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Abstract

Discerning  the  relationship  between  urban  structure  and  function  is  crucial  for

sustainable city planning and requires examination of how components in urban systems are

organized  in  three-dimensional  space.  The  Structure  of  Urban  Landscape  (STURLA)

classification  accounts  for  the  compositional  complexity  of  urban  landcover  structures

including the built  and natural environment.  Building on previous research, we develop a

STURLA  classification  for  Philadelphia,  PA  and  study  the  relationship  between  urban
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structure and land surface temperature.  Finally,  we evaluate  the results  in Philadelphia as

compared  to  previous  case  studies  in  Berlin,  Germany  and  New  York  City,  USA.  In

Philadelphia,  STURLA  classes  hosted ST that  were unique  and significantly  different  as

compared to all other classes. We find a similar distribution of STURLA class composition

across the three cities, though NYC and Berlin showed strong correlation with each other but

not with Philadelphia. Our research highlights the use of STURLA classification to capture a

physical property of the urban landscape.
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Introduction

Urban  spatial  structure  is  important  to  understanding  urban  social-ecological

interactions and provides a bridge to planning sustainable cities  (Zhou et al., 2017). Urban

structure characteristics including vegetation and other landcover classes influence, and can

be used to estimate ecological functions (Bastian et al., 2014; van Oudenhoven et al., 2012).

However, defining urban structure and key relationships between structure and ecological

processes is challenging in landscapes characterized by variable density and patchy spatial

patterns (Pickett & Cadenasso, 2008). 

While it is well established that urban areas host ecological communities subject to

unique stressors  (Jones & Harrison, 2004; Joyner et al., 2019; Reese et al., 2016) absent in

natural  systems  (e.g  pollution,  high  population  density),  the  influence  of  landscape

heterogeneity is currently unknown. Functional classification of urban structure is necessary

for understanding the nature of social and ecological relationships in urban areas (Cadenasso
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et al., 2007; McPhearson et al., 2016; Zhou et al., 2014). Over the last decade, fine scale

landcover classification for selected urban areas have been developed (MacFaden et al., 2012;

Pickard et al., 2015) that allows more nuanced understanding of urban landcover. While some

functional classification approaches have been suggested (see for example Cadenasso et al.,

2007), still major challenges remain in integration of spatial structure and configuration that

allows automated and unbiased analysis of fine scale relationships between urban form and

process. 

A  major  barrier  for  understanding  the  relationship  between  urban  structure  and

environmental  function  is  the  lack  of  independent  measurement  of  the  fine-scale  spatial

variability  of  the  distribution  of  environmental  and  ecological  variables.  Particularly

important is the vertical dimension and variation of the three-dimensional landscape that is

rarely  addressed  (Alavipanah  et  al.,  2017) in  ecological  studies  Where  independent

measurements exist, such as data from Environmental Protection Agency (EPA) air pollution

monitoring stations or United States Geographical Survey (USGS) water monitoring sites, the

spatial distribution is not sufficient to allow intra-urban analysis. Surface temperature is one

example of a physical property of the urban environment. Landsat thermal bands have been

used in research addressing landcover (Zhou et al., 2011), urban heat island (Rosenzweig et

al., 2009; Zhao et al., 2011), and urban ecosystem services (Schwarz et al., 2011). Likewise,

ST structures patterns of taxonomic and functional biodiversity  (Scherrer & Körner, 2011;

Zogg et al., 1997), hydrology  (Reyes et al., 2018), air quality  (Li et al., 2018; Sillman &

Samson, 1995), and social variables relevant for studies of environmental injustice (Huang &

Cadenasso,  2016;  Zhang et  al.,  2017).  Thus we use  ST as  a  proxy for  a  wide  range of

potential variables of interest.

 To account for the heterogenous vertical dimension of the built enviroment in urban

lanscscape  in  a  reproducable  and  scalable  way,  we  employ  STURLA  classification
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(Hamstead et al., 2016). STURLA has identified patterens of microbial biogeography in the

atmosphere of Philadelphia (J. Stewart et al., 2020), and ST in NYC (Hamstead et al., 2016)

and Berlin  (Kremer et  al.,  2018).  In summary,  the urban landscape  is  characterized  as  a

discrete number composite landclasses that characterize the natural and built envirnment in

Phildelphia, PA, USA. The city is one of the poorest cities in the US, with 26 percent of its

population living in poverty (PEW, 2017). It is also one of the most segregated cities in the

US, with African American and Asian populations concentrated in neighborhoods in West

and North Philadelphia respectively (The Brookings Institution, 2003). The city’s population

peaked in 1950 with over 2 million people, and was declining until 2010 when is started

growing  again.  Recently,  Philadelphia  is  experiencing  strong  ,  yet  uneven  economic

resurgence reflected in job growth and rising housing prices (PEW, 2017). 

Philadelphia’s urban structure emerged through the evolution of its original plan, laid

out by William Penn in 1643. It has a gridded layout with mostly low and mid-rise residential

buildings. A long time “gentleman’s agreement” kept Penn’s statue on top of city hall as the

highest building in the city, preventing high-rise development for decades until the 1980s.

The most common residential  structures in the city are rowhouses. Rowhouses commonly

occupy a narrow street frontage and are attached to other homes on both sides  (Simmons

Schade et al., 2008). Aside from the build environment, green space in the city includes 19%

tree cover and 24% grass-shrub cover that are distributed unevenly across the city with some

neighborhoods densely vegetated and others with little  to no green space  (O’Neil-Dunne,

2011). Part of the city’s sustainability plan, Greenworks Philadelphia, includes a goal of tree

canopy  cover  of  30% in  all  city  neighborhoods  by  2025  (City  of  Philadelphia,  2015a).

However, until recently, the only publicly available data for a comprehensive analysis of the

city’s green space has been NLCD landuse-landcover datasets that do not have the spatial

resolution and functional  categories  required to identify  small  and fragmented  patches  of
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green in the city.  In 2011, a fine scale dataset of Philadelphia landcover has been released

(City  of  Philadelphia,  2011) that  is  used  here  as  the  basis  for  the  STURLA.  Empirical

evidence from two cities, Berlin and New York City (NYC), were compared (Larondelle et

al.,  2014) and  more  detailed  analysis  of  within  class  and  neighborhood  effects  were

performed in a Berlin case study (Kremer et al., 2018).

The objectives  of  this  short  study were to  identify  if  STURLA could  explain  the

variation of urban structure in a new model city (Philadelphia), and quantify this variation

using a  physical  propoerty of  the  environment  (ST).  Results  suggest  STURLA identifies

common urban structure  units  that  encompass  the  majority  of  the  variation  in  the  urban

landscape strucutre. Moreover, when correlated to surface temperature, these common urban

structure classifications exhibit distinct temperature signatures for different urban structure

units  with  temperature  trends  dramatically  similar  between  Berlin  and  NYC.  Here,  we

contribute  to  the  developing  literature  on  the  urban  structure-function  relationship  using

STURLA by adding a third case study city of different , Philadelphia, and comparing the

results to previous studies. 

Materials and methods

Study area

Philadelphia is the sixth largest city in the nation with a city population of 1.6 million

inhabitants  (U.S. Census Bureau, 2016) and hosts an average population density of 30,297

inhabitants  per  square  kilometer.  It  is  located  at  the  confluence  of  the  Delaware  and

Schuylkill rivers on the eastern border of Pennsylvania with the Appalachian Mountains to

the west and the Atlantic Ocean to the east. The city has a total area of about 370 km2 of

which 350 km2 are land and the rest, water. 
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Pre-processing urban landscape structure data 

To construct the urban structure dataset, we used a 2008 1-meter resolution land cover

dataset (City of Philadelphia, 2011), The Property Assessment dataset from the Philadelphia

Office of Property Assessment  (City of Philadelphia, 2015b) indicating number of floors in

buildings for each tax lot in the city in tabular format, and the Philadelphia Department of

Water parcels dataset. We joined the property assessment tabular data to the parcels dataset

using unique parcel IDs and created a 1-meter resolution raster dataset from the Number of

Floors field in the Property Assessment dataset. Number of floors were classified into three

categories: lowrise (1–3 stories), midrise (4–9 stories) and highrise (>9 stories) (Larondelle et

al., 2014; I. D. Stewart & Oke, 2012). We then combined it with the land cover raster dataset,

by replacing all building land cover pixels with a value representing building height category

to create our basic urban structure dataset. 

Constructing the STURLA classification

We constructed a 120 m grid aligned to the Landsat surface temperature dataset and

derived STURLA classes as the presence of all land cover and building height types that fell

within each grid cell.  Following Hamstead et al. (2016) we used a zonal statistics tabulate

area operation to compute the area of each land cover or building height category within each

cell. Finally, we generated and assigned a STURLA class variable for each grid cell. 

Comparison of STURLA classification results from current and previous studies 

Permutational  t-tests  with  Bonferroni  correction  were  used  to  test  for  differences

between cities in STURLA classes. The permutational t-test was used because we test data

representing the population rather than a sample. The null hypothesis of the permutational t-

test  is  that  STURLA  class  composition does  not differ between  the  cities.  Permutational
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Pearson  correlations  were  conducted  to  determine  if  the  cities  distribution  of  STURLA

classes  were  similar  between  cities.  These  tests  were  conducted  in  R using  the  package

“RVAideMemoire” (Hervé, 2020). 

Surface Temperature Processing

Surface temperature was obtained from Landsat 7 thermal band 6(1). We obtained

monthly composite data for the month of July 2010 from the Global Web-enables Landsat

Data  (WELD)  website.  Each  monthly  composite  image  is  normally  a  composite  of  two

Landsat scenes because LANDSAT returns to any single location every 16 days. Using a

composite scene helps address the Landsat 7 scan line corrector error. WELD data is terrain-

corrected  and  radiometrically  calibrated  Landsat  data  (Roy  et  al.,  2010).  Top-of  the  -

Atmosphere  reflectance  was  converted  to  surface  temperature  followed  the  methodology

detailed in Kremer et al. (2018) in processing surface temperature. 

Analysis of class surface temperature

We computed  the  mean,  min,  max and standard  deviation  of  surface  temperature

pixels that fell  within each cell  of the STURLA grid using zonal statistics (Table 1) and

joined  these  results  with  the  STURLA class  variable.  Averaging  was  necessary  because

Landsat 7 thermal bands are resampled to 30 meters for distribution (Roy et al., 2010) while

the STURLA grid is 120 m. Thus, we averaged sixteen 30 m pixels that fell within each 120

m cell. Similar to Hamstead et al. (2016) and Larondelle et al. (2014) we focused the class

temperature analysis on the most frequently occurring classes, which cumulatively comprise

90% of the city’s land area. As done with comparison of STURLA classes between cities,

permutational  t-tests  with  Bonferroni  correction  were  employed  to  test  significance.

Likewise, the null hypothesis of the permutational t-test is that ST does not differ between the

STURLA classes.
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Results 

The  most  prevalent  composite  class  in  Philadelphia  contains  trees,  grass,  paved

surfaces, and low rise buildings (‘tgpl’) (Table 1). The ‘tgpl’ class accounts for about 57% of

total city area and can be found in all parts of the city and was largely homogenous in spatial

distribution  (Figure 1A).  The second largest  class,  ‘tgplm’ at  8.5% of the area,  which is

similar to ‘tgpl’ except it includes midrise buildings, is concentrated in the center of the city

and along a few main corridors to the North and West. STURLA classes were able to identify

the role of urban structure influencing ST (Figure 1B). Classes generally hosted ST that were

unique (Figure 1B) and significantly different (Table 2) compared to all other classes with the

exception of ‘tgbp’ with similar ST values to ‘tgwp’ and ‘tgwpl’. 

The prevalence and distribution of the STURLA classes in Philadelphia differs from

what we found in previous studies of urban structure NYC and Berlin (Figure 2). In Berlin

and NYC,  ~1/3 of the landscape can be explained by one highly composite STURLA class.

Another difference between the results in Philadelphia and previous studies is the number of

classes that cumulatively explain 90% of the area of the city. Ten classes covered 90% of the

area of Philadelphia while the same number of classes only covered 79% of the area of New

York City and 68% of the area in Berlin. Despite these differences, pairwise comparison of

each city revealed that STURLA class proportions were not significantly different between

the cities (all p>0.05) Still, Berlin and NYC were highly correlated (r2=0.952, p<0.05) while

Philadelphia remained unassociated to the other cities (both r2 > 0.1, p>0.05). 

Due to the compositional nature of a STURLA cell where the relative proportions of

all elements sum to one Figure 2 shows provides an example compositional variability within

the most common class in Philadelphia ‘tgpl’ using six grid cells taken from a larger city-
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wide random sample. The different grid cells and corresponding satellite imagery show the

different types of buildings and proportion of each element of the class, trees, grass, paved

surfaces, and low-rise buildings, can vary greatly from one another but still fall into the class.

Most grid cells from the ‘tgpl’ class show row houses or single-family detached houses since

they fall within the size parameters of low-rise buildings (1-3 stories). 

Discussion:

One of the main limitations of STURLA classification is the presence/absence nature

of  class  assignment.  If  the  STURLA  grid  were  shifted  it  would  change  the  relative

proportions of the within class elements (e.g. trees decrease). Despite this variation, STURLA

classes are a discrete countable number and have a Poisson distribution. Thus, the ranked

order abundances of different STURLA classes should not vary in the most frequent classes.

For example,  since ‘tgpl’ is common in Philadelphia, a reduction in a large number of ‘tgpl’

classes  in  the  city  would  be  relatively  less  influential  than  additions/reductions  of  an

uncommon class. 

STURLA captured urban structure and characterized the physical property of ST in

Philadelphia as previously done in NYC (Hamstead et al., 2016) and Berlin  (Kremer et al.,

2018),  despite  variation  in  size,  demography,  and  historical  planning.  This  suggests  that

urban areas may be subject to similar processes that result in between city-redundant spatial

organizations  (Votsis  &  Haavisto,  2019).  Likewise,  STURLA  may  be  suited  for

understanding urban biogeography, environmental justice, and city planning for a sustainable

future. Global analyses of cities may also identify clusters of urban areas that would benefit

from  similar  management  practices.  Likewise,  STURLA  offers  a  computationally

inexpensive alternative to network analyses of urban structure (Zhong et al., 2014). 
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Conclusion

In this paper we demonstrate the application of STURLA classification to quantify the

relationship between urban structure and surface temperature in Philadelphia. We show it can

be applied to cities  with different historical  patterns  of growth in a reproducible  manner.

Furthermore,  patterns  in  class  abundance  and composition  can  be  used  to  determine  the

surface temperature signature of a composite  landscape.  Additional  research is  needed to

compare cities  of vastly different  urban structure and identify patterns  in the relationship

between  urban  structure  with  social  and  ecological  properties  of  the  environment.

Understanding general urban structure-environmental function relationships will help build

tools for effective urban planning and management under global change scenarios. 

Table 1: 10 most common STURLA classes in Philadelphia and their ST statistics. STURLA

class  codes:  t-trees;  g-grass;  b-bare  soil;  w-water;  p-paved;  l-low  building;  m-medium

building

Class %  of

total

%

cumulative

Mean ST C Min ST C Max ST C

tgpl 57.44 57.44 26.95 25.01 28.79

tgpl

m

8.55 65.99 27.95 25.89 29.93

tgp 7.39 73.37 23.86 22.10 25.75

tgwp 4.36 77.73 22.72 20.77 24.75

w 2.92 80.65 18.34 17.85 19.03

tgwp 2.57 83.22 24.83 22.41 27.29
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l

tgbp

l

2.46 85.69 26.31 24.16 28.60

tg 1.94 87.63 20.42 19.37 21.62

tgw 1.42 89.05 20.37 19.16 21.69

tgbp 1.29 90.34 24.68 22.81 26.64

Table 2. P-values with Bonferroni correction from pairwise permutational t-tests (n=999) of

ST values  for  the  top  ten  STURLA classes.  Bold  values  indicate  statistical  significance

(p<0.05). 

Class tgpl tgpl

m

tgp tgw

p

w tgw

pl

tgbp

l

tg tgw tgb

p

tgpl 0

tgpl

m

0.02 0

tgp 0.02 0.02 0

tgwp 0.02 0.02 0.02 0

w 0.02 0.02 0.02 0.02 0

tgwp

l

0.02 0.02 0.02 0.02 0.02 0

tgbp 0.02 0.02 0.02 0.02 0.02 0.02 0
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l

tg 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0

tgw 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0

tgbp 0.02 0.02 0.02 3.74 0.02 4.02 0.02 0.02 0.02 0
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Figure  1.  A.  Spatial  distribution  of  STURLA  classes  B.  Spatial  distribution  of  ST  in

Philadelphia. C. STURLA classes, mean % landcover of individual components, and mean

ST for Philadelphia. STURLA class codes: t-trees; g-grass; b-bare soil; w-water; p-paved; l-

low building; m-medium building
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Figure 2: Example of the composition of STURLA grid cells of the most common STURLA

class  in  Philadelphia  'tgpl'.  STURLA ‘tpgl’  cells  are  shown next  to  corresponding  areal

imagery.  
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