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Abstract 17 

Wildfire is common across the pan-Arctic tundra. Tundra fires exert significant impacts on 18 

terrestrial carbon balance and ecosystem functioning. Interactions between fire and climate 19 

change can enhance their impacts on the Arctic. However, the driving mechanisms of tundra fire 20 

occurrences remain poorly understood. This study focuses on identifying key environmental 21 

factors controlling fire occurrence in Arctic tundra of Alaska. Our random forest models, 22 

considering ignition source, fuel, fire weather, and topography, have shown a strong predictive 23 

capability with an overall accuracy above 91%. We found cloud-to-ground (CG) lightning 24 

probability by far the dominant driver controlling tundra fire occurrence. Warmer and drier near-25 

surface weather was required to support burning, while fuel composition and topography have 26 

modest impacts on fire occurrence. Our results highlight the critical role of CG lightning in 27 

driving tundra fires and that incorporating lightning modeling is essential for fire monitoring, 28 

forecasting, and management in the Arctic. 29 

Plain Language Summary 30 

Wildfire is a dominant disturbance agent that drives ecosystem change, climate forcing, and 31 

carbon cycle in Arctic tundra. Tundra fires can exert a considerable influence on the local 32 

ecosystem functioning and contribute to climate change. However, the drivers and mechanisms 33 

of tundra fires are still poorly understood. Research on modeling contemporary fire occurrence in 34 

the tundra is also lacking. Here we examined the key environmental factors that drive tundra fire 35 

occurrence with numeric weather prediction and statistical models. We found that tundra fire 36 

occurrence is primarily controlled by cloud-to-ground lightning. Warmer and drier fire weather 37 

conditions also support burnings in the tundra. We recommend the integration of lightning 38 

modeling with numeric weather prediction model for fire monitoring and forecasting in the data-39 

scarce regions like the Arctic. 40 

1 Introduction 41 

Wildfire plays an essential role in altering ecosystem functioning, driving land cover 42 

change, and affecting carbon balance in boreal forest and tundra ecosystems (Bret-Harte et al., 43 

2013; Mack et al., 2011; Randerson et al., 2006; Rocha and Shaver, 2011; van Wees et al., 2021; 44 

Wang et al., 2021). Though typically less severe than the boreal forest fires, tundra fires are 45 

widespread across the pan-Arctic region. Particularly, Alaskan tundra burns more than any other 46 

tundra region across the globe, according to satellite-based observations (He et al., 2019; Loboda 47 

et al., 2017). In recent years, several large fire seasons have occurred in Alaskan tundra, 48 

including the 2010 fire season in the Noatak River Valley, the 2015 fire season in Southwest 49 

Alaska, and the now infamous extreme 2007 Anaktuvuk River fire on the North Slope.  50 

Tundra fires can lead to shrub expansion, alter organic soil properties and affect the 51 

surface energy budget in the local ecosystems (Bret-Harte et al., 2013; Frost et al., 2020; He et 52 

al., 2021; Rocha and Shaver, 2011). They also have the potential to release the ancient carbon 53 

stored in the frozen organic soil and cause widespread permafrost degradation and thermokarst 54 

development (Jones et al., 2015; Mack et al., 2011). Moreover, habitat suitability and forage 55 

availability for numerous wildlife species, e.g. caribou, are threatened by such fires, affecting the 56 

living resources of local human societies (Gustine et al., 2014; Joly et al., 2012). Under the rapid 57 

climate warming in the Arctic, the tundra could become more vulnerable to burnings due to the 58 

increased danger of lightning activity and extreme fire weather (French et al., 2015; McCarty et 59 
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al., 2021; Young et al., 2017), which will threaten permafrost carbon and result in substantial 60 

feedbacks into regional to global climate systems, and circumpolar indigenous and nonnative 61 

communitites (Bogdanova et al., 2021; Chen et al., 2021; Forbes, 2013; Hu et al., 2015). 62 

However, tundra fires attract less scientific attention compared to fires in other ecosystems. 63 

Current research primarily focuses on evaluating post-fire impacts with comparatively little 64 

attention to understanding driving mechanisms and modeling tundra fire occurrence.  65 

Fire occurrence results from a combination of ignition and propagation. Cloud-to-ground 66 

(CG) lightning and, to a lesser extent, human activity (due to minimal human presence) are the 67 

primary ignition sources in tundra ecosystems. Three types of forces generally control fire 68 

propagation: fuel, weather, and topography, as summarized by the “Fire Environment Triangle” 69 

(Pyne et al., 1996). Fuel type, representing properties of the fuel itself, and fuel moisture state, 70 

related to vegetation moisture content, are critically important factors controlling fire-71 

environment interactions by affecting fuel flammability and fire characteristics. Topography also 72 

influences fire propagation directly by altering wind patterns or upslope preheating, and 73 

indirectly by controlling fuel moisture state through exposure to sunlight and moisture pooling. 74 

Finally, fire weather is frequently the dominant contributor to wildfire occurrence across 75 

different temporal scales through impacts on fuel moisture state and ignition source. Various fire 76 

danger rating systems, that implicitly or explicitly bundle weather impacts on fuel moisture, have 77 

been developed to capture the broader impact of weather on expected fire growth and quantify 78 

the potential fire risk. Specifically, the National Fire Danger Rating System (NFDRS) 79 

implemented in the US and the Canadian Forest Fire Weather Index System (CFFWIS) are the 80 

best known and most broadly used in the high northern latitudes (HNL).  81 

Previous studies in the HNL have not reached a consensus regarding the relative impacts 82 

of various environmental factors on wildfire occurrence. The majority of the existing studies 83 

focused on the boreal forests when examining the environmental drivers of wildfire behaviors. 84 

Liu et al. (2012) found out that lightning-ignited fires were controlled by fuel moisture and 85 

vegetation type in the boreal forests of Northeast China. While studies in North America 86 

emphasized the impacts of atmospheric stability, count of lightning strikes, and dry weather on 87 

boreal forest fires (Peterson et al., 2010). Veraverbeke et al. (2017) suggested that lightning 88 

activity explained the burned area trends in the boreal forests of North America during recent 89 

large fire years. Though lightning characteristics like polarity and peak current were found 90 

significant in modeling fire occurrences (Müller and Vacik, 2017; Vecín-Arias et al., 2016), they 91 

did not function as major contributors in other studies (Adámek et al., 2018; Pineda et al., 2014).  92 

Nevertheless, these findings in the boreal forests are not readily transferrable to the 93 

treeless tundra, as the land-atmosphere interactions differ substantially between the two 94 

ecosystems (Chambers et al., 2005; Dissing and Verbyla, 2003; Jiang et al., 2015; Van 95 

Heerwaarden and Teuling, 2014). Previous studies have modeled historical or future tundra fire 96 

regimes with ecosystem or statistical models (Higuera et al., 2011; Joly et al., 2012; Sae-Lim et 97 

al., 2019; Young et al., 2017). Specifically, Young et al. (2017) modeled future fire occurrence 98 

probability in Alaska accounting for climate and landscape features. Masrur et al. (2018) found 99 

that warm and dry conditions affect the spatiotemporal patterns across the circumpolar Arctic 100 

tundra. Yet, efforts on examining the driving mechanisms and contemporary modeling of fire 101 

occurrence have been lacking in the tundra ecosystems in existing research. Critical factors such 102 

as lightning, were not considered in these studies. 103 
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This study investigates the key environmental factors controlling fire occurrences in 104 

Arctic tundra via contemporary modeling during 2001 – 2019. We defined the wildfire 105 

occurrence as the start of an individual fire event detected by satellite sensors. We developed an 106 

empirical-dynamical framework to predict the fire occurrence probability by combining 107 

numerical weather prediction (NWP) and machine learning models. We considered factors that 108 

control wildfire behaviors, including fuel, fire weather, topography, and ignition source. 109 

2 Materials and Methods 110 

2.1 Data and variable preparation 111 

2.1.1 Wildfire occurrence detection in Alaskan tundra 112 

We defined the extent of Arctic tundra in Alaska with the commonly used Circumpolar 113 

Arctic Vegetation Map (Walker et al., 2009). MODIS Thermal Anomalies/Fire locations product 114 

(MCD14ML; Giglio et al., 2003) was chosen to determine the locations and dates of fire 115 

occurrences. We first identified individual fire events with MCD14ML data based on its 116 

consistent information of active fire points. We designed a spatiotemporal clustering method 117 

designed based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN; 118 

Ester et al., 1996) algorithm (Text S1; Figure S1). The maximum distance between two 119 

neighboring fire points in a cluster was set to 2.5 km (Loboda and Csiszar, 2007). Since fire 120 

events that occurred during different time periods could be grouped into the same cluster, we 121 

further separated points of different fire events in a spatial cluster with a temporal gap of 4 days, 122 

as suggested by Loboda and Csiszar (2007). The locations and dates of the active fire points with 123 

the earliest acquisition time were then extracted to represent the tundra fire occurrences. 124 

2.1.2 CG lightning and fire weather simulation with WRF 125 

CG lightning strikes and fire weather conditions are important factors affecting fire 126 

behaviors and are highly dynamic across space and time. Due to the lack of weather stations and 127 

very coarse resolution of climatology data in the remote tundra region, we adopted the Weather 128 

Research and Forecast (WRF) model as a downscaling tool to simulate CG lightning probability 129 

and near-surface weather conditions at 5km resolution. We used the National Centers for 130 

Environmental Prediction Final Operational Global Analysis data (NCEP FNL; National Centers 131 

for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce, 132 

2000) at 1-degree resolution and 6-hour interval for model initialization. We ran two-way nested 133 

simulation for Alaska following the parameterization settings from He and Loboda (2020).  134 

Considering the computing complexity of WRF, we sampled years with different fire 135 

season severities between 2001 and 2019 and ran WRF simulations for all the detected fire 136 

events from these years for further modeling efforts. We adopted the empirical-dynamical 137 

modeling framework developed by He and Loboda (2020) to model the probability of CG 138 

lightning strikes using WRF simulated variables and random forest (RF) algorithm. CG lightning 139 

probability was then used as input data for representing ignition sources of wildfires. To describe 140 

fire weather conditions that affect burnings in the tundra, we extracted near-surface weather 141 

conditions, including air temperature, relative humidity (RH), wind speed, and 24-hr 142 

precipitation. We then calculated the Canadian Forest Fire Weather Index System (CFFWIS; 143 

Van Wagner, 1987) using WRF-simulated variables. The CFFWIS tracks the moisture content of 144 

distinct fuel layers with three fuel moisture codes – Fine Fuel Moisture Code (FFMC), Drought 145 
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Moisture Code (DMC), and Drought Code (DC). The three fire behavior indices – Initial Spread 146 

Index (ISI), Buildup Index (BUI), and Fire Weather Index (FWI) – provide numeric ratings of 147 

the fire spread process. Though not explicitly designed for the tundra, this system is suitable for 148 

describing fire weather conditions and quantifying fire danger in the ecosystems of the HNL 149 

(French et al., 2015; Mölders, 2010).  150 

2.1.3 Fuel and topographic properties 151 

We used the fractional cover maps of major fuel components across Alaskan tundra (He 152 

et al., 2019) to represent fuel type distribution. Here we considered three fuel components, 153 

namely woody, herbaceous and nonvascular fuels. Four vegetation indices that are directly 154 

related to leaf water content were adopted as estimates of fuel moisture state for large-scale 155 

monitoring (Yebra et al., 2008), including two Normalized Difference Infrared Indices using 156 

MODIS bands 6 and 7 (NDII6 and NDII7; Hardisky et al., 1983), Normalized Difference Water 157 

Index (NDWI; Gao, 1996), and Global Vegetation Moisture Index (GVMI; Ceccato et al., 2002). 158 

We computed these indices using the MODIS 8-day surface reflectance data (MOD09A1; 159 

Vermote et al., 2015) for our study area (Table S1). The 5m Digital Elevation Model (DEM) data 160 

developed with airborne Interferometric Synthetic Aperture Radar (IfSAR) data for Alaska was 161 

then used to extract topographical features, including elevation, slope, aspect, and roughness.  162 

2.2 Tundra fire occurrence modeling 163 

Five groups of influencing factors were used as independent variables for modeling 164 

tundra fire occurrence: fuel type, fuel moisture state, fire weather, topography, and ignition 165 

source (Figure S2). Fire weather, ignition source (CG lightning probability), and fuel moisture 166 

state are weather-related conditions and can change rapidly on a daily basis throughout a short 167 

period. Although vegetation shifts and fuel type transitions can occur from years to decades 168 

under disturbances or climatic variability and change, the vegetation compositions and fuel type 169 

distributions are relatively stable without substantial seasonal or diurnal changes.  170 

To fully understand how these dynamic weather-related variables affect the probability of 171 

tundra fire occurrence, we developed two types of models, referred to as “Current-day model” 172 

and “Previous-day model”. Here we categorized the ignition source, fire weather and fuel 173 

moisture state as “dynamic” variables considering their temporal variabilities during fire seasons. 174 

While topographic properties and fuel type distributions were considered as “static” variables. 175 

The two types of models selected the dynamic variables on different dates as independent 176 

variables. The “Current-day model” adopts the dynamic variables simulated on the exact dates of 177 

fire occurrence, while the “Previous-day model” uses those extracted from the dates before the 178 

detected fire occurrence. Fire occurrence points detected in Section 2.1.1 were used to represent 179 

the presence of “Fire” events. We randomly sampled points across the tundra regions on the 180 

same fire ignition dates to represent “No Fire” events. 181 

Empirical models were then developed with both the RF classification and logistic 182 

regression algorithms to identify the key factors driving tundra fire occurrence and quantify their 183 

impacts. Although RF algorithms can provide relative rankings of variable importance in 184 

predicting the dependent variable, they are limited in showing the quantitative relationships 185 

between each independent variable and fire occurrence probability. We therefore developed 186 

logistic regression models as well, to quantify the impacts of environmental factors. Before 187 

modeling, we tested the correlations of variables among the five groups of environmental factors 188 
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using Pearson’s r correlation and removed the highly correlated ones. For both RF classification 189 

and logistic regression models, 70% of the records were randomly selected for model training, 190 

and the rest 30% were reserved for validation. Welch’s t-test was also conducted to assess the 191 

differences of environmental factors between “Fire” and “No fire” events across the study area. 192 

3 Results 193 

3.1 Wildfire occurrences in Arctic tundra of Alaska  194 

Individual fire events were first identified using the MCD14ML data between 2001 and 195 

2019 (Figure 1). The occurrences of wildfire events vary across space in Arctic tundra of Alaska. 196 

The majority of the fires occurred in Southwest Alaska (~39.62%), followed by the North Slope 197 

(~36.92%) and the Seward Peninsula (~23.46%). A slightly increasing trend of tundra fire 198 

occurrences was found during the study period (Figure 1 b). Temporal variability also exists 199 

regarding fire season severity, as indicated by the number of annual fire events. During 2001 and 200 

2019, thirteen years have relatively low fire events (< 20 fires per year), and four years have a 201 

moderate fire season with 20 ~ 30 fire events per year. An exceptionally severe fire season was 202 

detected in 2015, with 49 fire events in total. To cover a variety of fire season severities, we 203 

sampled five seasons (2002, 2006, 2008, 2013, 2017) with light severity, two years with 204 

moderate severity (2007, 2010), and the year of 2015 as severe with very high fire activity for 205 

model development (Table S2).  206 

 207 

Figure 1. (a) Arctic tundra region in Alaska as defined by CAVM. (b) Number of fire events 208 

detected with MCD14ML data from 2001 to 2019.  209 

3.2 Empirical modeling performances 210 

Three groups of independent variables show very strong correlations, including the 211 

vegetation indices representing fuel moisture state, the CFFWIS components representing fire 212 

weather conditions, and the topographic features, with Pearson’s r above 0.8 (Figure S3). Since 213 

all vegetation indices were highly correlated with Pearson’s r above 0.95, we only adopted NDII6 214 

to estimate fuel moisture state for further modeling efforts. Strong correlations were also found 215 

between the fire behavior indices (ISI and BUI) and fuel moisture codes (FFMC and DMC) of 216 

the CFFWIS. Since we did not focus on fire propagation, we only selected the three fuel 217 
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moisture codes to represent fire weather conditions. Although the near-surface weather variables 218 

show moderate correlations with the CFFWIS components, they were included to account for 219 

meteorological conditions irrespective of fuels. Additionally, slope and roughness were removed 220 

for modeling due to their strong correlations with elevation.  221 

Both the “Current-day model” and “Previous-day model” developed with the RF 222 

classification algorithm have shown a strong capability in predicting the fire occurrence 223 

probability in the tundra. The overall out-of-bag (OOB) error rate of the “Current-day model” is 224 

6.03%, with the overall accuracy reaching 93.97% (Table S3). The “Previous-day model” shows 225 

slightly lower modeling performance, with an overall OOB error rate of 8.75% and an accuracy 226 

of 91.25%. Validation performed against the reserved dataset shows that both models can reflect 227 

(with the “Current-day model”) and forecast (with the “Previous-day model”) fire occurrence 228 

probability, as indicated by the Receiver Operating Characteristic (ROC) curves (Figure S4). The 229 

Area Under the Curve (AUC) values reached 0.97 and 0.96 for the “Current-day model” and the 230 

“Previous-day model”, respectively. 231 

3.3 Environmental factors driving tundra fire occurrence 232 

CG lightning probability was identified as the most important variable in both the 233 

“Current-day model” and “Previous-day model” for predicting tundra fire occurrence, with Mean 234 

Decrease in Accuracy (MDA) of 50.06% and 34.58%, respectively (Figure 2 a-b). A significant 235 

positive relationship was confirmed between CG lightning and fire occurrence via logistic 236 

regression models (p < 0.001; Table 1), suggesting that regions with larger lightning probability 237 

are likely to experience higher fire risks. On fire-occurrence days, the lightning probability of the 238 

“Fire” events were higher than 0.50 on average across the tundra region and reached over 0.62 in 239 

the North Slope and Southwest Alaska (Figure 2 c). In contrast, the lightning probability was 240 

below 0.15 on average when no fire occurred. Similarly, on the previous days of fire occurrence, 241 

though lower than that on fire-occurrence days, the lighting probability of the “Fire” events, was 242 

significantly higher (~0.48) than that of the “No fire” events (< 0.12) on average (Figure 2 d).  243 
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 244 

Figure 2. Variable importance rankings of (a) the “Current-day model” and (b) the “Previous-245 

day model”. Boxplots of CG lightning probability for the “Fire” and “No fire” events in the three 246 

tundra regions on (c) fire-occurrence days and (b) the previous days before occurrence. 247 

WRF-simulated near-surface meteorological variables and fuel moisture codes, 248 

particularly air temperature, RH, and DC, were also found important in modeling tundra fire 249 

occurrences, as indicated by MDA values from the RF models (Figure 2 a-b). Specifically, 250 

higher air temperature and drier fuels could contribute to increases in fire occurrence probability, 251 

according to the significantly positive relationships between temperature and DC with fire 252 

occurrence (p < 0.05; Table 1). The mean air temperature was significantly higher in most tundra 253 

regions when fires occurred, while RH was significantly lower (Table S4). On fire-occurrence 254 
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days, the air temperature of the regions with fires can reach 24.8◦C and 23.5◦C in Southwest 255 

Alaska and the North Slope on average, respectively. In comparison, regions with no fires were 256 

much cooler, with 18.4◦C and 16.5◦C, respectively (Figure 3 a). As expected, drier conditions 257 

were also likely to support fire occurrence. The RH values of “Fire” events were about 9.6% 258 

lower than those of “No fire” events in these two tundra regions on average (Figure 3 b). In 259 

addition, all fire weather indices were significantly higher on fire days in North Slope and 260 

Southwest Alaska. Though Alaskan tundra is not a moisture-limited ecosystem, surface 261 

vegetation fuels can dry out rapidly to support burnings, with FFMC reaching above 80 across 262 

the tundra regions on the fire-occurrence days (Figure 3 c). Moreover, the significantly negative 263 

relationships between NDII6 and fire occurrences in both logistic regression models indicated 264 

that drier fuels support burnings in the tundra (p < 0.05; Table 1). Mean values of the vegetation 265 

indices related to fuel moisture state were slightly but significantly lower for the “Fire” events 266 

(Figure S5; Table S4). 267 

Table 1. Logistic regression results of the two models.  268 

Variables 
Current-day model Previous-day model 

Coefficient Std. Error P-value Coefficient Std. Error P-value 

Intercept -4.550 2.607 0.08† -2.003 2.367 0.796 

Lightning 5.428 0.591 <0.001*** 3.430 0.543 <0.001*** 

NDII6 -12.69 2.028 <0.001*** -18.360 5.581 <0.001*** 

Rain -0.136 0.064 0.033* -0.043 0.037 0.208 

Temperature 0.166 0.053 0.002** 0.098 0.042 0.021* 

RH 0.005 0.019 0.791 -0.057 0.016 <0.001*** 

Wind speed 0.012 0.074 0.866 -0.225 0.076 0.003** 

FFMC -0.029 0.016 0.054† -0.034 0.014 0.016* 

DMC 0.008 0.031 0.781 0.0001 0.027 0.691 

DC 0.006 0.002 <0.001*** 0.005 0.002 0.003** 

Region (Seward) -1.220 0.520 0.019* -1.176 0.432 0.005** 

Region (SW) -0.192 0.793 0.808 1.973 0.662 0.007** 

Elevation -0.002 0.001 0.008** -0.001 0.001 0.069† 

Aspect -0.002 0.003 0.590 -0.0004 0.003 0.892 

Woody cover 1.089 2.173 0.616 0.073 1.793 0.725 

Herbaceous cover 3.625 1.953 0.064† 5.542 1.727 <0.001*** 

Nonvascular cover -2.811 1.234 0.022* -0.223 1.058 0.911 

Notes: Significance levels of regression: ***p < 0.001, **p < 0.01, *p < 0.05, and †p < 0.1. 269 

Compared to ignition source and fire weather, fuel composition and topography did not 270 

strongly impact tundra fire occurrence (Figure 2 a-b). Logistic regressions suggested that 271 

fractional covers of woody and herbaceous components were positively related to the fire 272 

occurrences (Table 1). Fires in the North Slope and the Seward Peninsula tended to occur in 273 

regions with more woody fuels. In contrast, those in Southwest Alaska show the opposite (Figure 274 

S6). Significantly higher coverage of nonvascular fuels was found when fires occurred in 275 

Southwest Alaska, while an inverse relationship existed for fires in the North Slope (Table S4). 276 

The significantly negative relationship between elevation fire occurrence (Table 1) also suggests 277 

that tundra fires are more common in flat areas.   278 
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 279 

Figure 3. Boxplots of (a) air temperature, (b) RH, (c) FFMC, and (d) DC for the “Fire” and “No 280 

fire” events across the three tundra regions on fire-occurrence days. 281 

4 Discussions 282 

This study identifies the CG lightning probability as the key driver of tundra fire 283 

occurrence. Though lightning is normally assumed to be the primary ignition source in the tundra 284 

due to the remoteness of the region and the limited human activities, we provide the first 285 

quantitative piece of evidence that supports this assumption, as the results from all models in this 286 

study point to CG lightning probability as the most influential factor that predicts fire 287 

occurrence. This finding is consistent with previous research conducted in the boreal forests of 288 

North America (Veraverbeke et al., 2017). Yet, the role of lightning is not always emphasized in 289 

other ecosystems (Díaz-avalos et al., 2001; Liu et al., 2012; Vecín-Arias et al., 2016). Previous 290 

studies have also established relationships between fires and lightning characteristics observed 291 

from ground-based detection networks, such as the count, polarity, and peak current of lightning 292 
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strikes (Peterson et al., 2010). This study, whereas, suggest that the probability of CG lightning 293 

modeled purely with atmospheric variables is a powerful indicator of tundra fire potential.  294 

In addition to lightning, warmer and drier near-surface fire weather conditions support 295 

burnings in the tundra. With generally low temperatures and high water table, Arctic tundra is an 296 

unusual environment that is rarely moisture-limited and are not highly flammable, largely due to 297 

widespread underlying permafrost (Bliss et al., 1973; Wielgolaski and Goodall, 1997). Evidences 298 

from both modeling and statistical analyses in this study highlight the importance of warm and 299 

dry weather conditions in driving fire occurrence in Alaskan tundra, with near-surface air 300 

temperature and RH significantly related to fires. Higher temperature and lower moisture 301 

conditions have the potential to increase the flammability of the environment in general. In 302 

addition to the impacts of air temperature and RH on fuel flammability, they might also reflect 303 

the high likelihood of convective potential, which in turn leads to atmospheric instability and 304 

ultimately lightning occurrence. Moreover, despite the minimal elevation variations in the 305 

tundra, topographic features such as elevation could indirectly affect fire activity through their 306 

impacts on lightning potential, temperature and moisture availability (Dissing and Verbyla, 307 

2003; Podur et al., 2003).  308 

Our results also demonstrate the suitability of fuel moisture codes from the CFFWIS for 309 

monitoring tundra fire potential. Primarily composed of herbaceous and dwarf shrub species, the 310 

dominant fuels in the tundra are considered fine surface fuels as defined in the CFFWIS (Innes, 311 

2013). As the most influential indicator among all fire weather indices, DC is a slow-reacting 312 

code that tracks deeper drying of fuels that responds to changes in deep moisture levels in the 313 

tundra (Lawson and Armitage, 2008). Its significance in the logistic regression highlights that 314 

long-term dry conditions of tundra fuels that accumulate for days contribute more to burnings 315 

than the short-term changes. It is also worth mentioning that that FFMC is a highly predictive 316 

variable, since it is originally designed to describe the fine surface fuels in boreal forests 317 

(Lawson and Armitage, 2008). With larger FFMC indicating higher fuel flammability, FFMC of 318 

the “Fire” events can generally reach higher than 70 for the tundra, representing dry fuels for fire 319 

occurrence. Although the CFFWIS was originally developed for boreal forests and its ability to 320 

forecast tundra conditions was most generally assumed rather than tested, our study shows that 321 

both FFMC and DC provide a reasonable approximation of fuel moisture changes that can more 322 

readily support burning. Given the impacts of fire weather on fire potential, the future increase of 323 

FWI in the tundra (French et al., 2015) will absobutely contribute to higher fire risks in this 324 

region.  325 

More importantly, our empirical-dynamic framework involving NWPs like WRF and 326 

statistical models has demonstrated its strong capability and effectiveness for contemporary fire 327 

modeling in data-scarce regions like the tundra. The modeling experiments with both the 328 

“Current-day model” and the “Previous-day model” further indicate that using data simulated 329 

from one day earlier can achieve reasonable accuracy in forecasting fire occurrence. The critical 330 

role of CG lightning probability also suggests that current fire management efforts are 331 

inadequate without incorporating CG lightning probability for fire danger monitoring and 332 

modeling in the tundra, where fires are primarily ignited by lightning. With the future increases 333 

of lightning in the HNL (Chen et al., 2021), Arctic tundra will experience higher fire occurrence 334 

in the future under the rapid climate warming. By monitoring lightning potential and fire weather, 335 

it is promising that fire occurrence can be predicted with high accuracy in remote regions at 5km 336 

resolution.  337 
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Though existing efforts have been made to incorporate lightning characteristics for fire 338 

modeling by matching lightning strikes detected by ground-based networks and fires (Peterson et 339 

al., 2010; Wotton and Martell, 2005), we recommend using simulated CG lightning probability 340 

for fire management efforts for several reasons. The ground-based lightning detection networks 341 

typically have a location accuracy of 1 ~ 5km and a detection efficiency of about 70% ~ 90% 342 

(Biagi et al., 2007; Dissing and Verbyla, 2003; Koshak et al., 2015; Nag et al., 2014). This 343 

suggests the potential missing of lightning strikes by the detection systems and the inaccuracy of 344 

the triangulated lightning locations. Therefore, the commonly used method of matching lightning 345 

and fire locations can largely miss the actual lightning strikes that ignite the fires, further 346 

introducing errors and uncertainties in the modeling and analysis efforts. The modeling results 347 

could be affected by the choices of matching methods as well (Moris et al., 2020). Finally, since 348 

no simulation of lightning characteristics has been developed based on existing NWPs so far, this 349 

limits the potential of integrating NWPs for fire ignition modeling and forecasting. 350 

5 Conclusions 351 

This study explores the key drivers of wildfire occurrences in Arctic tundra of Alaska by 352 

modeling the impacts of environmental factors on fire probability from 2001 to 2019. Among all 353 

factors, CG lightning probability is found to be the most important driver of tundra fire 354 

occurrences in Alaska, with a significant positive relationship between lightning and fire 355 

probabilities. Warmer and drier weather conditions also support burnings in the tundra. Air 356 

temperature, fuel moisture codes show significant positive relationships with fire occurrences, 357 

while RH is negatively related. Moreover, the empirical-dynamical modeling method in this 358 

study has demonstrated a strong capability in predicting fire occurrence probability, using the 359 

WRF-simulated fire weather variables on both fire ocurrence day and one day before. Our 360 

findings highlight the necessity of incorporating CG lightning modeling and the benefits of WRF 361 

simulation for wildfire monitoring efforts in data-scarce regions like tundra.  362 
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