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Key Points 17 

1) For the first time, aerodynamic roughness length is estimated from in the United Arab 18 

Emirates and it is one order smaller than the default value used in WRF  19 

2)  WRF model 2-m air temperature and sensible heat simulations are more accurate with 20 

the updated roughness length 21 

3) For wind speeds > 6 m s-1, the model underestimates the strength of the surface wind and 22 

it is corrected by 1-3 m s-1, when the updated roughness length is considered 23 
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Abstract 24 

The aerodynamic roughness length is a crucial parameter that controls surface variables 25 

including the horizontal wind, surface temperature, and heat fluxes. Despite its importance, in 26 

the Weather Research and Forecasting (WRF) model, this parameter is typically assigned a 27 

predefined value, mostly based on the dominant land-use type. In this work, the roughness length 28 

is first estimated from eddy-covariance measurements at Al Ain in the United Arab Emirates 29 

(UAE), a hyper-arid region, and then ingested into WRF. The estimated roughness length is in 30 

the range 1.3 to 2.2 mm, one order smaller than the default value used in WRF. 31 

In line with previous studies, and from WRF model simulations during the warm and 32 

cold seasons, it is concluded that, when the roughness length is decreased by an order of 33 

magnitude, the horizontal wind speed increases by up to 1 m s-1, the surface temperature rises by 34 

up to 2.5ºC, and the sensible heat flux decreases by as much as 10 W m-2.  In comparison with in 35 

situ station and eddy covariance data, and when forced with the updated roughness length, WRF 36 

gives more accurate 2-m air temperature and sensible heat flux predictions.         For prevailing 37 

wind speeds > 6 m s-1, the model underestimates the strength of the near-surface wind, a 38 

tendency that can be partially corrected, typically by 1-3 m s-1, when the updated roughness 39 

length is considered. For low wind speeds (< 4 m s-1), however, WRF generally overestimates the 40 

strength of the wind. 41 
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1.  Introduction 48 

The aerodynamic (or momentum) roughness length (𝑧଴௠) is the height at which the 49 

logarithmic extrapolation of the horizontal wind speed in the surface layer assumes the zero 50 

value. It is physically related to the geometric roughness of the underlying elements for 51 

aerodynamically rough surfaces, being roughly 1/10th of the height of the roughness elements 52 

[e.g. Wallace and Hobbs, 2006]. A realistic representation of the roughness length is essential for 53 

an accurate estimation of the surface transport of momentum, heat and moisture, based on the 54 

Monin–Obukhov (M–O) theory and the similarity relations of Dyer and Hicks [1970] and 55 

Businger et al. [1971], an approach widely used in weather and climate models [e.g. Miller et al., 56 

1992; Dudhia and Bresch, 2002]. To employ realistic roughness lengths in numerical models is 57 

rather challenging, as they are generally a function of the heterogeneity of the land-surface 58 

[Reddy and Rao, 2016]. The surface roughness of a site is one of the most important parameters 59 

which determines the wind flow. In particular, a rough surface retards the flow compared to a 60 

smooth surface, which results in a sharp decrease of the near-surface wind speed, and 61 

subsequently in changes in the vertical atmospheric profiles and stability [Rao, 1996]. 62 

Numerical model simulations are known to be very sensitive to land-surface parameters 63 

such as vegetation [e.g. Shukla and Mintz, 1982; Hong et al., 2009; Rao et al., 2011], soil 64 

moisture and thermal conductivity [e.g. Massey et al., 2014], and surface roughness length [e.g. 65 

Sud and Smith, 1985; Meehl and Washington, 1988]. Sud and Smith [1985] found that, when the 66 

surface roughness length is reduced from 45 to 0.02 cm, the rainfall over the Sahara desert is 67 

greatly decreased by roughly 4 mm day-1. Reijmer et al. [2004] concluded that a change in the 68 

roughness length over Antarctica by about three orders of magnitude gives monthly averaged 69 

wind speed, air temperature and sensible heat flux differences of ±2 m s-1, ±10 K and ±35 W m-2, 70 
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respectively. For a vegetated site in the Netherlands, Giorgi [1997] noted that an increase in the 71 

roughness length from 0.15 to 0.4 m led to a drop in surface temperature and a rise in sensible 72 

heat flux by roughly 0.4 
oC and 4 W m-2, respectively. For a further increment in 𝑧଴௠to 3 m, these 73 

figures are -0.5 
oC and +10 W m-2. In other words, the dependence of the surface temperature and 74 

sensible heat flux on the roughness length is significant and highly non-linear. Kim and Hong 75 

[2010] found that, using a more sophisticated representation of the roughness length as opposed 76 

to the commonly used Charnock formula [Charnock, 1955], the Weather Research and 77 

Forecasting [WRF, Skamarock et al., 2008] model biases over the East Asian summer monsoon 78 

are reduced. Menut et al. [2013] investigated the sensitivity of mineral dust emission fluxes over 79 

northern Africa using satellite-derived roughness length and soil texture estimates. They found 80 

that, with the new WRF configuration, the model is able to accurately reproduce the main dust 81 

sources and the aerosol optical depth variability in the region. By using an updated zero-82 

displacement plane and aerodynamic roughness length values, roughly three times larger than the 83 

default considered in WRF, for a sea breeze event in Tokyo in September 2011, Varquez et al. 84 

[2015] reported a much improved simulation of the near-surface horizontal wind speed. Jee et al. 85 

[2016] stressed that the use of a realistic roughness length over Seoul leads to an improvement of 86 

the friction velocity, wind speed, temperature and relative humidity predictions, and ultimately 87 

the model precipitation and Planetary Boundary Layer (PBL) depth forecasts. Dong et al. [2018] 88 

highlighted the need to properly set up the surface roughness length according to the actual 89 

vegetation type, for the WRF model to successfully simulate the surface and near-surface fields 90 

in an Arctic coastal region. More recently, Campbell et al. [2019] have shown a significant 91 

impact of an updated aerodynamic roughness length on meteorological parameters such as the 92 

10-meter horizontal wind speed, 2-meter air temperature, and 2-meter mixing ratio, for different 93 
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land use categories over the United States. The papers referred above highlight the important role 94 

of the surface roughness length, not just on the prediction of surface and near-surface fields, but 95 

also on the forecast of the PBL depth. 96 

The present study addresses the estimation of the aerodynamic roughness length over a 97 

bare-soil surface using eddy-covariance measurements made available during the UAE Rain 98 

Enhancement Program (UAEREP) Project [Nelli et al., 2020]. The 𝑧଴௠ for each type of land-99 

surface can be estimated from field measurements made for that particular surface, and is known 100 

to exhibit temporal variability on both monthly and diurnal time-scales [e.g. D Zheng et al., 101 

2013]. There are estimates of 𝑧଴௠ for a bare-soil surface only for a few locations outside the 102 

UAE, all based on in-situ and remote sensing data [e.g. Marticorena et al., 2004; Prigent, 2005; 103 

K Yang et al., 2008]. Marticorena et al. [2004] estimated the surface roughness over North 104 

Africa from satellite measurements. An empirical relationship between the observed 105 

bidirectional reflectance of the satellite data and roughness estimates from in-situ measurements 106 

[Greeley et al., 1997] and from the geomorphological maps [Marticorena et al., 1997] was 107 

derived, and subsequently applied to North Africa. Using this empirical relation, the 𝑧଴௠ value 108 

derived for Western Sahara and Arabian Peninsula regions is nearly 1 mm. A limitation of this 109 

method is the high sensitivity of the observations to clouds as well aerosols in the atmospheric 110 

column. Prigent [2005] made global estimations of 𝑧଴௠ for arid and semi-arid regions by using 111 

observations from the wind scatterometer onboard European Remote Sensing (ERS) satellite 112 

operating at 5.25 GHz. A statistical relationship is derived between the ERS scatterometer 113 

backscattering coefficients and quality in situ and geomorphological 𝑧଴௠ estimates. Based on 114 

this parameterized approach, the major deserts in North Africa, Arabia, and Asia, have roughness 115 

lengths below about 0.2 mm In addition to satellite-based methods, the surface roughness length 116 
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can also be computed from in situ-based approaches. For example, K Yang et al. [2008] 117 

estimated 𝑧଴௠  from observed eddy-covariance measurements during the Heihe River Basin Field 118 

Experiment (HEIFE, 1990-92) in an arid river basin in north-western China. Assuming that the 119 

Monin-Obukhov similarity theory holds, the major features of the turbulent heat transfer are first 120 

estimated, with the roughness length then computed from the logarithmic wind profile for both 121 

neutral and nonneutral conditions. The optimal 𝑧଴௠  values for the Gobi (absolutely flat) and 122 

Desert (sand dunes) flux sites are found to be roughly 0.68 and 2.74 mm, respectively. Cullen et 123 

al. [2007] also calculated the roughness length over the top of Mount Kilimanjaro in Tanzania 124 

using the logarithmic wind profile, even though in this case highly stable and unstable conditions 125 

were excluded. 𝑧଴௠ was found to be 1.7×10-3 m, in line with estimated values over snow and ice. 126 

For different sites in western Germany, Graf et al. [2014] estimated 𝑧଴௠ from single-level eddy-127 

covariance data using three distinct methods: (i) directly from the logarithmic wind profile; (ii) 128 

as (i) but using a regression approach, which accounts for the non-linearity in 𝛹௠, the integrated 129 

universal momentum function; (iii) flux-variance similarity approach. The authors stressed the 130 

need to compare the results of different methods, taking for example the ensemble mean or 131 

median of the results, after excluding those that produce outliers, in order to have more robust 132 

estimates. Lu et al. [2009] estimated 𝑧଴௠ indirectly by minimizing the cost function between the 133 

friction velocity and that estimated using the logarithmic wind profile around Beijing, China. 134 

The surface roughness length is found to be wind-direction dependent, with values in the range 135 

0.001 to 0.01 m. Prueger et al. [2004], used the flux-variance similarity approach to estimate the 136 

roughness length at a semi-arid site in New Mexico, US. It was found to range from 0.01 m at a 137 

grass site to 0.025 m at sites with a slight topography. In this work, the aerodynamic roughness 138 

length is first estimated using long-term eddy covariance measurements at one particular site in 139 
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the UAE, with the new value ingested into the WRF model which is then run over two months, 140 

in the warm and cold seasons. To the authors’ knowledge, this is the first attempt to infer 141 

roughness length from in situ observations in the Arabian Peninsula the determined roughness 142 

length was then used WRF to assess its impact on the surface and near-surface model predictions 143 

in such a hyper-arid region. We analyze the inferred roughness length value with respect to 144 

values proposed in the literature and investigate the sensitivity of WRF to this critical parameter. 145 

We expect that the roughness length that is inferred from in situ observations using an eddy 146 

covariance station should be more representation of local surface condition and therefore lead to 147 

an improvement in the model performance. 148 

This paper is organized as follows. Section 2 describes the WRF experimental setup and 149 

configuration. The estimation of the aerodynamic roughness length using eddy covariance 150 

measurements is discussed in section 3, while in section 4 the focus is on the impact of the 151 

updated roughness length on the surface and near-surface meteorological parameters over the 152 

UAE. In section 5, the WRF performance is evaluated against in-situ weather station data, with a 153 

summary of the main results presented in section 6. 154 

 155 

2. Experimental Setup and Verification Diagnostics 156 

The WRF [Skamarock et al., 2008] model version 3.8.1 dynamical solver, with three-way 157 

interactive domains of grid sizes of 12 km, 4 km and 1.333 km shown in Figure 1(a), is used to 158 

simulate the impact of an updated roughness length for the barren and sparsely vegetated land-159 

cover category, the dominant land use type over the UAE as shown in Figure 1(b). The 160 

outermost domain extends over the Arabian Peninsula, the Arabian Gulf, and Sea of Oman (d01; 161 

~16.4o – 31.4o N, 46.3o – 61.7o E). The first nested domain covers the entire UAE region (d02; 162 
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~20.7o – 27.3o N, 50.1o – 57.6o E), whereas the innermost grid is centered on Al Ain (d03; ~23.7o 163 

– 24.9o N, 55.0o – 56.3o E).  164 

 165 

(a)              (b) 166 

          167 
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(c)         168 

 169 

Figure 1. (a) Spatial extent of the 12 km (d01), 4 km (d02) and 1.333 km (d03) domains used in the WRF 170 
simulations, (b) dominant land cover category in the 4 km (d02) and 1.333 km (d03) grids, and (c) orography (m) of 171 
4 km (d02) and 1.333 km (d03) grids, and location of the 12 weather stations in the latter for which hourly 172 
meteorological data is available for evaluation. In (b) and (c), the black rectangle denotes the spatial extent of the 173 
innermost nest.   174 

 175 

The model physics options chosen are given in Table 1. A similar set up was used in previous 176 

studies over the UAE [e.g. Chaouch et al., 2017; Weston et al., 2018]. For all simulations, the 177 

Thompson cloud microphysics scheme is used to represent the grid-scale water vapour, cloud, 178 

and precipitation processes [Thompson et al., 2008]. The sub-grid-scale clouds are represented 179 

with the Kain–Fritsch scheme [Kain and Fritsch, 1990; Kain, 2004], with subgrid-scale cloud 180 

feedbacks to radiation accounted for following Alapaty et al. [2012]. The cumulus scheme is 181 

switched off in the 4 km and 1.333 km grids. The atmospheric radiative heating is calculated 182 

using the Rapid Radiative Transfer Model (RRTM) longwave radiation [Mlawer et al., 1997] 183 

and RRTM for Global Circulation Models (RRTMG) shortwave radiation [Iacono et al., 2008] 184 
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schemes. The exchanges of surface fluxes of momentum, heat and moisture between land and 185 

atmosphere are determined using the Quasi-Normal Scale Elimination (QNSE) Planetary 186 

Boundary layer (PBL) and surface layer schemes [Sukoriansky et al., 2005]. The land surface 187 

model (LSM) employed in the numerical simulations is the Noah LSM [Chen and Dudhia, 188 

2001]. 189 

 190 

Domains (Spatial scale) Three (12 km, 4 km, 1.333 km) with one-way interaction 

Vertical levels 45, with top level at 50 hPa 

Time step 60 s (12 km grid), 20 s (4 km grid) and 20/3 s (1.333 km grid) 

Initialization data NCEP-GFS analysis data at 0.25o spatial resolution  

Initialization time 06 UTC 

Integration time 72 h 

Land-use and land-cover  Moderate Resolution Imaging Spectroradiometer (MODIS) 

Radiation (Shortwave) Rapid Radiative Transfer Model for Global Circulation 
Models (RRTMG) 

Radiation (Longwave) Rapid Radiative Transfer Model (RRTM) 

Land Surface Model (LSM) Noah LSM, with four soil layers 

PBL & Surface Layer schemes Quasi-Normal Scale Elimination (QNSE) 

Microphysics parameterization Thompson cloud microphysics scheme 

Cumulus cloud parameterization 12 km grid: Kain-Fritsch (new Eta), with subgrid-scale cloud 
feedbacks to radiation switched on 
4 km and 1.333 km grids: No cumulus scheme 

 191 

Table 1. Details of the model configuration used in the WRF simulations. 192 
 193 

The land cover classes used in this work, Figure 1(b), are estimated from the Moderate 194 

Resolution Imaging Spectroradiometer (MODIS) measurements at 1 km spatial resolution for the 195 
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year 2001 [Ran et al., 2010]. Following several field campaigns performed as part of the 196 

UAEREP project, the soil texture and land use types are adapted to reflect their actual state. The 197 

topography employed in the WRF simulations, downloaded from the model’s website, is 198 

carefully interpolated from a 30’’ (or about ~925 m) spatial resolution dataset provided by the 199 

United States Geological Survey (USGS). The land cover in the Noah LSM is composed of 200 

twenty classes, and for each the roughness length is estimated using a predefined minimum and 201 

maximum value given in Table 2. The linear interpolation is conducted on a monthly basis, with 202 

the minimum 𝑧଴௠ corresponding to the minimum in vegetation coverage and vice-versa. For the 203 

desert land cover type targeted in this work, 𝑧଴௠ is always set to 10 mm.  204 

 205 

Land Cover Type Minimum 𝑧଴௠ሺmm) Maximum 𝑧଴௠(mm) 

Evergreen Needleleaf Forest 500 500 

Evergreen Broadleaf Forest 500 500 

Deciduous Needleleaf Forest 500 500 

Deciduous Broadleaf Forest 500 500 

Mixed Forests 200 500 

Closed Shurblands 10 50 

Open Shrublands 10 60 

Woody Savannas 10 50 

Savannas 150 150 

Grasslands 100 120 

Permanent Wetlands 300 300 

Croplands 50 150 

Urban & Built-Up 500 500 

Cropland/Natural Vegetation Mosaic 50 140 
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Snow and Ice 1 1 

Barren or Sparsely Vegetated 10 10 

Water 0.1 0.1 

Wooded Tundra 300 300 

Mixed Tundra 150 150 

Barren Tundra 50 100 

 206 

Table 2. Minimum and maximum aerodynamic roughness lengths, 𝑧଴௠ (mm), for each soil type used in the WRF 207 
simulations. The 𝑧0𝑚values for the land cover type targeted in this work, barren or sparsely vegetated, are 208 
highlighted in bold red font. 209 
 210 
 211 

WRF is run for one month in the cold (February 2018) and warm (June 2018) seasons. 212 

The model is initialized with Global Forecast System (GFS) data at 0.25o spatial resolution every 213 

day at 06 UTC, with the output in the first 6 h forecast of each run regarded as spin-up and 214 

discarded. The boundary conditions are updated every six hours and each simulation is carried 215 

over for 72 h with a master time step of 60 s. The model output for each grid is stored hourly 216 

with that of the 4 km and 1.333 km grids used for analysis. The WRF predictions are evaluated 217 

against (i) 30-minute eddy-covariance measurements at Al Ain’s International Airport 218 

(24o16’26.5535’’ N; 55o37’03.2196’’ E), taken as part of the UAEREP project [Branch and 219 

Wulfmeyer, 2019; Nelli et al., 2020], and (ii) hourly station data at 12 sites over the country 220 

provided by the UAE’s National Center of Meteorology (NCM), Figure 1(c). 221 

The WRF performance is assessed with the bias, equation (1), Mean Absolute Error 222 

(MAE), equation (2), and Root-Mean-Square Error (RMSE), equation (3), diagnostics. These 223 

scores, at the location of a given station 𝑋, are given by 224 

𝐵𝐼𝐴𝑆ሺ𝑋, 𝑦ሻ  ൌ 1

ே
∑ ሾ𝑀ሺ𝑋, 𝑖ሻ െ 𝑂ሺ𝑋, 𝑖ሻሿே

௜ୀ1    ሺ1ሻ  225 
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𝑀𝐴𝐸ሺ𝑋ሻ  ൌ
1

𝑁
෍|𝑀ሺ𝑋, 𝑖ሻ െ 𝑂ሺ𝑋, 𝑖ሻ|

ே

௜ୀ1

   ሺ2ሻ 

 226 

𝑅𝑀𝑆𝐸ሺ𝑋, 𝑦ሻ  ൌ  ඩ
1

𝑁
෍ሾ𝑀ሺ𝑋, 𝑖ሻ െ 𝑂ሺ𝑋, 𝑖ሻሿଶ

ே

௜ୀ1

  ሺ3ሻ 

 227 

where 𝑀ሺ𝑋, 𝑖ሻ is the WRF forecast at time 𝑖 of the nearest grid point to the weather station 𝑋, 228 

𝑂ሺ𝑋, 𝑖ሻ is the observed value at the same location, and 𝑁 is the number of time-points 229 

considered. In addition, the Pearson’s correlation coefficient, equation (4), is used to evaluate the 230 

similarity between the temporal evolution of the WRF-simulated wind speed and air temperature 231 

and that observed at each station. Here, 𝑀 തതതand 𝑂 ഥ denote the means of 𝑀ሺ𝑋, 𝑖ሻ and 𝑂ሺ𝑋, 𝑖ሻ over 232 

all available times. 233 

𝜌ሺ𝑋ሻ ൌ
∑ ൣ𝑀ሺ𝑋, 𝑖ሻ െ 𝑀 തതതത൧ൣ𝑂ሺ𝑋, 𝑖ሻ െ 𝑂 തതത൧𝑁

𝑖ൌ1

ට∑ ൣ𝑀ሺ𝑋, 𝑖ሻ െ 𝑀 തതതത൧
2𝑁

𝑖ൌ1
ට∑ ൣ𝑂ሺ𝑋, 𝑖ሻ െ 𝑂 തതത൧

2𝑁
𝑖ൌ1  

   ሺ4ሻ 

 234 

3. Estimation of roughness length using eddy covariance measurements at Al 235 

Ain station 236 

 Eddy-covariance measurements from a micrometeorological tower installed in the 237 

premises of Al Ain’s International Airport are used to estimate the aerodynamic roughness 238 

length, 𝑧଴௠ [Nelli et al., 2020]. The terrain at the site is nearly homogeneous and obstacle free in 239 

the north-west and south-east directions, with major obstacles (namely buildings) located to the 240 

south and north-east. 241 
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Based on the Monin-Obukhov similarity approach, the mean wind speed in the surface 242 

layer can be approximated by 243 

 𝑈ሺ𝑧ሻ ൌ
௨∗

఑
ቂln ቀ

௭

௭0೘
ቁ െ  𝜓௠ ቀ

௭

௅
ቁቃ  ሺ5ሻ  244 

where 𝑈ሺ𝑧ሻ is the near-surface horizontal wind speed (m s-1), 𝑢∗ is the friction velocity (m s-1), 𝐿 245 

is the Monin-Obukhov length, 𝜅 is the von Karman constant (=0.4), 𝑧 is the measurement height 246 

(here 2.3 m), and 𝛹௠ is the integrated universal momentum function. The horizontal wind speed 247 

and 𝑢∗ are estimated from ultrasonic anemometer measurements. This instrument is mounted on 248 

top of a 2.3 m tower, and its data are archived at a 10 Hz sampling rate.  249 

The surface layer stability is investigated through the Monin-Obukhov stability parameter 250 

(𝑧/𝐿), where 𝐿 is the Monin-Obukhov length, defined as 251 

𝐿 ൌ െ
௨∗

య

఑
೒

ഇೡ
ఏᇲ௪ᇲതതതതതതത    ሺ6ሻ   252 

 253 

In equation (6), 𝑔 is the acceleration due to gravity, 𝑤 is the vertical velocity, 𝜃 is the potential 254 

temperature, 𝜃௩ is the virtual potential temperature, ሺ ሻതതത denotes the time-mean and ሺ ሻ′ the 255 

deviation from it. The 𝑧/𝐿 values in the range -0.01 < z/𝐿 < 0.01 represent the near neutral 256 

stability regime, while z/𝐿 < -0.01 and 𝑧/𝐿 > 0.01 indicate unstable and stable regimes, 257 

respectively [Li et al., 2011]. According to Paulson [1970], for the unstable surface layer 258 

condition, the universal momentum function 𝛹௠  is defined as 259 

𝛹௠ ቀ
𝑧
𝐿

ቁ ൌ 𝑙𝑛 ቈ
1 ൅ 𝑥ଶ

2
൬

1 ൅ 𝑥
2

൰
ଶ

቉ െ 2 𝑎𝑟𝑐 𝑡𝑎𝑛ሺ𝑥ሻ ൅
𝜋
2

  ሺ7ሻ 



15 

with 𝑥 ൌ ሾ1 െ 𝛾ሺ𝑧/𝐿ሻሿ1/4 , where 𝛾 is a universal constant set to 19.3 [Högström, 1988]. For 260 

moderately stable conditions (0.01 < 𝑧/𝐿 < 1), 𝛹௠ is defined as 261 

𝛹௠ሺ𝑧/𝐿ሻ ൌ െ𝛽ሺ𝑧/𝐿ሻ   ሺ8ሻ 

where 𝛽 ൌ 6 is another universal constant derived from experimental data. 262 

Using equation (5), the aerodynamic roughness length, 𝑧0௠, can be estimated from the observed 263 

surface wind speed, 𝑢∗, and 𝐿. Following Graf et al. [2014] the outliers are filtered out by 264 

applying two conditions to the data, namely horizontal wind speed 𝑈 > 1.5 ms-1  and 𝑢∗ > 0.05 265 

ms-1. The measurements collected during the period April – October 2017 and February 2018 – 266 

January 2019 are used in the present study. 267 

 268 

 269 

Figure 2. Median (blue) of aerodynamic roughness length (mm) as function of the month of the year. The red curve 270 
shows the number of data points used in the calculation of the diagnostics. 271 

 272 

Table 3 shows the monthly mean wind speed 𝑈, frictional velocity 𝑢∗, median roughness 273 

length 𝑧଴௠ and number of data points used in the computation of the three quantities. Following 274 
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Graf et al. [2014], Jesan et al. [2016] and Cullen et al. [2007], the median roughness length is 275 

selected instead of the mean value, as it is deemed more representative of the actual 𝑧଴௠. All four 276 

variables show very little monthly variability, with mean wind speeds in the range 3-4 m s-1 and 277 

friction velocities mostly between 0.18 and 0.23 m s-1, while the roughness length values vary 278 

from 1.3 mm in June to 2.2 mm in November and February. These 𝑧଴௠ values are within the 279 

range of the values cited in the literature for bare-soil surfaces, 0.2 – 2.74 mm [e.g. Marticorena 280 

et al., 2004; Prigent, 2005; K Yang et al., 2008]. A comparison with Table 2 reveals that the 281 

estimated roughness length is roughly one order of magnitude smaller than the default value used 282 

in WRF. 283 

 284 

Month Wind speed (m s-1) Frictional 
velocity (m s-1) 

Median 
roughness 
length (mm) 

Number of 
data points 

January 3.2 0.185 1.8 350 

February 3.4 0.200 2.2 731 

March 3.6 0.206 1.4 732 

April 3.8 0.217 1.7 1598 

May 4.0 0.229 1.5 1706 

June 4.0 0.226 1.3 1641 

July 3.8 0.217 1.4 1829 

August 3.6 0.211 1.8 1950 

September 3.7 0.205 1.4 1768 

October 3.4 0.199 2.1 1265 

November 3.4 0.202 2.2 878 

December 3.0 0.177 1.8 579 
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 285 

Table 3. Monthly mean wind speed (m s-1), frictional velocity (m s-1), aerodynamic roughness length (mm; median), 286 
and number of data points for the period April – October 2017 and February 2018 – January 2019.  287 

 288 

In addition to a direct impact on the horizontal wind speed, equation (5), a change in the 289 

surface roughness length will have an effect on the surface exchange coefficients. The exchange 290 

coefficient for heat, 𝐶௛, can be expressed as 291 

𝐶௛ ൌ
𝜅ଶ

൤𝑙𝑛 ቀ
𝑧

𝑧0௠
ቁ െ 𝜓௠ ቀ

𝑧
𝐿ቁ൨ ൤𝑙𝑛 ቀ

𝑧
𝑧0௠

ቁ െ 𝜓௛ ቀ
𝑧
𝐿ቁ൨

   ሺ9ሻ 

 292 

where 𝜓௠and 𝜓௛are the integrated similarity functions for momentum and heat, defined in 293 

Jiménez et al. [2012]. A decrease in 𝑧଴௠, with all other parameters being the same, will lead to a 294 

lower 𝐶௛, which will have an impact on sensible heat flux, 𝐻. In the Noah LSM, the latter is 295 

given by 296 

𝐻 ൌ 𝜌 𝑐௣ 𝐶௛𝑈ሺ𝑇ௌ௄ െ 𝑇஺ூோሻ   ሺ10ሻ 

 297 

where 𝜌 is the surface air density (kg m-3), 𝑐௣ is the specific heat capacity of the air at constant 298 

pressure (J kg-1 K-1), 𝑇ௌ௄ is the surface temperature (K), and 𝑇஺ூோ is the surface air temperature 299 

(K), estimated from the air temperature on the lowest model level assuming that the potential 300 

temperature is vertically well-mixed just above the surface. A reduced 𝐶௛will therefore lead to a 301 

reduced 𝐻. The surface energy budget can be expressed as 302 

𝑅௡  െ 𝐺 ൌ ሾ𝑆𝑊 ↓ ൅𝐿𝑊 ↓ െ𝑆𝑊 ↑ െ𝐿𝑊 ↑ሿ െ 𝐺
ൌ ቂ𝑆𝑊 ↓ൈ ሺ1 െ 𝛼ሻ ൅ 𝐿𝑊 ↓ െ𝜀𝜎𝑇𝑆𝐾

4 ቃ െ 𝐺 ൌ 𝐻 ൅ 𝐿𝐸   ሺ11ሻ 

 303 
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where 𝑅௡is the net radiation flux, given by the sum of the downward (↓) and upward (↑) long-304 

wave (𝐿𝑊) and short-wave (𝑆𝑊) radiation fluxes, 𝐿𝐸 is the latent heat flux,𝐺 is the ground heat 305 

flux, 𝛼 is the surface albedo, 𝜀 is the surface emissivity, and 𝜎 is the Stefan-Boltzmann constant 306 

(5.67 ൈ 10ି8 𝑊𝑚ି2𝐾ି1). In the Noah LSM, the surface temperature, 𝑇ௌ௄, is obtained from 307 

equation (11). If 𝐻 is reduced, 𝑇ௌ௄ will increase, so as to keep the surface energy budget closed. 308 

Hence, a decrease in 𝑧0௠ is expected to lead to an increase in the near-surface horizontal wind 309 

speed 𝑈, equation (5), a decrease in the sensible heat flux 𝐻, equation (10), and an increase in 310 

surface temperature 𝑇ௌ௄, equation (11).  311 

 312 

4. WRF Sensitivity to Changes in Roughness Length 313 

In this section, the WRF-predicted surface parameters in the simulations with the default 314 

and updated roughness lengths are discussed. The focus will be on the horizontal wind speed, 315 

surface temperature and sensible heat flux, fields that have been shown to be sensitive to the 316 

surface roughness length [e.g. Kim and Hong, 2010]. Figure 3 shows the WRF predictions, as 317 

given by the 4 km and 1.333 km grids, for the horizontal wind for the cold (February) and warm 318 

(June) season months, and for the control configuration (left column) and the difference between 319 

the simulations with the updated (2.2 mm for February and 1.3 mm for June) and default (10 mm) 320 

roughness lengths (right column). The results are given at roughly the time of minimum (19 UTC 321 

or 23 local time, LT; nighttime) and maximum (13 UTC or 17 LT; daytime) diurnal wind speed. 322 
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 323 

Figure 3. Horizontal wind speed (m s-1) for the (a) WRF control configuration, and (b) horizontal wind speed 324 
difference between modified and control runs for February 2018 at 19 UTC or 23 LT (nighttime). (c)-(d) are as (a)-325 
(b) but for daytime (13 UTC or 17 LT). (e)-(h) are as (a)-(d) but for June 2018. The results shown here are for the 4 326 
km and 1.333 km grids. 327 

 328 

The left panels in Figure 3 show the horizontal wind speed for a typical winter and 329 

summer month over the UAE. For both seasons, there is a stark contrast between the land and the 330 
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adjacent Arabian Gulf: while during daytime the wind is stronger in the former, in association 331 

with the sea-breeze circulation reinforced by the background north-westerly winds, at night the 332 

highest magnitudes are predicted over the latter, which can be explained by the land breeze 333 

circulation [Eager et al., 2008]. By and large, the near-surface wind speed is slightly stronger in 334 

June when the sea-breeze circulation is more intense and occurs more frequently, even though in 335 

both seasons it has a magnitude between roughly 5 and 10 m s-1, in line with published work [e.g. 336 

Zhu and Atkinson, 2004; Eager et al., 2008; Naizghi and Ouarda, 2017]. It is interesting to note 337 

that, on the eastern side of the country right next to the Al Hajar mountains, the horizontal wind 338 

speed is much lower during daytime in both months, as seen by the blue shading in (c) and (g). 339 

Here, the sea and land-breeze circulations are mostly controlled by the Sea of Oman and not by 340 

the Arabian Gulf, and may not be as vigorous, a conclusion also reached by Yagoub [2010]. The 341 

difference plots look remarkably similar for both seasons, with an expected increase in the 342 

strength of the wind, following equation (5), by roughly 0.5 to 1 m s-1 over the regions where the 343 

roughness length is modified (cf. Figure 1(b)); elsewhere the differences are negligible. This 344 

strengthening of the near-surface wind is more significant during daytime when the wind speeds 345 

are higher. Reijmer et al. [2004] reported that, when the aerodynamic roughness length was 346 

reduced from 3 to 10-3 m over Antarctica, the horizontal wind speed changed by ±2 m s-1. Over 347 

southern China, Wang et al. [2009] found a decrease of the wind speed of up to 3 m s-1 when the 348 

roughness length was increased by roughly two orders of magnitude, due to the urbanization of 349 

the region. It is possible then that a change in the roughness length by an order of magnitude in a 350 

hyper-arid region, considered in this work, gives a wind speed difference of roughly 0.5 to 1 m s-
351 

1. 352 
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 353 

Figure 4. As Figure 3 but for surface temperature (ºC). The times shown are 03 UTC or 07 LT (a-b) and 10 UTC or 354 
14 LT (c-d) for February 2018, and 01 UTC or 05 LT (e-f) and 09 UTC or 13 LT (g-h) for June 2018, when the skin 355 
temperature is minimum and maximum, respectively. 356 
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Figure 4 is as Figure 3 but for the surface/skin temperature. The mean values for the 357 

daytime and nighttime temperatures, left column, are in line with those reported in the literature 358 

[e.g. Komuscu, 2017]. As expected, coastal locations exhibit a smaller amplitude temperature 359 

diurnal cycle compared to inland sites, with cooler daytime and warmer nighttime temperatures, 360 

due to the moderating influence of the Arabian Gulf [e.g. Zhu and Atkinson, 2004]. This is 361 

reflected by the negative surface temperature gradient from coastal to inland regions at night, and 362 

positive during daytime. In winter at night, and as a result of strong radiative cooling, surface 363 

temperatures can drop to 12ºC, with fog formation being a regular occurrence [e.g. Chaouch et 364 

al., 2017; Weston et al., 2018]. On the other hand, daytime surface temperatures in some inland 365 

regions can exceed 50ºC, as a result of the excessive downward short-wave radiation flux arising 366 

from a combination of clear skies and dry weather conditions. The sea surface temperature over 367 

the Arabian Gulf ranges from 22ºC in winter to 32ºC in summer. When the roughness length is 368 

updated in the model, the nighttime surface temperature stays about the same, with differences 369 

generally within ±0.5ºC. However, the daytime temperature increases by roughly 1.5-2.5ºC. The 370 

fact that a change in the surface roughness length has a significant impact on the maximum 371 

temperature but a negligible influence on the minimum temperature is consistent with other 372 

studies such as June et al. [2018]. This is the case because an updated roughness length will 373 

affect the surface temperature through changes in the radiative heat fluxes and subsequently in 374 

the surface energy budget, equations (9)-(11). As the heat fluxes are rather small at night [See 375 

Figure 5 in Nelli et al., 2020], the surface temperature is roughly the same in the two simulations. 376 

In terms of magnitude, June et al. [2018] reported a roughly 1ºC increase in air temperature for a 377 

doubling of the roughness length in Indonesia, whereas Reijmer et al. [2004] found an air 378 

temperature change of up to ±10ºC for a roughness length reduction from 3 to 10-3 m over 379 
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Antarctica. For a vegetated site in the Netherlands, Giorgi [1997] noted a decrease in surface 380 

temperature by about 0.4ºC when the roughness length was increased from 0.15 to 0.4 m, while 381 

an increment of 𝑧଴௠ to 3 m changed the surface temperature by roughly 0.5ºC. The magnitude of 382 

the surface temperature difference given in Figure 4 is therefore in line with that reported by 383 

other authors, larger than that of Giorgi [1997] given the hyper-arid climate of the UAE and 384 

consequent lack of vegetation. 385 

 386 
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 387 

Figure 5. As Figure 3 but for the sensible heat flux (W m-2). The times shown are 03 UTC or 07 LT (a-b) and 10 388 
UTC or 14 LT (c-d) for February 2018, and 01 UTC or 05 LT (e-f) and 09 UTC and 13 LT (g-h) for June 2018, 389 
when the skin temperature reaches its minimum and maximum values, respectively. 390 

 391 
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The final field shown is the sensible heat flux, 𝐻, given in Figure 5. The mean values for 392 

the daytime and nighttime fluxes, left column, are in line with those reported e.g. in Nelli et al. 393 

[2020]. At night, the fluxes are close to zero or even negative indicating the presence of an 394 

inversion, whereas during daytime they are mostly in the range 150 to 350 W m-2 in winter and 395 

250 to 450 W m-2 in the summer. It is interesting to note that over the urban regions (cf. Figure 396 

1(b)) the sensible heat flux values are rather large during daytime, in excess of 450 W m-2 in the 397 

summer season. These 𝐻 values are high but not unprecedented: e.g. Man Sing et al. [2015] 398 

reported that in central business districts of Hong-Kong, the sensible heat flux can exceed 1000 399 

W m-2, higher than the surface net radiation flux. As 𝐻 is rather small at night, the changes in the 400 

magnitude of the sensible heat flux when the roughness length is updated will be negligible. 401 

During daytime, however, a reduction of the roughness length by roughly an order of magnitude, 402 

and in line with equations (10)-(11), leads to a decrease in 𝐻, by roughly 5 to 10 W m-2. Reijmer 403 

et al. [2004] found a change in 𝐻 of 20-35 W m-2 when the roughness length was varied by 404 

roughly three orders of magnitude over Antarctica. Giorgi [1997] reported that 𝐻 increased by 405 

about 4 W m-2 when 𝑧଴௠was increased from 0.15 to 0.4 m over Cabaux in the Netherlands, but a 406 

further increase of the roughness length to 3 m led to a rise in 𝐻 by roughly 10 W m-2. The 407 

magnitude of the change in 𝐻 found here is therefore consistent with that reported in the referred 408 

studies. 409 

 410 

5. Evaluation of WRF simulations using observational data 411 

In the previous section, the impact of a modification of the roughness length on the near-412 

surface wind speed, surface temperature and sensible heat flux over the UAE for a winter and 413 
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summer month was discussed. Here, the performance of the two WRF configurations is assessed 414 

against eddy covariance data at the Al Ain site where the roughness length estimation took place, 415 

and the 12 NCM stations shown in Figure 1(c). 416 

Figures 6 and 7 show the time-series of the three variables at Al Ain for February and June 2018. 417 

The left panels show the data for the full month, and the right panels give the WRF biases for the 418 

simulations with the control and modified configurations.  419 

 420 

Figure 6. (a) Observed (black) and WRF-predicted 10-meter horizontal wind speed (m s-1) for the simulations with 421 
the control (red) and modified (blue) configurations for February 2018 at Al Ain location. (c) and (e) are as (a) but 422 
for the 2-m air temperature (oC) and sensible heat flux (HFX, positive if upwards from the surface; W m-2), 423 
respectively. (b), (d) and (f) show the correspondent WRF biases. 424 

 425 
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 426 

Figure 7. As Figure 6 but for June 2018. 427 

For February 2018, the wind speed at Al Ain was generally low, not exceeding 8 m s-1. In line 428 

with Nelli et al. [2020], the wind speed diurnal cycle at Al Ain follows a bi-model distribution, 429 

with a primary peak in the evening hours, around 18-19 LT, and a secondary peak in the early 430 

morning, around 8-9 LT. They result from the interaction of the land/sea-breeze circulation with 431 

the topographic-driven winds that arise from the presence of the nearby Al Hajar mountains.  432 

The first 11 days were rather cool, with daytime maximum temperatures generally below 25ºC 433 

and nighttime minimum temperatures at times below 10ºC. In the second half of the month, 434 

however, it was much warmer, in particular at night, with minimum temperatures above 20ºC in 435 

the last days. The large (>100 W m-2) sensible heat fluxes during the day, driven by the strong 436 

heating of the land surface by the Sun, contrast with the rather small or even negative values at 437 
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night, the latter an indication of the presence of an inversion. By and large, WRF over predicts 438 

the strength of the near-surface winds typically by 1-3 m s-1, with slightly larger biases when the 439 

surface roughness length is updated (maximum differences of ±2 m s-1), in line with Figure 3. 440 

The tendency of the WRF model to overestimate the 10-meter horizontal wind speed in arid 441 

regions has been highlighted by other authors such as Gunwani and Mohan [2017], who also 442 

reported similar biases. Hari Prasad et al. [2016] in a tropical station in southeast India, Cheng 443 

and Steenburgh [2005] and Steeneveld et al. [2008] over the United States, and Borge et al. 444 

[2008] over the Iberian Peninsula, also reached a similar conclusion. Possible explanations for 445 

this systematic discrepancy include (i) a poor representation of its subgrid-scale fluctuations and 446 

of the surface drag parameterization in the model; (ii) an inaccurate simulation of the land and/or 447 

sea surface temperatures, and hence the low-level atmospheric circulation; (iii) uncertainties in 448 

the estimation of the roughness length and measured wind speed; (iv) impact of unresolved 449 

topography not accounted for in the WRF runs. In the first 14 days of the month, WRF exhibits a 450 

clear tendency to overestimate the nighttime temperature, while in the second half, it is mostly 451 

underestimated. These discrepancies are generally within ±2ºC, with the simulation with the 452 

reduced roughness length giving an improved performance (the bias is generally reduced by up 453 

to 2ºC), consistent with Figure 4. The larger bias values seen in Figure 6(d) arise from a 454 

tendency of the WRF model to warm up faster in the morning and cool down faster in the 455 

evening with respect to observations. This has been reported by Weston et al. [2018], and can be 456 

explained by (i) an incorrect representation of the local topography, such as a topographic 457 

orientation tilted more towards the Sun in the morning in WRF; (ii) an under prediction of the 458 

amount of dust or greenhouse gas concentrations in the atmosphere, and/or (iii) deficiencies in 459 

the radiation scheme. Given the referred biases in the temperature diurnal cycle, the sensible heat 460 
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flux variability will be exaggerated in the two WRF simulations. In particular, 𝐻 is higher than 461 

that observed during the daytime, owing to the warmer surface temperatures, and lower at night, 462 

indicating a stronger inversion in the model. As for the temperature, when run with the modified 463 

configuration, WRF generally gives more accurate sensible heat flux predictions, with a decrease 464 

in the bias by up to 50 W m-2.  465 

The model biases highlighted above for the winter month (February 2018) are also 466 

mostly present in the summer month (June 2018), as seen by comparing Figure 6 with 7. The 467 

magnitude of the wind speed overestimation is slightly larger in the warm season, at times 468 

exceeding 8 m s-1. However, the wind speed in June 2018 is also generally higher than that in 469 

February, in line with Eager et al. [2008] and Nelli et al. [2020] and Figure 3, due to the stronger 470 

land/sea-breeze and downslope-upslope circulations of the nearby Al Hajar mountains. While in 471 

February 2018 WRF both overestimated and underestimated the minimum temperature, in June 472 

the latter tendency prevails throughout the month, also with respect to the maximum 473 

temperatures. This cold bias has been reported by other authors in studies over arid and semi-arid 474 

regions [e.g. W Zheng et al., 2012; Weston et al., 2018; Valappil et al., 2019], and can at least be 475 

partially corrected by modifying the land surface model’s configuration [Weston et al., 2018]. 476 

The diurnal variability of the observed sensible heat flux is comparable to that in the cold season, 477 

except that the higher daytime surface temperatures lead to more positive fluxes during the day, 478 

while at night temperature inversions are less frequent compared to the winter month. The 479 

tendency of WRF to warm up too fast in the morning and cool down at a higher rate compared to 480 

observations is also seen in Figure 7, as are the more skillful predictions of the modified 481 

configuration for the air temperature and sensible heat flux. 482 
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 In Figures 6 and 7 the WRF predictions are assessed against the observed measurements 483 

at Al Ain. However, similar conclusions regarding the model’s performance are drawn for the 484 

other sites for which in situ data is available for evaluation. As an example, Figure 8 shows the 485 

model air temperature bias for the control simulation, and the difference between the predictions 486 

of the modified and control WRF runs, for stations 1 to 12, located in the 1.333 km grid, Figure 487 

1(c). For February 2018, the most significant bias is an over prediction of both the daytime and 488 

nighttime temperatures, while in June 2018 the biases are generally of a smaller magnitude, with 489 

a weak cold bias at night at the vast majority of the stations. For both months, the difference 490 

between the forecasts of the two WRF simulations generally has the opposite sign to the control 491 

WRF run bias, which indicates that the run with the modified configuration gives more skillful 492 

predictions. The magnitude of this improvement, however, is smaller than the bias of the control 493 

WRF run, not exceeding about 0.6 K. Table 4 shows the bias, RMSE, MAE and correlation (ρ) 494 

diagnostics for the two months and simulations and all eight stations. When averaged over all 495 

times, the WRF air temperature biases are roughly the same for the two runs, generally within 496 

0.1 K, even though the simulation with the updated roughness length tends to give the smallest 497 

values. The same is true for the RMSE and MAE scores, while the correlations, already high in 498 

the control simulation mostly in excess of 0.93, do not show much variability. Figure 9 is as 499 

Figure 8 but for the 10-m horizontal wind speed. For the control simulation, and for all stations 500 

considered, the largest biases occur around 12-14 UTC (16-18 LT), in the local evening time, 501 

when the wind speed is typically at the maximum. For stations 3-5, 8 and 11, there is another 502 

positive peak of a smaller amplitude in the morning, around the time of the secondary maximum. 503 

At other times the wind speed biases are small, except mainly for stations 6 and 12 where the 504 

wind strength is under predicted by WRF at night. At these stations, the wind speed is stronger, 505 
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generally exceeding 5 m s-1, with the model predicting weaker winds than those observed. In 506 

other words, the model wind speed bias seems to be a function of the strength of the wind, which 507 

is further analyzed below. In line with Figures 3, 6 and 7, and mostly in the evening hours, the 508 

positive biases are further augmented when the roughness length is reduced, but the negative 509 

biases are mitigated. The verification diagnostics given in Table 4 reflect the discussion above: 510 

poorer bias, RMSE and MAE scores for the simulation with the reduced roughness length, and 511 

comparable correlation coefficients for the two runs, generally in excess of 0.65. The lower 512 

scores for the 10-m wind speed compared to the 2-m air temperature can be explained by the 513 

higher temporal variability of the latter, more dependent on local-scale conditions and hence 514 

harder to accurately simulate.     515 

 516 

Figure 8. 2-m air temperature bias (K) with respect to the NCM station data for the control WRF configuration for 517 
(a) February 2018 and (c) June 2018. (b) and (d) show the difference between the predictions of the modified and 518 
control WRF configurations for the same period. The horizontal axis shows the time in UTC while the vertical axis 519 
gives the station number (see Figure 1(c) for more details).  520 

 521 
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 522 

Figure 9. As Figure 8 but for the 10-m horizontal wind speed (m s-1). 523 

 524 

 Station Name (#) 

10‐m wind speed (m s‐1) 2‐m air temperature (oC) 

   BIAS  MAE  RMSE ρ BIAS MAE  RMSE  ρ

Al Shiweb (#1)  F  0.9 

(1.3) 

1.6 

(1.8) 

2.2 

(2.5) 

0.632 

(0.613) 

0.1 

(0.3) 

1.1 

(1.2) 

1.4 

(1.6) 

0.975 

(0.97) 

J  0.7 

(1.3) 

1.7 

(2.1) 

2.5 

(3.1) 

0.612 

(0.556) 

‐0.6  (‐

0.5) 

1.3 

(1.4) 

1.6 

(1.8) 

0.97 

(0.964) 

Al Arad (#2)  F  1.5 

(1.8) 

1.8 

(2.1) 

2.2 

(2.5) 

0.657 

(0.639) 

0.1 

(0.2) 

1.1 

(1.2) 

1.5 

(1.6) 

0.975 

(0.973) 

J  1.0 

(1.5) 

1.6 

(2.1) 

2.1 

(2.5) 

0.818 

(0.786) 

‐1.3  (‐

1.1) 

1.6 

(1.5) 

2.0 

(1.9) 

0.973 

(0.973) 

Al Foah (#3)  F  1.8 

(2.0) 

2.1 

(2.3) 

2.6 

(2.9) 

0.507 

(0.497) 

0.1 

(0.2) 

1.3 

(1.4) 

1.8 

(1.8) 

0.96 

(0.959) 

J  2.6 

(3.0) 

2.8 

(3.2) 

3.6 

(4.1) 

0.399 

(0.375) 

‐1.4  (‐

1.2) 

1.8 

(1.8) 

2.2 

(2.1) 

0.956 

(0.953) 

Al Khazna (#4)  F  2.0 

(2.3) 

2.1 

(2.4) 

2.6 

(3.0) 

0.634 

(0.597) 

0.3 

(0.4) 

1.2 

(1.2) 

1.5 

(1.6) 

0.965 

(0.963) 
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J  2.1 

(2.4) 

2.2 

(2.5) 

2.8 

(3.1) 

0.755 

(0.745) 

‐0.8  (‐

0.7) 

1.1 

(1.1) 

1.5 

(1.5) 

0.98 

(0.979) 

Hatta (#5)  F  1.8 

(2.1) 

2.1 

(2.4) 

2.9 

(3.3) 

0.523 

(0.493) 

‐0.4  (‐

0.3) 

1.5 

(1.5) 

1.9 

(2.0) 

0.92 

(0.915) 

J  2.8 

(3.4) 

3.0 

(3.6) 

3.7 

(4.4) 

0.568 

(0.516) 

‐1.2  (‐

1.1) 

1.7 

(1.7) 

2.0 

(2.1) 

0.933 

(0.921) 

Jabal Hafeet (#6)  F  ‐0.4  (‐

0.2) 

2.4 

(2.4) 

2.9 

(3.0) 

0.505 

(0.501) 

0.8 

(0.8) 

2.0 

(2.0) 

2.4 

(2.4) 

0.88 

(0.881) 

J  ‐1.0  (‐

0.7) 

3.2 

(3.3) 

3.9 

(4.0) 

0.359 

(0.338) 

0.9 

(0.8) 

2.3 

(2.2) 

2.7 

(2.6) 

0.783 

(0.790) 

Khatam  Al  Shaklah 

(#7) 

F  1.4 

(1.7) 

1.9 

(2.1) 

2.3 

(2.7) 

0.532 

(0.516) 

‐1.2  (‐

1.1) 

1.6 

(1.5) 

1.9 

(1.9) 

0.959 

(0.96) 

J  1.4 

(2.1) 

2.0 

(2.4) 

2.7 

(3.3) 

0.669 

(0.635) 

‐1.9  (‐

1.8) 

2.2 

(2.1) 

2.5 

(2.4) 

0.954 

(0.955) 

Raknah (#8)  F  1.6 

(1.9) 

1.9 

(2.1) 

2.3 

(2.6) 

0.659 

(0.663) 

0.8 

(0.9) 

1.6 

(1.7) 

2.3 

(2.5) 

0.965 

(0.962) 

J  1.7 

(2.1) 

2.0 

(2.3) 

2.4 

(2.8) 

0.797 

(0.783) 

0.1 

(0.2) 

1.7 

(1.8) 

2.1 

(2.3) 

0.964 

(0.961) 

Rowdah (#9)  F  1.0 

(1.3) 

1.5 

(1.7) 

1.9 

(2.2) 

0.701 

(0.697) 

‐0.3  (‐

0.2) 

1.0 

(1.1) 

1.4 

(1.4) 

0.978 

(0.976) 

J  1.2 

(1.7) 

1.7 

(2.0) 

2.3 

(2.7) 

0.746 

(0.739) 

‐1.4  (‐

1.3) 

1.5 

(1.4) 

1.9 

(1.7) 

0.979 

(0.980) 

Saih Al Salem (#10)  F  1.7 

(2.1) 

1.9 

(2.3) 

2.4 

(2.9) 

0.63 

(0.611) 

0.8 

(1.0) 

1.9 

(2.1) 

2.4 

(2.5) 

0.969 

(0.967) 

J  1.7 

(2.1) 

1.9 

(2.3) 

2.4 

(2.9) 

0.741 

(0.705) 

‐0.9  (‐

0.7) 

1.3 

(1.4) 

1.8 

(1.9) 

0.974 

(0.969) 

Swiehan (#11)   F  2.0 

(2.4) 

2.2 

(2.4) 

2.6 

(2.9) 

0.715 

(0.72) 

‐0.8  (‐

0.6) 

1.4 

(1.5) 

1.8 

(1.8) 

0.972 

(0.971) 
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J  2.1 

(2.5) 

2.3 

(2.6) 

2.9 

(3.2) 

0.700 

(0.703) 

‐2.2  (‐

2.0) 

2.2 

(2.1) 

2.6 

(2.4) 

0.979 

(0.977) 

Al Ain (#12)  F  0.3 

(0.4) 

1.8 

(1.8) 

2.3 

(2.3) 

0.335 

(0.373) 

0.6 

(0.6) 

4.0 

(3.9) 

4.9 

(4.8) 

0.592 

(0.602) 

J  0.5 

(0.7) 

2.6 

(2.6) 

3.3 

(3.4) 

0.211 

(0.243) 

‐0.2  (‐

0.2) 

5.1 

(5.0) 

6.0 

(5.9) 

0.344 

(0.359) 

 525 

Table 4. Verification diagnostics for the 10-m wind speed and 2-m air temperature at the 12 NCM weather stations 526 
given in Figure 1(c), for the control (modified) WRF configuration. The letters “F” and “J” denote the February 527 
2018 and June 2018 months, respectively. 528 

 529 

In order to analyze the dependence of the model’s wind speed bias on the strength of the 530 

wind, Figure 10 shows the bias for the 12 NCM stations, for the control and modified WRF 531 

configurations, and for the two months as a function of the wind speed. As can be seen, WRF has 532 

a tendency to overestimate the strength of low winds, in particular for speeds < 4 m s-1, and 533 

underestimate the strength of winds for speeds mostly in excess of 6 m s-1. This behaviour has 534 

been reported by other authors [e.g. Carvalho et al., 2012; Q Yang et al., 2013], and may be 535 

attributed to deficiencies in the PBL scheme. In particular, it is possible that the model under 536 

predicts the turbulent mixing for low winds and over predicts it for high winds. While for low 537 

wind speeds the model performance with the two configurations is comparable, with an 538 

overestimation of the observed values by around 2 m s-1, for high speeds, in excess of roughly 6 539 

m s-1, the simulation with a reduced roughness length gives more skillful predictions, typically by 540 

1-3 m s-1. In other words, while when all wind speeds are taken into account the two WRF runs 541 

give comparable predictions, the improved configuration is more accurate for stronger winds, 542 

which are more critical for human and industrial activities [e.g. Stathopoulos, 2009]. An analysis 543 

of the results of domain 02 (4 km resolution) for the same set of stations revealed generally 544 



35 

higher biases of up to 3 m s-1 (not shown), highlighting the added value of having a higher-545 

resolution grid over the target region for the simulation of the strength of the near-surface 546 

horizontal wind. 547 

 548 

 549 

Figure 10. Bias in the 10-m wind speed (m s-1) for different wind speed bins, for the simulations with the (a) control 550 
and (b) modified WRF configurations at the location of the 12 NCM weather stations (see Figure 1(c) for more 551 
details). (a-b) show the results for February 2018 and (c-d) for June 2018. 552 

 553 

6. Discussion and Conclusions 554 

 555 

The roughness length, a crucial parameter for land-atmosphere interactions [e.g. Reijmer 556 

et al., 2004; Jee et al., 2016; June et al., 2018], is defined as the height above the surface at 557 

which the horizontal wind speed is zero, assuming that its variation in the surface layer follows a 558 

logarithmic profile [e.g. Jiménez et al., 2012]. Empirically, 𝑧0௠ is estimated as being about 1/10th 559 

of the height of the roughness elements [e.g. Wallace and Hobbs, 2006], but its representation in 560 

numerical models is challenging given the land surface heterogeneity within a model grid-box. 561 



36 

The common approach is to assign a value or range of values based on the dominant land-use 562 

type [e.g. Dong et al., 2018; Campbell et al., 2019], which can be estimated from high temporal 563 

frequency observations [e.g. Reddy and Rao, 2016] or remote sensing assets [e.g. K Yang et al., 564 

2008]. 565 

In this paper, the surface roughness length in a desert site in the UAE is estimated using 566 

eddy-covariance measurements, and is found to be about one order of magnitude smaller than the 567 

default value used in WRF, in the range 1.3 to 2.2 mm, as opposed to 10 mm. The estimated 568 

𝑧଴௠is, however, within the range of values for barren regions, 0.2 – 2.74 mm [e.g. Marticorena 569 

et al., 2004; Prigent, 2005; K Yang et al., 2008]. For a month in the winter (February 2018) and 570 

summer (June 2018) seasons, the WRF model is run over the UAE with the default and 571 

estimated roughness lengths, in a 12 km - 4 km - 1.333 km configuration, with the hourly 572 

predictions of the latter two grids used for analysis. For both months, and in line with 573 

expectations and previous studies [e.g. Reijmer et al., 2004; Wang et al., 2009], a reduced 574 

roughness length leads to stronger near-surface winds by up to 1 m s-1. As a result of a reduced 575 

exchange coefficient for heat, the sensible heat flux is lower by up to 10 W m-2. In order to keep 576 

the surface energy budget closed, and given the lower values of 𝐻, the surface temperature 577 

increases by up to 2.5ºC. The sign and magnitude of the changes in the surface temperature and 578 

heat fluxes found here are also in line with those reported by other studies [e.g. Giorgi, 1997; 579 

Reijmer et al., 2004; June et al., 2018]. 580 

In addition to a direct comparison of the two WRF products, the model predictions are 581 

evaluated against weather station data provided by the NCM. At Al Ain, where the roughness 582 

length estimation was conducted, WRF is found to over predict the observed 10-m wind speed 583 

by roughly 0.5 m s-1, in line with other studies in arid/semi-arid regions [e.g. Gunwani and 584 
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Mohan, 2017], slightly augmented in the modified configuration (maximum differences up to 1 585 

m s-1). However, the wind speed bias is dependent on the strength of the wind. In particular, it is 586 

found that, while for low wind speeds < 4 m s-1 the two WRF configurations give comparable 587 

predictions, for speeds mostly in excess of about 6 m s-1, having a more realistic representation of 588 

the observed roughness length generates more skillful forecasts, mostly by 1-3 m s-1. A similar 589 

dependence of the model wind speed predictions on the strength of the wind has been reported 590 

by other authors [e.g. Carvalho et al., 2012; Q Yang et al., 2013], and may arise from an 591 

incorrect representation of the turbulent mixing by the PBL scheme. When compared to the 592 

predictions of the 4 km grid, the wind speeds predicted by the 1.333 km grid are generally more 593 

accurate, with biases up to 3 m s-1 smaller compared to station data. For air temperature and 𝐻, 594 

the simulation with the reduced roughness length is more skillful, being able to partially correct 595 

the cold bias seen in the warm season which has been highlighted by D Zheng et al. [2013]. The 596 

biases of these two fields are mostly in the range ±2ºC and ±100 W m-2, respectively. The 597 

conclusions reached at Al Ain also hold for other stations, in particular for those located in the 598 

inland desert where the roughness length was modified. 599 

The analysis conducted here highlighted potential deficiencies in the PBL scheme, in 600 

particular with respect to the turbulent mixing and surface drag formulation. A further 601 

improvement of the model forecasts can be obtained by optimizing tunable parameters used in 602 

the PBL and surface layer schemes, as shown in B Yang et al. [2017]. Alternatively, a new 603 

parameterization scheme tailored for arid/semi-arid regions can be developed and subsequently 604 

implemented in the model. Some of these improvements will be presented in a subsequent paper.  605 

   606 



38 

Acknowledgments and Data 607 

 608 

We acknowledge the National Center of Meteorology (NCM) for kindly providing weather 609 

station data used for model evaluation. This study is supported by the UAE Research Program 610 

for Rain Enhancement Science (UAEREP). Data used in the present analysis is available at 611 

https://kudrive.ku.ac.ae/oc-shib/index.php/s/sdUNPlvZlaP2JoC. We are also grateful to Hans-612 

Dieter Wizemann from the University of Hohenheim for operating the eddy-covariance station 613 

and processing the raw measurements. 614 

 615 

   616 



39 

References 617 

Alapaty, K., J. A. Herwehe, T. L. Otte, C. G. Nolte, O. R. Bullock, M. S. Mallard, J. S. Kain, and J. 618 

Dudhia (2012), Introducing subgrid-scale cloud feedbacks to radiation for regional meteorological and 619 

climate modeling, Geophys Res. Lett., 39(24), doi:10.1029/2012gl054031. 620 

Borge, R., V. Alexandrov, J. José del Vas, J. Lumbreras, and E. Rodríguez (2008), A comprehensive 621 

sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula, Atmos. 622 

Environ., 42(37), 8560-8574, doi:https://doi.org/10.1016/j.atmosenv.2008.08.032. 623 

Branch, O., and V. Wulfmeyer (2019), Deliberate enhancement of rainfall using desert plantations, 624 

Proceedings of the National Academy of Sciences, 116(38), 18841, doi:10.1073/pnas.1904754116. 625 

Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley (1971), Flux-Profile Relationships in the 626 

Atmospheric Surface Layer, J. Atmos. Sci., 28(2), 181-189, doi:10.1175/1520-627 

0469(1971)028<0181:FPRITA>2.0.CO;2. 628 

Campbell, P. C., J. O. Bash, and T. L. Spero (2019), Updates to the Noah Land Surface Model in WRF-629 

CMAQ to Improve Simulated Meteorology, Air Quality, and Deposition, Journal of Advances in 630 

Modeling Earth Systems, 11(1), 231-256, doi:10.1029/2018MS001422. 631 

Carvalho, D., A. Rocha, M. Gómez-Gesteira, and C. Santos (2012), A sensitivity study of the WRF model 632 

in wind simulation for an area of high wind energy, Environ. Modell. Softw., 33, 23-34, 633 

doi:10.1016/j.envsoft.2012.01.019. 634 

Chaouch, N., M. Temimi, M. Weston, and H. Ghedira (2017), Sensitivity of the meteorological model 635 

WRF-ARW to planetary boundary layer schemes during fog conditions in a coastal arid region, Atmos. 636 

Res., 187, 106-127, doi:10.1016/j.atmosres.2016.12.009. 637 

Charnock, H. (1955), Wind stress on a water surface, Q. J. R. Meteorol. Soc., 81(350), 639-640, 638 

doi:10.1002/qj.49708135027. 639 

Chen, F., and J. Dudhia (2001), Coupling an Advanced Land Surface–Hydrology Model with the Penn 640 

State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity, Mon. Weather Rev., 641 

129(4), 569-585, doi:10.1175/1520-0493(2001)129<0569:caalsh>2.0.co;2. 642 

Cheng, W. Y. Y., and W. J. Steenburgh (2005), Evaluation of Surface Sensible Weather Forecasts by the 643 

WRF and the Eta Models over the Western United States, Weather Forecast., 20(5), 812-821, 644 

doi:10.1175/waf885.1. 645 

Cullen, N. J., T. Mölg, G. Kaser, K. Steffen, and D. R. Hardy (2007), Energy-balance model validation on 646 

the top of Kilimanjaro, Tanzania, using eddy covariance data, Annals of Glaciology, 46, 227-233, 647 

doi:10.3189/172756407782871224. 648 



40 

Dong, H., S. Cao, T. Takemi, and Y. Ge (2018), WRF simulation of surface wind in high latitudes, 649 

Journal of Wind Engineering and Industrial Aerodynamics, 179, 287-296, 650 

doi:10.1016/j.jweia.2018.06.009. 651 

Dudhia, J., and J. F. Bresch (2002), A Global Version of the PSU–NCAR Mesoscale Model, Mon. 652 

Weather Rev., 130(12), 2989-3007, doi:10.1175/1520-0493(2002)130<2989:agvotp>2.0.co;2. 653 

Dyer, A. J., and B. B. Hicks (1970), Flux-gradient relationships in the constant flux layer, Q. J. R. 654 

Meteorol. Soc., 96(410), 715-721, doi:10.1002/qj.49709641012. 655 

Eager, R. E., S. Raman, A. Wootten, D. L. Westphal, J. S. Reid, and A. Al Mandoos (2008), A 656 

climatological study of the sea and land breezes in the Arabian Gulf region, J. Geophys. Res., 113(D15), 657 

doi:10.1029/2007jd009710. 658 

Giorgi, F. (1997), An Approach for the Representation of Surface Heterogeneity in Land Surface Models. 659 

Part II: Validation and Sensitivity Experiments, Mon. Weather Rev., 125(8), 1900-1919, 660 

doi:10.1175/1520-0493(1997)125<1900:aaftro>2.0.co;2. 661 

Graf, A., A. van de Boer, A. Moene, and H. Vereecken (2014), Intercomparison of Methods for the 662 

Simultaneous Estimation of Zero-Plane Displacement and Aerodynamic Roughness Length from Single-663 

Level Eddy-Covariance Data, Boundary Layer Meteorol., 151(2), 373-387, doi:10.1007/s10546-013-664 

9905-z. 665 

Greeley, R., D. G. Blumberg, J. F. McHone, A. Dobrovolskis, J. D. Iversen, N. Lancaster, K. R. 666 

Rasmussen, S. D. Wall, and B. R. White (1997), Applications of spaceborne radar laboratory data to the 667 

study of aeolian processes, Journal of Geophysical Research: Planets, 102(E5), 10971-10983, 668 

doi:10.1029/97je00518. 669 

Gunwani, P., and M. Mohan (2017), Sensitivity of WRF model estimates to various PBL 670 

parameterizations in different climatic zones over India, Atmos. Res., 194, 43-65, 671 

doi:10.1016/j.atmosres.2017.04.026. 672 

Hari Prasad, K. B. R. R., C. Venkata Srinivas, C. Venkateswara Naidu, R. Baskaran, and B. Venkatraman 673 

(2016), Assessment of surface layer parameterizations in ARW using micro-meteorological observations 674 

from a tropical station, Meteorol. Appli., 23(2), 191-208, doi:10.1002/met.1545. 675 

Högström, U. (1988), Non-dimensional wind and temperature profiles in the atmospheric surface layer: A 676 

re-evaluation, Boundary Layer Meteorol., 42(1), 55-78, doi:10.1007/BF00119875. 677 

Hong, S., V. Lakshmi, E. E. Small, F. Chen, M. Tewari, and K. W. Manning (2009), Effects of vegetation 678 

and soil moisture on the simulated land surface processes from the coupled WRF/Noah model, J. 679 

Geophys. Res., 114(D18), doi:10.1029/2008jd011249. 680 



41 

Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins (2008), 681 

Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, J. 682 

Geophys. Res., 113(D13), doi:10.1029/2008jd009944. 683 

Jee, J.-B., M. Jang, C. Yi, I.-S. Zo, B.-Y. Kim, M.-S. Park, and Y.-J. Choi (2016), Sensitivity Analysis of 684 

the High-Resolution WISE-WRF Model with the Use of Surface Roughness Length in Seoul 685 

Metropolitan Areas, Atmosphere, 26(1), 111-126, doi:10.14191/atmos.2016.26.1.111. 686 

Jesan, T., C. Manonmani, J. Brindha, S. Rajaram, P. M. Ravi, and R. M. Tripathi (2016), Estimation of 687 

roughness length Z0for Kalpakkam site, Radiation Protection and Environment, 39(1), 44, 688 

doi:10.4103/0972-0464.185182. 689 

Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante 690 

(2012), A Revised Scheme for the WRF Surface Layer Formulation, Mon. Weather Rev., 140(3), 898-691 

918, doi:10.1175/mwr-d-11-00056.1. 692 

June, T., A. Meijide, C. Stiegler, A. P. Kusuma, and A. Knohl (2018), The influence of surface roughness 693 

and turbulence on heat fluxes from an oil palm plantation in Jambi, Indonesia, IOP Conf Ser Earth 694 

Environ Sci, 149, 012048, doi:10.1088/1755-1315/149/1/012048. 695 

Kain, J. S. (2004), The Kain–Fritsch Convective Parameterization: An Update, J. Appl. Meteorol., 43(1), 696 

170-181, doi:10.1175/1520-0450(2004)043<0170:tkcpau>2.0.co;2. 697 

Kain, J. S., and J. M. Fritsch (1990), A One-Dimensional Entraining/Detraining Plume Model and Its 698 

Application in Convective Parameterization, J. Atmos. Sci., 47(23), 2784-2802, doi:10.1175/1520-699 

0469(1990)047<2784:aodepm>2.0.co;2. 700 

Kim, E.-J., and S.-Y. Hong (2010), Impact of air-sea interaction on East Asian summer monsoon climate 701 

in WRF, J. Geophys. Res., 115(D19), doi:10.1029/2009jd013253. 702 

Komuscu, A. U. (2017), Long-term mean monthly temperatures trends of the United Arab Emirates, 703 

International Journal of Global Warming, 11(1), 1, doi:10.1504/ijgw.2017.080987. 704 

Li, D., E. Bou-Zeid, and H. A. R. De Bruin (2011), Monin–Obukhov Similarity Functions for the 705 

Structure Parameters of Temperature and Humidity, Boundary Layer Meteorol., 145(1), 45-67, 706 

doi:10.1007/s10546-011-9660-y. 707 

Lu, L., S. Liu, Z. Xu, K. Yang, X. Cai, L. Jia, and J. Wang (2009), The characteristics and 708 

parameterization of aerodynamic roughness length over heterogeneous surfaces, Advances in Atmospheric 709 

Sciences, 26(1), 180-190, doi:10.1007/s00376-009-0180-3. 710 

Man Sing, W., Y. Jinxin, J. Nichol, W. Qihao, M. Menenti, and P. W. Chan (2015), Modeling of 711 

Anthropogenic Heat Flux Using HJ-1B Chinese Small Satellite Image: A Study of Heterogeneous 712 

Urbanized Areas in Hong Kong, IEEE Geosci. Remote Sens. Lett., 12(7), 1466-1470, 713 

doi:10.1109/lgrs.2015.2409111. 714 



42 

Marticorena, B., G. Bergametti, B. Aumont, Y. Callot, C. N'Doumé, and M. Legrand (1997), Modeling 715 

the atmospheric dust cycle: 2. Simulation of Saharan dust sources, J. Geophys. Res. Atmos., 102(D4), 716 

4387-4404, doi:10.1029/96jd02964. 717 

Marticorena, B., P. Chazette, G. Bergametti, F. Dulac, and M. Legrand (2004), Mapping the aerodynamic 718 

roughness length of desert surfaces from the POLDER/ADEOS bi-directional reflectance product, Int. J. 719 

Remote Sens., 25(3), 603-626, doi:10.1080/0143116031000116976. 720 

Massey, J. D., W. J. Steenburgh, S. W. Hoch, and J. C. Knievel (2014), Sensitivity of Near-Surface 721 

Temperature Forecasts to Soil Properties over a Sparsely Vegetated Dryland Region, J. Appl. Meteorol. 722 

Climatol., 53(8), 1976-1995, doi:10.1175/jamc-d-13-0362.1. 723 

Meehl, G. A., and W. M. Washington (1988), A Comparison of Soil-Moisture Sensitivity in Two Global 724 

Climate Models, J. Atmos. Sci., 45(9), 1476-1492, doi:10.1175/1520-725 

0469(1988)045<1476:acosms>2.0.co;2. 726 

Menut, L., C. Pérez, K. Haustein, B. Bessagnet, C. Prigent, and S. Alfaro (2013), Impact of surface 727 

roughness and soil texture on mineral dust emission fluxes modeling, J. Geophys. Res. Atmos., 118(12), 728 

6505-6520, doi:10.1002/jgrd.50313. 729 

Miller, M. J., A. C. M. Beljaars, and T. N. Palmer (1992), The Sensitivity of the ECMWF Model to the 730 

Parameterization of Evaporation from the Tropical Oceans, J. Clim., 5(5), 418-434, doi:10.1175/1520-731 

0442(1992)005<0418:tsotem>2.0.co;2. 732 

Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough (1997), Radiative transfer for 733 

inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res. 734 

Atmos., 102(D14), 16663-16682, doi:10.1029/97jd00237. 735 

Naizghi, M. S., and T. B. M. J. Ouarda (2017), Teleconnections and analysis of long-term wind speed 736 

variability in the UAE, Int. J. Climatol., 37(1), 230-248, doi:10.1002/joc.4700. 737 

Nelli, N. R., M. Temimi, R. M. Fonseca, M. J. Weston, M. S. Thota, V. K. Valappil, O. Branch, H.-D. 738 

Wizemann, V. Wulfmeyer, and Y. Wehbe (2020), Micrometeorological measurements in an arid 739 

environment: Diurnal characteristics and surface energy balance closure, Atmos. Res., 234, 104745, 740 

doi:10.1016/j.atmosres.2019.104745. 741 

Paulson, C. A. (1970), The Mathematical Representation of Wind Speed and Temperature Profiles in the 742 

Unstable Atmospheric Surface Layer, J. Appl. Meteorol., 9(6), 857-861, doi:10.1175/1520-743 

0450(1970)009<0857:TMROWS>2.0.CO;2. 744 

Prigent, C. (2005), Estimation of the aerodynamic roughness length in arid and semi-arid regions over the 745 

globe with the ERS scatterometer, J. Geophys. Res., 110(D9), doi:10.1029/2004jd005370. 746 



43 

Prueger, J. H., W. P. Kustas, L. E. Hipps, and J. L. Hatfield (2004), Aerodynamic parameters and sensible 747 

heat flux estimates for a semi-arid ecosystem, Journal of Arid Environments, 57(1), 87-100, 748 

doi:10.1016/s0140-1963(03)00090-9. 749 

Ran, L., J. Pleim, and R. Gilliam (2010), Impact of high resolution land-use data in meteorology and air 750 

quality modeling systems, in Air Pollution Modeling and its Application XX, edited by D. G. Steyn and S. 751 

T. Rao, p. 108, Springer Netherlands, Netherlands. 752 

Rao, K. G. (1996), Roughness length and drag coefficient at two MONTBLEX-90 tower stations, 753 

Proceedings of the Indian Academy of Sciences - Earth and Planetary Sciences, 105(3), 273-287, 754 

doi:10.1007/BF02841883. 755 

Rao, K. G., G. Ramakrishna, and N. Narendra Reddy (2011), Impact of meso-net observations on short-756 

term prediction of intense weather systems during PRWONAM: Part I—On wind variations, J. Atmos. 757 

Sol. Terr. Phys., 73(9), 965-985, doi:https://doi.org/10.1016/j.jastp.2010.08.019. 758 

Reddy, N. N., and Kusuma G. Rao (2016), Roughness Lengths at Four Stations Within the 759 

Micrometeorological Network over the Indian Monsoon Region, Boundary Layer Meteorol., 158(1), 151-760 

164, doi:10.1007/s10546-015-0080-2. 761 

Reijmer, C. H., E. Van Meijgaard, and M. R. Van Den Broeke (2004), Numerical Studies with a Regional 762 

Atmospheric Climate Model Based on Changes in the Roughness Length for Momentum and Heat Over 763 

Antarctica, Boundary Layer Meteorol., 111(2), 313-337, doi:10.1023/b:boun.0000016470.23403.ca. 764 

Shukla, J., and Y. Mintz (1982), Influence of Land-Surface Evapotranspiration on the Earth's Climate, 765 

Science, 215(4539), 1498-1501, doi:10.1126/science.215.4539.1498. 766 

Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, and e. a. Duda (2008), A description 767 

of the Advanced Research WRF version 3Rep., 113 pp. 768 

Stathopoulos, T. (2009), Wind and Comfort, in 5th European & African Conferences on Wind 769 

Engineering (EACWE 5), edited, Florence, Italy. 770 

Steeneveld, G. J., T. Mauritsen, E. I. F. de Bruijn, J. Vilà-Guerau de Arellano, G. Svensson, and A. A. M. 771 

Holtslag (2008), Evaluation of Limited-Area Models for the Representation of the Diurnal Cycle and 772 

Contrasting Nights in CASES-99, J. Appl. Meteorol. Climatol., 47(3), 869-887, 773 

doi:10.1175/2007jamc1702.1. 774 

Sud, Y. C., and W. E. Smith (1985), The influence of surface roughness of deserts on the July circulation, 775 

Boundary Layer Meteorol., 33(1), 15-49, doi:10.1007/bf00137034. 776 

Sukoriansky, S., B. Galperin, and V. Perov (2005), ‘Application of a New Spectral Theory of Stably 777 

Stratified Turbulence to the Atmospheric Boundary Layer over Sea Ice’, Boundary Layer Meteorol., 778 

117(2), 231-257, doi:10.1007/s10546-004-6848-4. 779 



44 

Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall (2008), Explicit Forecasts of Winter 780 

Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow 781 

Parameterization, Mon. Weather Rev., 136(12), 5095-5115, doi:10.1175/2008mwr2387.1. 782 

Valappil, V. K., M. Temimi, M. Weston, R. Fonseca, N. R. Nelli, M. Thota, and K. N. Kumar (2019), 783 

Assessing Bias Correction Methods in Support of Operational Weather Forecast in Arid Environment, 784 

Asia-Pac. J. Atmos. Sci., doi:10.1007/s13143-019-00139-4. 785 

Varquez, A. C. G., M. Nakayoshi, and M. Kanda (2015), The Effects of Highly Detailed Urban 786 

Roughness Parameters on a Sea-Breeze Numerical Simulation, Boundary Layer Meteorol., 154(3), 449-787 

469, doi:10.1007/s10546-014-9985-4. 788 

Wallace, J. M., and P. V. Hobbs (2006), Atmospheric Science, Second Edition: An Introductory Survey, 789 

second ed., 504 pp., Academic Press. 790 

Wang, X., Z. Wu, and G. Liang (2009), WRF/CHEM modeling of impacts of weather conditions 791 

modified by urban expansion on secondary organic aerosol formation over Pearl River Delta, 792 

Particuology, 7(5), 384-391, doi:10.1016/j.partic.2009.04.007. 793 

Weston, M., N. Chaouch, V. Valappil, M. Temimi, M. Ek, and W. Zheng (2018), Assessment of the 794 

Sensitivity to the Thermal Roughness Length in Noah and Noah-MP Land Surface Model Using WRF in 795 

an Arid Region, Pure Appl. Geophy., 176(5), 2121-2137, doi:10.1007/s00024-018-1901-2. 796 

Yagoub, M. M. (2010), GIS for Wind Energy: A Case of UAE, International Journal of Geoinformatics, 797 

6(3), 13-21. 798 

Yang, B., Y. Qian, L. K. Berg, P.-L. Ma, S. Wharton, V. Bulaevskaya, H. Yan, Z. Hou, and W. J. Shaw 799 

(2017), Sensitivity of Turbine-Height Wind Speeds to Parameters in Planetary Boundary-Layer and 800 

Surface-Layer Schemes in the Weather Research and Forecasting Model, Boundary Layer Meteorol., 801 

162(1), 117-142, doi:10.1007/s10546-016-0185-2. 802 

Yang, K., T. Koike, H. Ishikawa, J. Kim, X. Li, H. Liu, S. Liu, Y. Ma, and J. Wang (2008), Turbulent 803 

Flux Transfer over Bare-Soil Surfaces: Characteristics and Parameterization, J. Appl. Meteorol. Climatol., 804 

47(1), 276-290, doi:10.1175/2007jamc1547.1. 805 

Yang, Q., L. K. Berg, M. Pekour, J. D. Fast, R. K. Newsom, M. Stoelinga, and C. Finley (2013), 806 

Evaluation of WRF-Predicted Near-Hub-Height Winds and Ramp Events over a Pacific Northwest Site 807 

with Complex Terrain, J. Appl. Meteorol. Climatol., 52(8), 1753-1763, doi:10.1175/jamc-d-12-0267.1. 808 

Zheng, D., R. van der Velde, Z. Su, M. J. Booij, A. Y. Hoekstra, and J. Wen (2013), Assessment of 809 

Roughness Length Schemes Implemented within the Noah Land Surface Model for High-Altitude 810 

Regions, J. Hydrometeorol., 15(3), 921-937, doi:10.1175/JHM-D-13-0102.1. 811 



45 

Zheng, W., H. Wei, Z. Wang, X. Zeng, J. Meng, M. Ek, K. Mitchell, and J. Derber (2012), Improvement 812 

of daytime land surface skin temperature over arid regions in the NCEP GFS model and its impact on 813 

satellite data assimilation, J. Geophys. Res. Atmos., 117(D6), D06117, doi:10.1029/2011jd015901. 814 

Zhu, M., and B. W. Atkinson (2004), Observed and modelled climatology of the land–sea breeze 815 

circulation over the Persian Gulf, Int. J. Climatol., 24(7), 883-905, doi:10.1002/joc.1045. 816 

 817 


