assimilation systems with perturbed at-86

mospheric forcing (Lisæter et al., 2003; Evensen, 2004; Wan et al., 2008; Shu et al., 2011;87

Sakov et al., 2012; Karspeck et al., 2013; Penny et al., 2015; Sanikommu et al., 2017, 2019).88

Others investigated the perturbed model physics (Sandery et al., 2014; Brankart et al.,89

2015; Lima et al., 2019), or combined the perturbations of atmospheric forcing and model90

physics (Vandenbulcke & Barth, 2015; K. M. Kwon et al., 2016; Sanikommu et al., 2020).91

A recent study by Sanikommu et al. (2020) performed a detailed analysis of the impacts92

of model physics perturbations and atmospheric forcing on a high-resolution regional ocean93

DA system. The DA experiments improved the forecasts of oceanic states by using mul-94

tiple oceanic model physics and ensemble atmospheric forcing now available from oper-95

ational weather systems.96

Our study takes a step forward toward a fully coupled ocean–atmospheric data as-97

similation system, with application to the Red Sea region. A regional assimilation sys-98

tem is crucial for improving forecasts in the Red Sea due to its unique characteristics in99

terms of both oceanic and atmospheric conditions (Hoteit et al., 2021). The region is prone100

to dust and sandstorms, particularly during the transitional seasons of spring and au-101

tumn, originating from nearby deserts like the Sahara. These storms significantly reduce102

visibility and impact air quality (Prakash et al., 2014). The Red Sea also experiences fre-103

quent temperature inversions, especially in winter, which affect temperature profiles, pol-104

lutant dispersal, and vertical mixing of air masses. The region is influenced by two pri-105

mary wind patterns: the Southwest Monsoon, bringing humid air and thunderstorms,106

and the Northwest Monsoon, bringing drier air (Langodan et al., 2017). A sea breeze107

often develops during the day, cooling coastal areas (Davis et al., 2019). The Red Sea108

warm surface waters contribute to high levels of water vapor, impacting local weather109

conditions and precipitation. The local atmospheric features vary significantly with sea-110

sons, weather patterns, and local geography (Dasari et al., n.d.). The Red Sea holds eco-111

nomic importance and plays a vital role in international trade. Further, the Red Sea cir-112

culation plays a dominant role in modifying the salinity budgets of the western Indian113

Ocean. Global reanalysis often fails to capture the Red Sea circulation features accurately114

due to coarse resolutions and limited observations (Sanikommu et al., 2023a). Develop-115

ing a high-resolution regional reanalysis using local observations and coupled ocean–atmospheric116

data assimilation system would greatly enhance the forecasts in the Red Sea, and this117

is important for many applications in this unique region.118
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In this context, we implement a new ensemble DA system for the Red Sea using119

the Scripps–KAUST Regional Integrated Prediction System (SKRIPS, Sun et al., 2019,120

2023) and the Data Assimilation Research Testbed (DART, J. Anderson et al., 2009).121

This work is an extension of previous DA efforts for the Red Sea (Toye et al., 2017; Sanikommu122

et al., 2020, 2023b), replacing the uncoupled ocean model with the SKRIPS coupled model (Sun123

et al., 2019, 2023). Here we assimilate only oceanic observations using the DART–EAKF124

system and investigate the estimated oceanic and atmospheric states of the Red Sea re-125

gional coupled model, using different options to perturb the physics of the atmosphere126

model. We evaluate the performance of the coupled model in forecasting the oceanic states,127

the impact of atmospheric model physics options on the coupled model, and the feed-128

back of the ocean data assimilation to the atmospheric model. Although we only assim-129

ilate ocean observations in this work, the present study is a step toward developing a weakly130

coupled DA system and operational analysis and forecasting system for the Red Sea. Be-131

cause the random atmospheric states are generated by perturbing the model physics when132

using a coupled model, there is less need to generate large ensembles of atmospheric forc-133

ings (Sanikommu et al., 2023a), enhancing the robustness of the DA system.134

The rest of the manuscript is organized as follows. We first introduce the ensem-135

ble DA system and its implementation in Section 2. The results of the DA experiments136

are presented and discussed in Section 3. The final section outlines the main findings and137

concludes this work.138

2 Implementations and Experimental Design139

2.1 The Data Assimilation Framework140

We use the SKRIPS model (Sun et al., 2019) for the coupled simulation: the oceanic141

model component is the MIT general circulation model (MITgcm, Marshall et al., 1997;142

Campin et al., 2019) and the atmospheric model component is the Weather Research and143

Forecasting (WRF) model (Skamarock et al., 2019). The Earth System Modeling Frame-144

work (ESMF, Hill et al., 2004) and the National United Operational Prediction Capa-145

bility (NUOPC) layer are used to handle the coupling between MITgcm and WRF. The146

schematic diagram of the DART–SKRIPS framework and the domain used in the exper-147

iment are shown in Fig. 1. The ocean data are assimilated using EAKF available from148

the DART–MITgcm package (Hoteit et al., 2013, 2015), aiming to evaluate their impact149

on the ocean and atmosphere states in the coupled system. The ROCOTO workflow (Harrop150

et al., 2017) is used for the management of the pre- and post-processing scripts in the151

developed DART–SKRIPS framework.152

The coupled model is also described in the diagram shown in Fig. 1. In the cou-153

pling process, MITgcm sends sea surface temperature (SST) and ocean surface veloc-154

ity to WRF; WRF sends air-sea flux and surface atmospheric fields to MITgcm, includ-155

ing (1) net surface longwave and shortwave radiative fluxes, (2) surface latent and sen-156

sible heat fluxes, (3) 10-m wind speed, (4) precipitation, and (5) evaporation. The MIT-157

gcm model uses the surface atmospheric variables to prescribe surface forcing, includ-158

ing (1) total net surface heat flux, (2) surface wind stress, and (3) freshwater flux. The159

total net surface heat flux is computed by adding surface latent heat flux, sensible heat160

flux, net shortwave radiation flux, and net longwave radiation flux. The surface latent161

and sensible heat fluxes are computed using the COARE 3.0 bulk algorithm in WRF (Fairall162

et al., 2003).163

2.2 Experimental Design164

To study the impact of ocean data assimilation on the oceanic and atmospheric states,165

we perform a series of 50-member ensemble DA experiments using coupled and uncou-166

pled models starting from January 01 2011, assimilating the observational data every 3167
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Figure 1. The schematic description of the DART–SKRIPS data assimilation system.

Panel (a) indicates the DART–SKRIPS framework: the blue blocks denote the SKRIPS model,

DART, and ocean observations; the yellow block is the ESMF/NUOPC coupler; the white blocks

are the ocean and atmosphere components; the red blocks are the implemented MITgcm–ESMF

and WRF–ESMF interfaces. The arrows indicate the information exchange between DART and

SKRIPS. Panel (b) shows the workflow at three time steps: the thick solid line indicates the

evolution of the “truth”; the dashed line indicates the ensemble averaged forecast; the thin solid

lines indicate the evolution of the ensemble members; the red dots indicate the analysis; the

shaded areas indicate the error covariance; tk, tk+1, and tk+2 indicate three steps when observa-

tional data are assimilated. Panel (c) shows the domain of the coupled model, with the black line

indicating the centerline of the Red Sea.

days. For the coupled model experiments, the ocean and atmosphere models are nested168

in GLORYS and ERA5 reanalyses, respectively. For the uncoupled model experiments,169

the ocean model is also nested in GLORYS, but driven by ECMWF derived atmospheric170

forcing. Further details on the initial and boundary conditions will be discussed in the171

latter sections. The same setup is used for the ocean model, but different options are used172

for the atmosphere in the 50-member ensemble DA experiments:173

1. OCN.daO uses only the ocean model forced by the ECMWF ensemble mean.174

2. OCN.daF uses only the ocean model forced by the 50-member ECMWF ensem-175

bles.176

3. CPL.daO uses the coupled model with no perturbations to the atmosphere.177

4. CPL.daS uses the coupled model with stochastic forcings in the atmospheric model.178

5. CPL.daP uses the coupled model with perturbed physics options in the atmospheric179

model (e.g., microphysics, convection, and planetary boundary layer).180

6. CPL.daSP uses the coupled model with stochastic forcings and perturbed atmo-181

sphere physics options.182

OCN.daO and OCN.daF follow the experiments using the ocean-only models in Sanikommu183

et al. (2020), but without inflation to investigate the changes using the coupled model.184

They also serve as benchmarks to evaluate the performance of the coupled experiments.185

In the coupled DA experiment CPL.daO, although we did not perturb the atmospheric186
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model physics, the randomness of the atmospheric forcing is from the feedback of dif-187

ferent ocean states. Different random seeds are used for the stochastic model in CPL.daS188

and CPL.daSP from 1 to 50. The coupled DA experiments OCN.daS, OCN.daP, and OCN.daSP189

are conducted to assess the effect of different strategies of the atmospheric forcings, and190

thus we did not assimilate the atmospheric observational data in our experiments. Al-191

though the ocean feedback is important in the coupled model, we did not perform DA192

experiments driven by the atmospheric forcings from stand-alone WRF models because193

it is out of the scope of our work.194

2.3 The Forward Models195

The initial conditions, boundary conditions, and forcings are outlined in Table 1.196

The MITgcm initial conditions are obtained from a spin-up run as described in Sanikommu197

et al. (2020), with randomly selecting 50 ocean states corresponding to ±15 days from198

the initial time. The boundary conditions for the ocean are updated by linearly inter-199

polating between the daily data from Global Ocean Reanalysis and Simulation (GLORYS,200

Jean-Michel et al., 2021). For the uncoupled experiments, the atmospheric forcings are201

from the ECMWF atmospheric ensemble from The Observing System Research and Pre-202

dictability Experiment Interactive Grand Global Ensemble project (TIGGE, Bougeault203

et al., 2010), with full details available in Buizza (2014). We combined the fields of the204

00 and 12 UTC TIGGE initial conditions and 06 and 18 UTC forecasts as 6-hourly forc-205

ing for our ocean ensemble assimilation runs. For OCN.daO, we forced the model with206

the ensemble mean of the atmospheric forcings; for OCN.daF, we forced the model with207

the ECMWF 50-member ensembles. In the coupled experiments, ERA5 provides the ini-208

tial and boundary conditions for the atmosphere model, with the atmospheric bound-209

ary conditions updated by linearly interpolating between the 6-hourly fields. Spectral210

nudging is not used in the DA experiments because (1) nudging may constrain the high211

frequency internal variability of the atmosphere model and (2) the domain size is com-212

parable with wavelengths typically used in the spectral nudging simulations (Liu et al.,213

2012).214

We choose the latitude–longitude (cylindrical equidistant) map projection to gen-215

erate the grids for MITgcm and WRF. The domains for both models extend from 10◦N216

to 30◦N and from 30◦E to 50◦E. In the ocean model, the horizontal grid has 500×500217

(lat×long) cells and the spacing is about 4 km; in the atmospheric model, the horizon-218

tal grid has 125×125 (lat×long) cells and the spacing is about 16 km. There are 40 sigma219

layers in the atmospheric model (top pressure is 50 hPa) and 50 z-layers in the ocean220

model (dz = 4 m at the top). The time step of the oceanic model is 200 seconds; the221

time step of the atmospheric model is 25 seconds; the coupling interval is 200 seconds.222

2.4 Model Perturbations223

For the oceanic simulations in all DA experiments, we use various physical param-224

eterization schemes to account for the effects of unresolved scales of motion as proposed225

by Sanikommu et al. (2020), summarized in Table 2. Three different categories of model226

physics are selected: horizontal viscosity, vertical mixing, and horizontal diffusion. We227

include three different horizontal viscosity schemes: the simple harmonic scheme, the sim-228

ple biharmonic of Holland (1978), and the Smagorinsky/Leith scheme (Smagorinsky et229

al., 1993; Griffies & Hallberg, 2000) with the coefficients suggested in the literature (Leith,230

1996; Griffies & Hallberg, 2000). For vertical mixing, four different schemes are included:231

the nonlocal K-Profile Parameterization (KPP) scheme (W. G. Large et al., 1994), the232

PP81 scheme (Pacanowski & Philander, 1981), the MY82 scheme (Mellor & Yamada,233

1982), and the GGL90 scheme (Gaspar et al., 1990). For the horizontal diffusion, we use234

implicit diffusion, simple-explicit harmonic diffusion, and three different flavors of Gent-235

McWilliams/Redi subgrid-scale eddy parameterization schemes (hereafter GMREDI, Gent236

& Mcwilliams, 1990; Gent et al., 1995; Redi, 1982): the GMREDI clipping scheme of Cox237
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(1987), the GMREDI-dm95 tapering scheme of Danabasoglu and McWilliams (1995),238

and the GMREDI-ldd92 tapering scheme of W. Large et al. (1997). Table 2 lists the co-239

efficients used in these schemes.240

We also perturb the physics options in WRF to parameterize microphysics, con-241

vection, and planetary boundary layer (PBL), summarized in Table 3. For the micro-242

physics we use the Morrison 2–moment scheme (Morrison et al., 2009), the Purdue-Lin243

scheme (Chen & Sun, 2002), the Thompson scheme (Thompson et al., 2008), the WRF244

single moment 6-class scheme (Hong & Lim, 2006), and the WRF double moment 6-class245

scheme (Lim & Hong, 2010). For the cumulus convection, we use the Kain–Fritsch scheme (Kain,246

2004), the Betts–Miller–Janjic scheme (Janjić, 1994), the Grell–Freitas Ensemble scheme (Grell247

& Freitas, 2014), the new Tiedtke scheme (C. Zhang & Wang, 2017), and the simplified248

Arakawa–Schubert scheme (Y. C. Kwon & Hong, 2017). For the planetary boundary layer,249

we use the Mellor–Yamada Nakanishi Niino scheme (MYNN, Nakanishi & Niino, 2004,250

2009), the Yonsei University scheme (Hong et al., 2006), and the Mellor–Yamada–Janjic251

scheme (Janjić, 1994). The radiation and land surface schemes are not perturbed: the252

Rapid Radiation Transfer Model for GCMs (RRTMG, Iacono et al., 2008) is used for long-253

wave and shortwave radiation transfer through the atmosphere; the Noah land surface254

model is used for the land surface processes (Tewari et al., 2004). The physics scheme255

perturbation is based on the ensemble forecast system of the Center For Western Weather256

and Water Extremes (CW3E, Oakley et al., 2023). For the experiments without perturb-257

ing the atmospheric model (i.e., CPL.daO and CPL.daS), we use Morrison 2–moment258

scheme, Kain–Fritsch scheme, and MYNN scheme for microphysics, convection, and PBL,259

respectively.260

In addition to perturbing the atmospheric model physics, we used the SKEB scheme (Shutts,261

2005; Berner et al., 2009) to account for the unrepresented uncertainties in the model.262

This scheme adds stochastic, small-amplitude perturbations to the horizontal wind and263

potential temperature. The default amplitudes of the stochastic perturbations in WRF264

were used in CPL.daS and CPL.daSP, which were able to provide more reliable ensem-265

ble spreads (Berner et al., 2011, 2015).266

2.5 Data Used in Assimilation and Validation267

We assimilate data from level-4 SST blended daily product available on a 0.25◦×268

0.25◦ grid (Reynolds et al., 2007; Banzon et al., 2016), along-track satellite altimeter level-269

3 sea level anomalies (SLAs; corrected for dynamic atmospheric loading, ocean tide, and270

long wavelength errors) available from Copernicus Marine Environment Monitoring Ser-271

vice (here after CMEMS-L3, Mertz et al., 2017), and quality controlled in situ glider tem-272

perature and salinity profiles from EN4 data (Ingleby & Huddleston, 2007; Good et al.,273

2013). The in situ temperature and salinity profiles are sparse, and there are only 244274

temperature and 110 salinity profiles in the entire year 2011 from the glider in the Red275

Sea. Errors associated with these observations are assumed uncorrelated, so the obser-276

vational error covariance matrix is diagonal. The combined observation and represen-277

tation error variance is determined based on previous DA experiments (Toye et al., 2017;278

Sanikommu et al., 2020) and accounts for errors due to: measurement devices, omitted279

processes, unresolved subgrid scale dynamics, and numerical errors in interpolation. Tem-280

porally static, partially homogeneous, and depth independent observational error vari-281

ance values of (0.5◦C)2, (0.04 m)2, (0.5◦C)2, and (0.3 psu)2 are then used for satellite282

SST, satellite along-track SLA, in situ temperature and salinity, respectively. A cutoff283

radius of about 300 km was imposed to localize the impact the observations in the hor-284

izontal directly (not in the vertical) as a way to mitigate spurious correlations.285

For validation, we evaluate the daily averaged ocean forecasts and analyses as re-286

sulting from the DA experiments. We first use the assimilated data to examine the time287

series of innovations and residuals. In addition to the assimilated data, independent ob-288
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Table 1. The computational domain, WRF physics schemes, initial condition, boundary condi-

tion, and forcing terms used in the present simulations.

OCN Experiments CPL Experiments

Model region 10◦N to 30◦N; 30◦E to 50◦E

Grid size 500×500
500×500 for ocean

125×125 for atmosphere

Grid spacing 0.04◦ × 0.04◦
0.04◦ × 0.04◦ for ocean

0.16◦ × 0.16◦ for atmosphere

Microphysics scheme

Not necessary

Various (see Table 3)
Convection scheme Various (see Table 3)

PBL scheme Various (see Table 3)
Longwave radiation scheme RRTMG
Shortwave radiation scheme RRTMG

Land surface scheme Noah land surface model

Vertical levels 50 (ocean only)
40 (atmosphere)

50 (ocean)

Initial and
GLORYS (ocean only)

ERA5 (atmosphere)
boundary conditions GLORYS (ocean)

Atmospheric forcings From ECMWF
From WRF

for oceanic model TIGGE product

Table 2. MITgcm model physics parameterizations in the present study.

Horizontal Viscosity Vertical Mixing Horizontal Diffusion

Simple Harmonic (30 m2/s) K-Profile Parameterization Implicit Diffusion
Simple Biharmonic (107 m4/s) PP81 Explicit Diffusion (100 m2/s)
SMAGLEITH-Harmonic (30 m2/s),

MY82 GMREDI-clipping (100 m2/s)
Smag Coeff 2.5, and Leith Coeff 1.85

GGL90 GMREDI-dm95 (100 m2/s)
GMREDI-ldd92 (100 m2/s)

Table 3. WRF model physics parameterizations in the present study. The physics options

used in the experiments without perturbing the model physics (i.e., CPL.daO and CPL.daS) are

highlighted using bold red color.

Microphysics Convection Planetary Boundary Layer

Morrison 2-moment Kain–Fritsch Mellor–Yamada Nakanishi Niino
Purdue-Lin Betts–Miller–Janjic Yonsei University
Thompson Grell–Freitas Ensemble Mellor–Yamada–Janjic
WRF single moment 6-class New Tiedtke
WRF double moment 6-class Simplified Arakawa–Schubert
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servations are used. To analyze the subsurface features, we use 206 profiles of temper-289

ature and salinity collected between September 15 to October 08 2011 by a joint Woods290

Hole Oceanography Institute (WHOI) and King Abdullah University of Science and Tech-291

nology (KAUST) cruise along the eastern part of the Red Sea, collected with a horizon-292

tal spacing of 10 km (Zhai et al., 2015). We also use other satellite products to evalu-293

ate the DA results. For SST we select the high-resolution daily averaged level 4 SST prod-294

uct from the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA, Stark295

et al., 2007; Donlon et al., 2012) because it is mapped differently with higher resolution.296

For sea surface height (SSH) we use multimission altimeter merged satellite level 4 grid-297

ded absolute dynamic topography (ADT) provided by CMEMS (hereafter CMEMS-L4,298

Mertz et al., 2017). Compared with the assimilated CMEMS-L3 data, the CMEMS-L4299

data is gridded on a 0.25◦ grid and thus can be used to estimate the errors across the300

entire Red Sea region. The SSH anomaly from the DA experiments is the instantaneous301

SSH obtained in the simulations minus the time-averaged SSH from the 15-year MIT-302

gcm model in Sanikommu et al. (2020). The SSH anomalies in CMEMS-L3 and CMEMS-303

L4 are the sea level height above the mean surface based on the long-term averaged ob-304

servations between 1993 to 2012. Because of the lack of in situ observational data of the305

atmosphere, we use ERA5 to validate the latent heat fluxes and wind speed simulated306

by the coupled experiments.307

3 Results308

The results obtained from the DA experiments are presented in this section. First,309

we analyze the ensemble spread of the atmospheric forcings and sea surface temperature.310

Then we examine the ocean states (e.g., SST, SSH, and vertical profiles) to assess the311

impact of atmospheric forcings in the uncoupled and coupled systems using the valida-312

tion data. In addition to the ocean states, the air–sea exchanges (e.g., latent heat flux)313

and surface atmospheric states (e.g., wind speed) are also analyzed to illustrate the feed-314

back from the ocean to the atmosphere due to assimilation. Finally, we discuss the changes315

in the ocean dynamics from assimilating the observation data.316

3.1 Ensemble Spread Analysis317

Similarly to the DA experiments in Sanikommu et al. (2020), we hypothesize that318

the estimated ocean states are improved when uncertainties in various sources are well319

accounted for. Incorporating uncertainties in the system improves ensemble spreads in320

the ocean systematically. For instance, Figs. 2 and 3 display the temporal evolution of321

atmospheric forcing root-mean-square (RMS) spread in the DA experiments, except for322

OCN.daO which is forced by the ECMWF ensemble mean. The spread in OCN.daF is323

from the ECMWF ensemble atmospheric forcing; others are from the coupled model out-324

puts. In comparison with OCN.daF, the spread in CPL.daO is smaller by about one or-325

der of magnitude because the atmospheric models are not perturbed and the spread of326

atmosphere is from the ocean perturbations. When the SKEB scheme is applied in CPL.daS327

and CPL.daSP, the spread of the atmospheric forcing is larger than that in OCN.daF,328

which in turn increases the SST spread, shown in Fig. 4. The impact of the atmospheric329

forcings on the ocean states will be detailed in the latter sections.330

3.2 Sea Surface Temperature331

We analyze the SST obtained in our DA experiments to assess its sensitivity to the332

atmospheric perturbations. The root-mean-square-errors (RMSEs) between the SST anal-333

yses and observations in all DA experiments are shown in Fig. 5 and summarized in Ta-334

ble 4. The best SST forecast and analysis are both from experiment CPL.daSP, when335

the SKEB scheme is turned on and the WRF physics options are perturbed. The SSTs336

obtained in the coupled experiments (CPL.daS, CPL.daP, and CPL.daSP; except for the337
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Figure 2. The spatial and temporal evolution of the RMS spread of net surface heat flux Qnet

along the center line of the Red Sea shown in Fig. 1(c). The Qnet is calculated by summing up

the latent heat flux, sensible heat flux, net surface shortwave fluxes, and net surface longwave

fluxes. Panel (a) shows the spread in the ocean-only experiment driven by ECMWF derived forc-

ing; Panel (b-e) show the spread in the coupled experiments with no perturbations, only SKEB,

only perturbed model physics, and SKEB + perturbed model physics, respectively.

benchmark case CPL.daO) are better than that of the uncoupled experiment OCN.daF,338

with improvements more than twice larger than standard error of the mean SST from339

CPL.daSP (about 0.015◦C, the standard deviation of SST divided by the square-root340

of the number of ensemble members). Better improvements are obtained when using only341

the stochastic forcings (CPL.daS) compared with only perturbing the WRF physics (CPL.daP),342

but this difference is less significant (smaller than 0.015◦C). Although the perturbations343

in the atmospheric forcing are small in CPL.daO (shown in Figs. 2 and 3), the RMSE344

errors of SST forecasts and analyses are improved compared to the benchmark exper-345

iment OCN.daO by 0.156◦C and 0.101◦C, respectively. This indicates that small per-346

turbations of the atmospheric forcing can improve SST in the DA experiments.347

Figure 5 shows that the RMSEs of SST forecasts and analyses increase in summer348

for the benchmark runs (i.e., OCN.daO and CPL.daO), but RMSEs get smaller when349

using the coupled model (i.e., CPL.daS, CPLdaP, and CPL.daSP). In this season, the350

SST has a larger spread in all the experiments, similar to the results shown in Sanikommu351

et al. (2020), likely because the ocean is more sensitive to heat fluxes when the mixed352

layer depth is shallower.353

In addition to the assimilated data, we validated the SSTs using the OSTIA SST.354

The RMSEs and correlations are shown in Fig. 6 and summarized in Table. 4. We present355

the SST correlations to evaluate the forecast of the SST evolution during the year. It356

can be seen that the SST obtained in CPL.daSP has larger correlations and smaller RM-357

SEs in the north Red Sea, center Red Sea, and Gulf of Aden regions. Compared with358

the uncoupled experiment OCN.daF, the coupled experiment CPL.daSP has a smaller359

RMSE by 0.035◦C (6.5%, more than twice the standard error). On the other hand, the360
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Figure 3. The spatial and temporal evolution of the RMS spread of 10-m wind speed along

the center line of the Red Sea shown in Fig. 1(c). Panel (a) shows the spread from the ECMWF

derived forcing; Panel (b-e) show the spread in the coupled experiments with no perturbations,

only SKEB, only perturbed model physics, and SKEB + perturbed model physics, respectively.

SST analysis obtained in CPL.daSP has a slightly larger RMSE compared to that ob-361

tained in CPL.daF, but the differences between OCN.daF, CPL.daS, CPL.daP, and CPL.daSP362

are within 0.01◦C (2%). In addition, the CPL.daSP also has the smallest distance be-363

tween the forecasts and analyses RMSEs, indicating less “assimilation shock” and more364

balanced ocean states in the DA experiment.365

3.3 Sea Surface Height366

The SSH fields as estimated in the DA experiments are presented in Fig. 7 and Ta-367

ble 5. Similar to the SST results, the coupled DA experiments exhibit smaller RMSE368

and larger spread. The SSH forecast errors in OCN.daF, CPL.daS, CPL.daP, and CPL.daSP369

are not significantly different. Although CPL.daSP still has the smallest RMSEs, the dif-370

ferences are within 1% and smaller than the standard errors (about 0.001 m). For the371

SSH analyses, on the other hand, the CPL.daS and CPL.daSP are more significantly im-372

proved (RMSEs are smaller by 10% compared with OCN.daF and CPL.daP) when SKEBS373

are used, suggesting that including the stochastic forcing in model parameters is the key374

for improvements. Note that the spread of surface wind forcing shown in Fig. 3 is greatly375

increased when using the stochastic forcing.376

The temporal evolution of the SSH is also examined by comparing with CMEMS-377

L4 data, shown in Fig. 8. Here we only highlight the differences of the SSH analyses be-378

cause the forecasts are close to each other. Figure. 8 shows that the CPL.daSP exper-379

iment has larger correlations and smaller RMSEs in both the Red Sea and the Gulf of380

Aden regions. Similar to the results shown in Fig. 7, when using the stochastic forcings381

in WRF, CPL.daS and CPL.daSP outperform the uncoupled model OCN.daF (see Ta-382

ble 5).383
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Table 4. SST obtained in the DA experiments against the validation data. We highlighted the

best forecast/analysis using red, but the pink color is used when the differences between uncou-

pled and coupled experiments are insignificant (when the RMSE difference is smaller than 5% or

the standard error).

OCN.daO OCN.daF CPL.daO CPL.daS CPL.daP CPL.daSP

Against assimilated data

SST forecast RMSE 0.656 0.486 0.500 0.419 0.426 0.403
SST analysis RMSE 0.475 0.341 0.374 0.281 0.294 0.262

Against OSTIA SST

SST forecast RMSE 0.650 0.574 0.610 0.560 0.551 0.539
SST analysis RMSE 0.486 0.463 0.484 0.468 0.472 0.469
SST forecast correlation 0.9580 0.9623 0.9573 0.9637 0.9628 0.9649
SST analysis correlation 0.9786 0.9805 0.9773 0.9800 0.9788 0.9791

SST forecast spread 0.078 0.080 0.077 0.098 0.095 0.108
SST analysis spread 0.046 0.052 0.048 0.059 0.055 0.062

Table 5. Summary of SSH against the validation data. We highlighted the best fore-

cast/analysis using red, but the pink color is used when the differences between coupled and

coupled experiments are insignificant (when the RMSE difference is smaller than 5% or the

standard error).

OCN.daO OCN.daF CPL.daO CPL.daS CPL.daP CPL.daSP

Against assimilated data

SSH forecast RMSE 0.0646 0.0626 0.0650 0.0624 0.0626 0.0620
SSH analysis RMSE 0.0580 0.0495 0.0578 0.0446 0.0522 0.0433

Against CMEMS-L4 SSH

SSH forecast RMSE 0.0513 0.0486 0.0513 0.0483 0.0494 0.0482
SSH analysis RMSE 0.0461 0.0390 0.0455 0.0356 0.0409 0.0350
SSH forecast correlation 0.9121 0.9197 0.9109 0.9197 0.9168 0.9204
SSH analysis correlation 0.9314 0.9493 0.0320 0.9578 0.9439 0.9590

SSH forecast spread 0.0034 0.0056 0.0036 0.0073 0.0048 0.0076
SSH analysis spread 0.0023 0.0038 0.0024 0.0046 0.0032 0.0047
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Figure 4. The spatial and temporal evolution of the RMS spread of Sea Surface Temperature

along the center line of the Red Sea shown in Fig. 1(c). Panel (a) shows the spread in the ocean-

only experiment driven by ECMWF derived forcing; Panel (b-e) show the spread in the coupled

experiments with no perturbations, only SKEB, only perturbed model physics, and SKEB +

perturbed model physics, respectively.

3.4 Temperature and Salinity Profiles384

The subsurface features of the ocean are validated against independent (i.e. not385

assimilated) CTD observations of temperature and salinity from the WHOI/KAUST sum-386

mer cruise in the Red Sea between September 15 and October 08 2011. The difference387

between daily averaged forecasts and observations is shown in Figs. 9 and 10. More than388

2 degree and 0.8 psu differences are found for temperature and salinity profiles in the389

thermocline between 50–100 m. For the temperature profiles, the RMSE in CPL.daSP (0.361◦C)390

is smaller than OCN.daO (0.408◦C) by about 10%, especially near the ocean surface, but391

within 2% difference compared to OCN.daF, CPL.daO, and CPL.daS. For the salinity392

profiles, the forecast RMSE of CPL.daSP (0.082 psu) is smaller than the benchmark ex-393

periment OCN.daO by about 30%. It is noted that CPL.daP has the smallest RMSE394

for temperature (0.344◦C), but its salinity RMSE is significantly larger (0.122 psu) than395

CPL.daSP. Compared with the ocean-only experiment OCN.daF, the RMSEs in CPL.daS396

and CPL.daSP are not significantly different (within 1% or 2%). Although the coupled397

experiment is no better than the best uncoupled experiment OCN.daF, the results in-398

dicate the stochastic schemes in WRF are crucial for producing better forecasts of the399

ocean profiles.400

3.5 Feedback to the Atmosphere401

To assess the impact of ocean data assimilation on the surface of the atmosphere,402

we compare the latent heat fluxes and 10-m wind speed obtained in the DA experiments.403

This analysis informs feedback to the heat and momentum fluxes. We consider ERA5404

as reference and present the RMSEs of latent heat fluxes and 10-m wind speed in Fig. 11.405

Here we only compare the data on the centerline of the Red Sea to highlight ocean re-406
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Figure 5. Time history of SST RMSEs and spreads during the data assimilation experiment.

Panels (a) and (c) show the RMSEs of the forecasts and analyses against the assimilated data;

Panels (b) and (d) show the spread of SST in the forecasts and analyses. The yellow dots in Pan-

els (a) and (c) indicate the total uncertainty (square root of the sum of ensemble variance and

observational variance (0.5◦C)2) of CPL.daSP.

gions. It can be seen that the RMSEs do not grow significantly with time, showing the407

capability of the coupled system for the 1-year DA experiments. We hypothesize this is408

because the atmospheric states are constrained by the boundary conditions for this rel-409

atively small domain. Compared with the benchmark case CPL.daO, the RMSEs of the410

latent heat flux and 10-m wind speed obtained from CPL.daSP are smaller by about 4%,411

but the RMSE differences are smaller than the standard error, implying the improved412

ocean states may not significantly impact the atmospheric states. Because of the small413

differences in the surface atmosphere, this indicates that for the Red Sea region, the skill414

of the coupled model is not from the two-way coupling, but from the atmospheric forc-415

ings in the downscaled WRF ensembles (one-way coupled) to drive the ocean model.416

3.6 Vertical Current Velocity417

Toye et al. (2017) argued that the dynamical balances (or assimilation shock) in418

the oceanic model from the EAKF increments increase the spread of the Red Sea fore-419

casts. The imbalances are also reported in other EAKF assimilation experiments (L. A. An-420

derson et al., 2000; Hoteit et al., 2010; Park et al., 2018). Here, we investigate the dy-421

namical balances in our experiments by comparing the standard deviation of |w| obtained422

in the DA experiments with the “free” run without assimilating observation data in Fig. 12.423

The results show that the spreads of |w| in all DA experiments are larger than the “free”424

run for the Red Sea region, but there are no significant changes in |w| spread when the425
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Figure 6. SST RMSEs and correlations obtained in the DA experiments validated against

OSTIA. Panels (a) and (b) show the RMSE and correlation of the “forecast” SST. The contours

in column 1 indicate the comparison with OSTIA data; columns 2-5 are normalized by the refer-

ence OCN.daO in column 1 to highlight differences, showing the ratios in percentage.

coupled model is used in comparison with ocean-only model experiments, indicating no426

significant dynamical imbalances.427

4 Summary and Conclusions428

This work implemented a data assimilation framework based on the regional cou-429

pled model SKRIPS and DART. Using the EAKF in DART, we investigate the impact430

of ocean data assimilation on the oceanic and atmospheric states of the Red Sea. The431

coupled system assimilates satellite-based sea surface temperature and height and in situ432

temperature and salinity glider profiles every 3 days for 1 year starting from January 01,433

2011.434

To assess the performance of the ensemble forecasts and examine the generated ocean435

states, we ran a series of experiments using different perturbation schemes. The assim-436

ilation results of the coupled experiments are compared with the uncoupled ones forced437

by ECMWF-derived surface forcing, revealing that the coupled experiments give greater438

spread in the ensembles of ocean states, with the spread continuing to increase when us-439

ing the stochastic kinetic energy backscatter (SKEB) scheme. Compared with the as-440

similated data, the coupled experiments result in a more skillful SST and SSH ensem-441

ble mean forecast. The SST forecasts and SSH analyses in coupled models are also bet-442

ter than uncoupled ones when compared with the independent observational data, but443

the RMSEs of SST analyses and SSH forecasts are insignificantly different.444

We further compared the DA experiment results with the independent cruise ob-445

servation data of temperature and temperature profiles. The comparison shows large vari-446

ations in the temperature profiles because of the challenge in modeling the thermocline447

layer and the lack of in situ data. The RMSEs from the coupled DA experiments with448

perturbations of the atmospheric model are comparable to the uncoupled model driven449

by ECMWF-derived ensemble forcing, and both are better than the benchmark exper-450

iments with small spreads in atmospheric forcings. To investigate the feedback from the451
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Figure 7. Evolution of the SSH RMSEs and spreads during the data assimilation experiment.

Panels (a-b) show the RMSEs of the forecasts and analyses against the assimilated data; Panels

(c-d) show the RMS spread of SSH in the forecasts and analyses. The yellow dots in Panels (a)

and (c) indicate the total uncertainty (square root of the sum of ensemble variance and observa-

tional variance (0.04 m)2) of CPL.daSP.

ocean, we validated the latent heat flux and 10 m winds in all coupled experiments us-452

ing ERA5 data, but no significant difference is observed.453

This study demonstrates that our Red Sea DA system using two-way coupled model454

with WRF performs better or equal to an uncoupled model driven by ECMWF-derived455

ensemble surface forcing, showing a promising approach for forecasting the oceanic states456

or producing ocean analysis data. The dynamical imbalances in the coupled model are457

also not significantly different from the uncoupled model. The DA system implemented458

here explores the utility of a coupled DA system and studies of the ocean–atmosphere459

interactions using the analysis data.460
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