

Space Weather

Supporting Information for

Forecasting GICs and geoelectric fields from solar wind data using LSTMs: appli-

cation in Austria

R. L. Bailey1, R. Leonhardt1, C. Möstl2, C. Beggan3, M. A. Reiss2,3, A. Bhaskar4, A. J.

Weiss2,5

1Conrad observatory, Zentralanstalt f ür Meteorologie und Geodynamik, Vienna, Austria  
2Space Research Institute, Austrian Academy of Sciences, Graz, Austria  

3British Geological Survey, Edinburgh, UK 
4Space Physics Laboratory, ISRO/Vikram Sarabhai Space Centre, Trivandrum, India  

5Institute of Physics, University of Graz, Universit ätsplatz 5, 8010 Graz, Austria

Contents of this file

Figure S1 - LSTM-E diagram

Table S2 - Hyperparameters for LSTM-E training

Figure S3 - LSTM-GIC diagram

Table S4 - Hyperparameters for LSTM-GIC training

Text S5 - Python Object: BasicAttention layer

Additional Supporting Information (Files uploaded separately)

None.

Introduction

This document contains supporting information for the manuscript, “Forecasting GICs
and geoelectric fields from solar wind data using LSTMs: application in Austria” by Bai-
ley, R. L. et al., submitted to Space Weather.

This document describes the model architecture and hyper parameters used for training
LSTMs for two purposes:

1) LSTM-E: An LSTM for predicting the geoelectric field.

2) LSTM-GIC: An LSTM for predicting substation-specific GICs in the Austrian power

grid.

The LSTMs were trained using the Python package keras. The code used to define the
custom BasicAttention layer is included in this supporting information, otherwise all lay-
ers and objects referred to in the diagrams are keras-specific objects.

1

Figure S1 - LSTM-E diagram.

The general structure of the model for forecasting geoelectric fields has two branches
that branch out from the initial two LSTM layers that process the input features initially.
These both go into separate but identical BasicAttention layers. The left-hand side of the
LSTM-E tackles a regression problem to predict the magnitude of the geoelectric field
(ignoring direction), while the right-hand side of the LSTM deals with the classification
problem of attempting to predict the direction of the field.

Two LSTMs of this type were trained: one for the x-component of the geoelectric field
(LSTM-Ex) and one for the y-component of the geoelectric field (LSTM-Ey). Through hy-
per parameter tuning, different parameters were chosen for each variable.

2

Table S2 - Hyperparameters for LSTM-E training. The hyper parameters used for
training two different LSTMs: one for Ex and one for Ey.

LSTM-Ex LSTM-Ey

Loss weighting [regression, classifica-
tion]

[1000, 1] [2000, 1]

Batch size 64 32

Epochs 10 10

Fraction of LSTM dropout 0.1 0.1

Number of LSTM hidden states 32 32

3

Figure S3 - LSTM-GIC diagram.

In comparison to the LSTM used to predict the geoelectric field, in the case of GICs ob-
served at specific transformers we ignore the classification problem and instead focus
onto on predicting the magnitude. The samples go through one LSTM layer before being
put through an Attention layer, which returns the sequences. These are fed into another
LSTM layer before being reduced to a single value as output using a feed-forward
Dense layer.

Two LSTMs of this type were trained: one for GICs seen in a substation near Vienna
(LSTM-GIC1) and one for GICs seen in a substation near Salzburg (LSTM-GIC5).
Through hyper parameter tuning, different parameters were chosen for each target vari-
able.

4

Table S4 - Hyperparameters for LSTM-GIC training. The hyper parameters used for
training two different LSTMs: one for GICs at substation #1 near Vienna (GIC1) and for a
power grid substation near Salzburg (GIC5).

LSTM-GIC1 LSTM-GIC5

Batch size 32 64

Epochs 10 20

Fraction of LSTM dropout 0.1 0.3

Number of LSTM hidden states 32 64

5

Text S5 - Python Object: BasicAttention layer. This is the Python script for a custom
Attention layer object included in the LSTM architecture.

class BasicAttention(Layer):

 '''Basic Self-Attention Layer built using this resource:

 https://towardsdatascience.com/create-your-own-custom-atten-
tion-layer-understand-all-flavours-2201b5e8be9e'''

 def __init__(self, return_sequences=True, n_units=1,
w_init='normal', b_init='zeros', **kwargs):

 self.return_sequences = return_sequences

 self.n_units = n_units

 self.w_init = w_init

 self.b_init = b_init

 super(BasicAttention,self).__init__(**kwargs)

 def build(self, input_shape):

 self.n_features = input_shape[-1]

 self.seq_len = input_shape[-2]

 self.W=self.add_weight(name="att_weight", shape=(self-
.n_features,self.n_units),

 initializer=self.w_init)

 self.b=self.add_weight(name="att_bias", shape=(self.se-
q_len,self.n_units),

 initializer=self.b_init)

 super(BasicAttention,self).build(input_shape)

 def call(self, x):

 e = K.tanh(K.dot(x,self.W)+self.b)

 a = K.softmax(e, axis=1)

 output = x*a

 if self.return_sequences:

 return output

 return K.sum(output, axis=1)

 def get_config(self):

 config = super(BasicAttention, self).get_config()

 config["return_sequences"] = self.return_sequences

 config["n_units"] = self.n_units

 config["w_init"] = self.w_init

 config["b_init"] = self.b_init

 #config["name"] = self.name

 return config

6

 @classmethod

 def from_config(cls, config):

 return cls(**config)

7

	Figure S1 - LSTM-E diagram.
	Table S2 - Hyperparameters for LSTM-E training. The hyper parameters used for training two different LSTMs: one for Ex and one for Ey.
	Figure S3 - LSTM-GIC diagram.

