References
Allen, E. L. Water Quality Signatures of Switchgrass (Panicum
Virgatum ) Intercropped in Managed Forests and Mixed Land Use in the
Southeastern United States. ProQuest Dissertations and Theses(North Carolina State University PP - United States – North Carolina,
2021).
Avagyan, A., Runkle, B.R.K., Kutzbach, L., 2014. Application of
high-resolution spectral absorbance measurements to determine dissolved
organic carbon concentration in remote areas. J. Hydrol. 517, 435–446.
https://doi.org/10.1016/j.jhydrol.2014.05.060
Beutel, M.W., Horne, A.J., 1999. A review of the effects of hypolimnetic
oxygenation on lake and reservoir water quality. Lake Reserv. Manag. 15,
285–297. https://doi.org/10.1080/07438149909354124
Beutel, M.W., Leonard, T.M., Dent, S.R., Moore, B.C., 2008. Effects of
aerobic and anaerobic conditions on P, N, Fe, Mn, and Hg accumulation in
waters overlaying profundal sediments of an oligo-mesotrophic lake.
Water Res. 42, 1953–1962. https://doi.org/10.1016/j.watres.2007.11.027
Bieroza, M.Z., Heathwaite, A.L., 2016. Unravelling organic matter and
nutrient biogeochemistry in groundwater-fed rivers under baseflow
conditions: Uncertainty in in situ high-frequency analysis. Sci. Total
Environ. 572, 1520–1533.
https://doi.org/10.1016/j.scitotenv.2016.02.046
Birgand, F., Aveni-Deforge, K., Smith, B., Maxwell, B., Horstman, M.,
Gerling, A.B., Carey, C.C., 2016. First report of a novel multiplexer
pumping system coupled to a water quality probe to collect high temporal
frequency in situ water chemistry measurements at multiple sites.
Limnol. Oceanogr. Methods 14, 767–783.
https://doi.org/10.1002/lom3.10122
Bryant, L.D., Hsu-Kim, H., Gantzer, P.A., Little, J.C., 2011. Solving
the problem at the source: Controlling Mn release at the sediment-water
interface via hypolimnetic oxygenation. Water Res. 45, 6381–6392.
https://doi.org/10.1016/j.watres.2011.09.030
[dataset] Carey, C.C., A. Breef-Pilz, and B.J. Bookout. 2022a. Time
series of high-frequency meteorological data at Falling Creek Reservoir,
Virginia, USA 2015-2021 ver 6. Environmental Data Initiative.
https://doi.org/10.6073/pasta/35d8d3f9390408f12d39e44e3f03abbe (Accessed
2022-09-30).
[dataset] Carey, C.C., A. Breef-Pilz, W.M. Woelmer, and B.J.
Bookout. 2022b. Time series of high-frequency sensor data measuring
water temperature, dissolved oxygen, pressure, conductivity, specific
conductance, total dissolved solids, chlorophyll a, phycocyanin, and
fluorescent dissolved organic matter at discrete depths in Falling Creek
Reservoir, Virginia, USA in 2018-2021 ver 6. Environmental Data
Initiative.
https://doi.org/10.6073/pasta/81c6c76f4fe22434a20aa8c00f2d4ad1 (Accessed
2022-02-02).
[dataset] Carey, C.C., A.S. Lewis, D.W. Howard, W.M. Woelmer, P.A.
Gantzer, K.A. Bierlein, J.C. Little, and WVWA. 2022c. Bathymetry and
watershed area for Falling Creek Reservoir, Beaverdam Reservoir, and
Carvins Cove Reservoir ver 1. Environmental Data Initiative.
https://doi.org/10.6073/pasta/352735344150f7e77d2bc18b69a22412 (Accessed
2022-11-16).
Carey, C.C., Woelmer, W.M., Lofton, M.E., Figueiredo, R.J., Bookout,
B.J., Corrigan, R.S., Daneshmand, V., Hounshell, A.G., Howard, D.W.,
Lewis, A.S.L., McClure, R.P., Wander, H.L., Ward, N.K., Thomas, R.Q.,
2022. Advancing lake and reservoir water quality management with
near-term, iterative ecological forecasting. Inl. Waters 12, 107–120.
https://doi.org/10.1080/20442041.2020.1816421
Cao, D.S., Deng, Z.K., Zhu, M.F., Yao, Z.J., Dong, J., Zhao, R.G., 2017.
Ensemble partial least squares regression for descriptor selection,
outlier detection, applicability domain assessment, and ensemble
modeling in QSAR/QSPR modeling. J. Chemom. 31, 1–17.
https://doi.org/10.1002/cem.2922
Chapman, M.J., Cravotta, C.A., Szabo, Z., Lindsey, B.D., 2013. Naturally
Occurring Contaminants in the Piedmont and Blue Ridge Cystalline-rock
Aquifers and Piedmont Early Mesozoic Basin Siliciclastic-rock Aquifers,
Eastern United States, 1994-2008. US Department of the Interior, US
Geological Survey.
Coraggio, E., Han, D., Gronow, C., Tryfonas, T., 2022. Water Quality
Sampling Frequency Analysis of Surface Freshwater: A Case Study on
Bristol Floating Harbour. Front. Sustain. Cities 3, 1–14.
https://doi.org/10.3389/frsc.2021.791595
Davison, W., Seed, G., 1983. The kinetics of the oxidation of ferrous
iron in synthetic and natural waters. Geochim. Cosmochim. Acta 47,
67–79. https://doi.org/10.1016/0016-7037(83)90091-1
Davison, W., 1993. Iron and manganese in lakes. Earth Sci. Rev. 34,
119–163. https://doi.org/10.1016/0012-8252(93)90029-7
Denham, M.C., 1997. Prediction intervals in partial least squares. J.
Chemom. 11, 39–52.
https://doi.org/10.1002/(SICI)1099-128X(199701)11:1<39::AID-CEM433>3.0.CO;2-S
Dent, S.R., Beutel, M.W., Gantzer, P., Moore, B.C., 2014. Response of
methylmercury, total mercury, iron and manganese to oxygenation of an
anoxic hypolimnion in North Twin lake, Washington. Lake Reserv. Manag.
30, 119–130. https://doi.org/10.1080/10402381.2014.898350
Difoggio, R., 2000. Guidelines for applying chemometrics to spectra:
Feasibility and error propagation. Appl. Spectrosc. 54.
https://doi.org/10.1366/0003702001949546
Etheridge, J.R., Birgand, F., Osborne, J.A., Osburn, C.L., Burchell,
M.R., Irving, J., 2014. Using in situ ultraviolet-visual spectroscopy to
measure nitrogen, carbon, phosphorus, and suspended solids
concentrations at a high frequency in a brackish tidal marsh. Limnol.
Oceanogr. Methods 12, 10–22. https://doi.org/10.4319/lom.2014.12.10
Gantzer, P.A., Bryant, L.D., Little, J.C., 2009. Controlling soluble
iron and manganese in a water-supply reservoir using hypolimnetic
oxygenation. Water Res. 43, 1285–1294.
https://doi.org/10.1016/j.watres.2008.12.019
Gerling, A.B., Browne, R.G., Gantzer, P.A., Mobley, M.H., Little, J.C.,
Carey, C.C., 2014. First report of the successful operation of a side
stream supersaturation hypolimnetic oxygenation system in a eutrophic,
shallow reservoir. Water Res. 67, 129–143.https://doi.org/10.1016/j.watres.2014.09.002
[dataset] Hammond, N.W., F. Birgand, C.C. Carey, A. Breef-Pilz, B.
Bookout, and M.E. Schreiber. 2022. Time series of in situ
ultraviolet-visible absorbance spectra and high-frequency predictions of
total and soluble Fe and Mn concentrations measured at multiple depths
in Falling Creek Reservoir (Vinton, VA, USA) in 2020 and 2021 ver 4.
Environmental Data Initiative. Retrieved fromhttps://portal-s.edirepository.org/nis/mapbrowse?packageid=edi.974.4.
Hammond, N.W. 2022. High-frequency sensor data capture short-term
variability in Fe and Mn cycling due to hypolimnetic oxygenation and
seasonal dynamics in a drinking water reservoir.
https://doi.org/10.5281/zenodo.7339718
Hem, J.D., 1972. Chemical Factors that Influence the Availability of
Iron and Manganese in Aqueous Systems. Geol. Soc. Am. Bull. 83,
443–450.
Idso, S.B., 1973. On the concept of Lake Stability. Limnol. Oceanogr.
18, 681–683.
Istvánovics, V., Osztoics, A., Honti, M., 2004. Dynamics and ecological
significance of daily internal load of phosphorus in shallow Lake
Balaton, Hungary. Freshw. Biol. 49, 232–252.
https://doi.org/10.1111/j.1365-2427.2004.01180.x
Kankaala, P., Taipale, S., Nykänen, H., Jones, R.I., 2007. Oxidation,
efflux, and isotopic fractionation of methane during autumnal turnover
in a polyhumic, boreal lake. J. Geophys. Res. Biogeosciences 112, 1–7.
https://doi.org/10.1029/2006JG000336
Kritzberg, E.S., Hasselquist, E.M., Škerlep, M., Löfgren, S., Olsson,
O., Stadmark, J., Valinia, S., Hansson, L.A., Laudon, H., 2020. Browning
of freshwaters: Consequences to ecosystem services, underlying drivers,
and potential mitigation measures. Ambio 49, 375–390.
https://doi.org/10.1007/s13280-019-01227-5
Krueger, K.M., Vavrus, C.E., Lofton, M.E., McClure, R.P., Gantzer, P.,
Carey, C.C., Schreiber, M.E., 2020. Iron and manganese fluxes across the
sediment-water interface in a drinking water reservoir. Water Res. 182,
116003. https://doi.org/10.1016/j.watres.2020.116003
Kruse, P., 2018. Review on water quality sensors. J. Phys. D. Appl.
Phys. 51. https://doi.org/10.1088/1361-6463/aabb93
Kurz, M.J., de Montety, V., Martin, J.B., Cohen, M.J., Foster, C.R.,
2013. Controls on diel metal cycles in a biologically productive
carbonate-dominated river. Chem. Geol. 358, 61–74.
https://doi.org/10.1016/j.chemgeo.2013.08.042
Marcé, R., George, G., Buscarinu, P., Deidda, M., Dunalska, J., De Eyto,
E., Flaim, G., Grossart, H.P., Istvanovics, V., Lenhardt, M.,
Moreno-Ostos, E., Obrador, B., Ostrovsky, I., Pierson, D.C., Potužák,
J., Poikane, S., Rinke, K., Rodríguez-Mozaz, S., Staehr, P.A.,
Šumberová, K., Waajen, G., Weyhenmeyer, G.A., Weathers, K.C., Zion, M.,
Ibelings, B.W., Jennings, E., 2016. Automatic High Frequency Monitoring
for Improved Lake and Reservoir Management. Environ. Sci. Technol. 50,
10780–10794. https://doi.org/10.1021/acs.est.6b01604
McClain, M.E., Boyer, E.W., Dent, C.L., Gergel, S.E., Grimm, N.B.,
Groffman, P.M., Hart, S.C., Harvey, J.W., Johnston, C.A., Mayorga, E.,
McDowell, W.H., Pinay, G., 2003. Biogeochemical Hot Spots and Hot
Moments at the Interface of Terrestrial and Aquatic Ecosystems.
Ecosystems 6, 301–312. https://doi.org/10.1007/s10021-003-0161-9
McClure, R.P., Hamre, K.D., Niederlehner, B.R., Munger, Z.W., Chen, S.,
Lofton, M.E., Schreiber, M.E., Carey, C.C., 2018. Metalimnetic oxygen
minima alter the vertical profiles of carbon dioxide and methane in a
managed freshwater reservoir. Sci. Total Environ. 636, 610–620.
https://doi.org/10.1016/j.scitotenv.2018.04.255
McMahon, J.W., 1969. the Annual and Diurnal Variation in the Vertical
Distribution of Acid‐Soluble Ferrous and Total Iron in a Small Dimictic
Lake. Limnol. Oceanogr. 14, 357–367.
https://doi.org/10.4319/lo.1969.14.3.0357
Mevik, B.H., Wehrens, R., and Liland, K.H. (2020). pls: Partial Least
Squares and Principal Component Regression. R package version 2.7-3.https://CRAN.R-project.org/package=pls
Munger, Z.W., Carey, C.C., Gerling, A.B., Hamre, K.D., Doubek, J.P.,
Klepatzki, S.D., McClure, R.P., Schreiber, M.E., 2016. Effectiveness of
hypolimnetic oxygenation for preventing accumulation of Fe and Mn in a
drinking water reservoir. Water Res. 106, 1–14.
https://doi.org/10.1016/j.watres.2016.09.038
Munger, Z.W., Carey, C.C., Gerling, A.B., Doubek, J.P., Hamre, K.D.,
McClure, R.P., Schreiber, M.E., 2019. Oxygenation and hydrologic
controls on iron and manganese mass budgets in a drinking-water
reservoir. Lake Reserv. Manag. 35, 277–291.
https://doi.org/10.1080/10402381.2018.1545811
Nimick, D.A., Gammons, C.H., Parker, S.R., 2011. Diel biogeochemical
processes and their effect on the aqueous chemistry of streams: A
review. Chem. Geol. 283, 3–17.
https://doi.org/10.1016/j.chemgeo.2010.08.017
Porter, J.H., Nagy, E., Kratz, T.K., Hanson, P., Collins, S.L.,
Arzberger, P., 2009. New eyes on the world: Advanced sensors for
ecology. Bioscience 59, 385–397.
https://doi.org/10.1525/bio.2009.59.5.6
Poulin, B.A., Ryan, J.N., Aiken, G.R., 2014. Effects of iron on optical
properties of dissolved organic matter. Environ. Sci. Technol. 48,
10098–10106. https://doi.org/10.1021/es502670r
Preece, E.P., Moore, B.C., Skinner, M.M., Child, A., Dent, S., 2019. A
review of the biological and chemical effects of hypolimnetic
oxygenation. Lake Reserv. Manag. 35, 229–246.
https://doi.org/10.1080/10402381.2019.1580325
R Core Team (2022). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URLhttps://www.R-project.org/.
Rieger, L., Langergraber, G., Siegrist, H., 2006. Uncertainties of
spectral in situ measurements in wastewater using different calibration
approaches. Water Sci. Technol. 53, 187–197.
https://doi.org/10.2166/wst.2006.421
Rode, M., Wade, A.J., Cohen, M.J., Hensley, R.T., Bowes, M.J., Kirchner,
J.W., Arhonditsis, G.B., Jordan, P., Kronvang, B., Halliday, S.J.,
Skeffington, R.A., Rozemeijer, J.C., Aubert, A.H., Rinke, K., Jomaa, S.,
2016. Sensors in the Stream: The High-Frequency Wave of the Present.
Environ. Sci. Technol. 50, 10297–10307.
https://doi.org/10.1021/acs.est.6b02155
Sakamoto, C.M., Johnson, K.S., Coletti, L.J., 2009. Improved algorithm
for the computation of nitrate concentrations in seawater using an in
situ ultraviolet spectrophotometer. Limnol. Oceanogr. Methods 7,
132–143. https://doi.org/10.1002/lom3.10209
[dataset] Schreiber, M.E., N.W. Hammond, K.M. Krueger, Z.W. Munger,
C.L. Ming, A. Breef-Pilz, and C.C. Carey. 2022. Time series of total and
soluble iron and manganese concentrations from Falling Creek Reservoir
and Beaverdam Reservoir in southwestern Virginia, USA from 2014 through
2021 ver 6. Environmental Data Initiative.
https://doi.org/10.6073/pasta/7cdf3d7a234963b265f09b7d6d08f357.
EPA. 2021. Secondary Drinking Water Standards: Guidance for Nuisance
Chemicals. Available at:
https://www.epa.gov/sdwa/secondary-drinking-water-standards-guidance-nuisance-chemicals.
(Accessed: 22nd February 2021)
Vaughan, M.C.H., Bowden, W.B., Shanley, J.B., Vermilyea, A., Wemple, B.,
Schroth, A.W., 2018. Using in situ UV-Visible spectrophotometer sensors
to quantify riverine phosphorus partitioning and concentration at a high
frequency. Limnol. Oceanogr. Methods 16, 840–855.
https://doi.org/10.1002/lom3.10287
Wasserman, G.A., Liu, X., Parvez, F., Ahsan, H., Levy, D.,
Factor-Litvak, P., Kline, J., van Geen, A., Slavkovich, V., Lolacono,
N.J., Cheng, Z., Zheng, Y., Graziano, J.H., 2006. Water manganese
exposure and children’s intellectual function in Araihazar, Bangladesh.
Environ. Health Perspect. 114, 124–129.
https://doi.org/10.1289/ehp.8030
Weishaar, J.L., Aiken, G.R., Bergamaschi, B.A., Fram, M.S., Fujii, R.,
Mopper, K., 2003. Evaluation of specific ultraviolet absorbance as an
indicator of the chemical composition and reactivity of dissolved
organic carbon. Environ. Sci. Technol. 37, 4702–4708.
https://doi.org/10.1021/es030360x
Winslow, L., Read, J., Woolway, R., Brentrup, J., Leach, T., Zwart, J.,
Albers, S., Collinge, D., 2019. rLakeAnalyzer: Lake Physics Tools. R
package version 1.11.4.1.https://CRAN.R-project.org/package=rLakeAnalyzer
Wold, S., Sjöström, M., Eriksson, L., 2001. PLS-regression: A basic tool
of chemometrics. Chemom. Intell. Lab. Syst. 58, 109–130.
https://doi.org/10.1016/S0169-7439(01)00155-1
Woodward, H.P., 1932. Geology and Mineral Resources of the Roanoke Area,
Virginia, &c.
World Health Organization, 2017. Guidelines for Drinking ‑ water
Quality. Fourth Edition Incorporating the First Addendum. 10
Acceptability aspects : Taste , odour and appearance.
Xiao, N., Cao, D.S., Li, M.Z., and Xu, Q.S. (2019). enpls: Ensemble
Partial Least Squares Regression. R package version 6.1.https://CRAN.R-project.org/package=enpls
Xiao, Y.H., Sara-Aho, T., Hartikainen, H., Vähätalo, A. V., 2013.
Contribution of ferric iron to light absorption by chromophoric
dissolved organic matter. Limnol. Oceanogr. 58, 653–662.
https://doi.org/10.4319/lo.2013.58.2.0653