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Highlights: 20 

 21 

1. Time series analysis and OBIA are combined to attribute forest disturbance. 22 

2. Shifting cultivation, new plantation, and deforestation are mapped in Laos. 23 

3. Shifting cultivation is mapped with high accuracy (producer’s: 88%; user’s: 80%). 24 

4. Shifting cultivation affected 32.9% ± 1.9% of Laos from 1991 to 2020.  25 

5. Slash-and-burn activities in Laos increased in the most recent 5 years. 26 

 27 

Abstract 28 

Shifting cultivation is an important driver of forest disturbance in the tropics. However, 29 

studies of shifting cultivation are limited and current area estimates of shifting cultivation are 30 

highly uncertain. Although Southeast Asia is a hotspot of shifting cultivation, there are no 31 

national maps of shifting cultivation in Southeast Asia at moderate or high resolution (less than 32 

or equal to 30 m). Monitoring shifting cultivation is challenging because the slash-and-burn 33 

events are highly dynamic and small in size. In this research, we present and test an approach to 34 

monitoring shifting cultivation using Landsat data on Google Earth Engine. CCDC-SMA 35 

(Continuous Change Detection and Classification - Spectral Mixture Analysis) is used to detect 36 

forest disturbances. Then, these disturbances are attributed by combining time series analysis, 37 

object-based image analysis (OBIA), and post-disturbance land-cover classification. Forest 38 

disturbances are assigned to Shifting cultivation, New plantation, Deforestation, Severe drought, 39 

and Subtle disturbance annually from 1991 to 2020 at a 30-meter resolution for the country of 40 

Laos. The major forest disturbances in 1991-2020 are mapped with an overall accuracy of 85%. 41 
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Shifting cultivation is mapped with a producer’s accuracy of 88% and a user’s accuracy of 80%. 42 

The margin of error of the sampling-based area estimate of Shifting cultivation is 5.9%. The area 43 

estimates indicate that shifting cultivation is the main type of forest-disturbance in Laos, 44 

affecting 32.9% ± 1.9% of Laos over the past 30 years. To study the development of shifting 45 

cultivation over time, the area of slash-and-burn events is estimated at 5-year intervals of 1991-46 

2020 with all margins of error less than 17%. Results show that the area of slash-and-burn 47 

activities in Laos increased in the most recent 5-year period. We believe that the methods 48 

developed and tested in Laos can be applied to other regions.  49 

 50 

 51 

 52 

  53 
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1 Introduction 54 

 55 

Shifting cultivation, also called “shifting agriculture”, “swidden agriculture”, or “slash 56 

and burn”, is a farming practice where farmers clear and burn the native forest to create an ash-57 

fertilized soil. Crops are then planted and harvested for one or two years in succession, after 58 

which the plot is abandoned, and the practice repeated in an adjacent patch of forest. If the 59 

cultivated plot is left fallow for long enough before being cultivated again, the forest and soil can 60 

recover. As such, rather infrequent rotations from forest to crop and back to forest were 61 

sustainable for generations, but with increased population pressure, farmers often cultivate the 62 

land before the vegetation and soil have recovered (Hillel, 2007). The result is a complex 63 

landscape composed of patches of cleared land, fallow land and forests of different ages, species 64 

composition, and, crucially, reduced carbon stocks (Villa et al., 2021).  65 

 66 

Shifting cultivation is one of the major drivers of forest degradation in the tropics (Curtis 67 

et al., 2018). Here we treat shifting cultivation as a form of forest degradation because the land 68 

cover is mostly forest except for a short amount of time but with less biomass. The issue is 69 

complicated though; the current REDD+ (Reducing Emissions from Deforestation and forest 70 

Degradation) reporting practices do not address the issue of shifting cultivation as most 71 

definitions of forest used in REDD+ reporting are based on the percentage of canopy cover in a 72 

given spatial unit. These definitions are inadequate to represent the mosaic landscapes of cyclic 73 

shifts between forest and non-forest as a result of shifting cultivation. The phenomenon of 74 

temporary and cyclic change in land use was mentioned by the IPCC, who attempted to resolve 75 

the definition of degradation, but no resolution was achieved as temporary changes are not 76 
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necessarily unsustainable, even if the carbon stock is reduced (Herold & Skutsch, 2011). The 77 

Global Forest Observation Initiative of the Group on Earth Observations (GEO-GFOI) has 78 

released three versions of a Methods & Guidance Document that aims to put the IPCC guidelines 79 

for reporting under REDD+ in a practical context. The Methods & Guidance Document states 80 

that (GFOI, 2020, p. 78) 81 

“In countries where there are multiple clearing and regrowth cycles (shifting agriculture 82 

being an example) it will be necessary to not only estimate emissions from the initial 83 

clearing, but also to estimate the removal and subsequent future emissions during 84 

repeated cycles of clearing and regrowth. This can be done by either tracking the 85 

changes through time or by developing a manageable number of statistically 86 

representative strata to represent these land uses.”  87 

 88 

and further that (GFOI, 2020, p. 96) 89 

“There is wide agreement that forest degradation represents long-term loss of forest 90 

values, and that temporary loss due to harvest or natural disturbance in sustainably 91 

managed forest is not degradation.” 92 

 93 

Economic demand and population pressure have forced the practice of shifting 94 

cultivation away from sustainably long rotations to more frequent cultivation that does not allow 95 

the vegetation and soil to rejuvenate (Hillel, 2007). Such developments weaken the argument 96 

that shifting cultivation qualifies as sustainable forest management. Hence, shifting cultivation 97 

should be considered forest degradation in the REDD+ context.  98 

 99 
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Shifting cultivation is understudied although it has been identified as an important driver 100 

of forest degradation (Curtis et al., 2018) and has long-term carbon impacts (Ziegler et al., 2012). 101 

Three global maps of shifting cultivation have been produced in the previous studies. The first 102 

one is a hand-drawn map of global shifting cultivation created by Butler (1980) showing the 103 

distribution of shifting cultivation. The second is a one-degree resolution map made by 104 

Heinimann et al. (2017) based on visual interpretation of the Global Forest Change (GFC) 105 

dataset (Hansen et al., 2013). The third map is a product of the 10-km resolution map of drivers 106 

of global forest disturbance created by Curtis et al. (2018) . The three maps represent the global 107 

distribution of shifting cultivation, but the resolutions (>10 km) are much larger than the scale of 108 

individual slash and burn events, which makes the maps hard to use for subsequent analyses 109 

including spatial-temporal patterns and carbon emissions of shifting cultivation. Studies of 110 

shifting cultivation at a national or regional level are limited and inconsistent in their reporting of 111 

trends (increasing, decreasing, and stable trajectories) (Van Vliet et al., 2012; Li et al., 2014). 112 

Southeast Asia is a hotspot of shifting cultivation, but previous studies of shifting cultivation in 113 

Southeast Asia have been mostly local (Messerli et al., 2009; Hett et al., 2012; Liao et al., 2015; 114 

Hurni et al., 2013a). There are several studies of land cover and land use change in Southeast 115 

Asia (e.g. Tang et al., 2021;Saah et al., 2020; Potapov et al., 2019; Langner et al., 2018), but 116 

without an explicit focus on forest degradation and shifting cultivation. To the authors’ 117 

knowledge, no maps of shifting cultivation at moderate or high spatial resolutions (less than or 118 

equal to 30 m) exist in Southeast Asia at a national level.  119 

 120 

Monitoring shifting cultivation is challenging since the slash-and-burn events are highly 121 

dynamic and fine-scale disturbances (Miettinen et al., 2014). A traditional approach to mapping 122 
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shifting cultivation uses a single-year land cover map to create landscape mosaics consisting of 123 

forest and agriculture and detect shifting cultivation based on the spatial patterns (Messerli et al., 124 

2009; Hett et al., 2012; Hurni et al., 2013a; Silva et al., 2011). The limitation of this approach is 125 

that the spatial resolution of the shifting cultivation map is coarse and depends on the size of the 126 

mosaics (usually several kilometers), and it cannot represent the temporal patterns of shifting 127 

cultivation. Another approach is classifying land cover at the pixel-level using multi-temporal 128 

images to map shifting cultivation (Adhikary et al., 2019; Kurien et al., 2019; Leisz and 129 

Rasmussen, 2012; Molinario et al., 2015; Department of Forestry, 2018). In this approach, the 130 

time interval of the land cover maps is essential, as the forest recovers quickly after the slash-131 

and-burn activity. If the time interval is too long, the shifting cultivation regions might be 132 

misclassified as stable forests. As stated in GFOI (2020), it is necessary to identify the cycles of 133 

clearing and regrowth to properly track the emissions and removals associated with shifting 134 

cultivation, which is not a trivial task. Tracking rapid cycles of clearing and growth is nearly 135 

impossible with traditional approaches to change detection where only a couple of images 136 

acquired over the same area are compared. A more feasible approach is to use dense time series 137 

to monitor rapid landscape changes and characterize the growth after the disturbance (Woodcock 138 

et al., 2020). 139 

 140 

The recent advancements of remote sensing, such as the open data policy (Woodcock et 141 

al., 2008), cloud computing platform (Gorelick et al., 2017), and time-series-based algorithms 142 

(Kennedy et al., 2010; Verbesselt et al., 2010; Zhu & Woodcock, 2014; Bullock et al., 2020; 143 

Chen et al., 2021) provide new opportunities for monitoring changes in highly dynamic 144 

landscapes. However, we have only found few studies that used time series analysis to monitor 145 
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shifting cultivation locally: Dutrieux et al. (2016) and Jakovac et al. (2017) used Breaks For 146 

Additive Season and Trend (BFAST) to monitor shifting cultivation in a small region in 147 

Amazon; Das et al. (2021) used the time series of Normalized Difference Vegetation Index 148 

(NDVI) and Normalized Burn Ratio (NBR) (Miller and Thode, 2007) to detect shifting 149 

cultivation in several states in Northeast India; and Hurni et al. (2013b) used time series of 150 

MODIS data to monitor shifting cultivation in Northern Laos. Furthermore, there has been 151 

limited effort devoted to differentiating shifting cultivation from other disturbances. Because 152 

most case studies focus on a small region with intensive shifting cultivation, it is unclear whether 153 

these approaches work in a larger region with a mixture of shifting cultivation and other types of 154 

disturbances such as conversion of forests to plantations and deforestation. Müller et al. (2013) 155 

found that the active fire data (1-km resolution) from Moderate Resolution Imaging 156 

Spectroradiometer (MODIS) has potential to detect fires from shifting cultivation in Laos if the 157 

fire is larger than 1 km. Curtis et al. (2018) used decision trees based on the history of forest 158 

disturbance, population and fire data in 10×10 km grid cells to classify forest disturbance into 159 

shifting cultivation, forestry, wildfire, and deforestation. The limitation of these studies is that 160 

the minimum mapping unit is many times larger than the area of an individual slash-and-burn 161 

event. Finally, accuracy assessment of most cases studies of shifting cultivation that we found 162 

were either missing or incomplete (Li et al., 2018) and did not follow recommended practices of 163 

accuracy assessment and area estimation (Olofsson et al., 2013; Olofsson et al., 2014). 164 

 165 

The objective of the research presented in this article was to develop and test an approach 166 

to monitoring shifting cultivation and apply it to Laos to estimate the area of shifting cultivation 167 

from 1991 to 2020. The approach was developed on Google Earth Engine (GEE) by combining 168 
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time series analysis (Chen et al., 2021), object-based image analysis (OBIA), and post-169 

disturbance land cover classification. We conducted accuracy assessment and area estimation of 170 

shifting cultivation in Laos following the practices outlined in Olofsson et al. (2014). 171 

 172 

 173 

2 Study area 174 

 175 

Our study area is the whole country of the Lao People’s Democratic Republic (Lao 176 

PDR)) in Southeast Asia (Fig. 1). Laos has a tropical savanna climate dominated by the 177 

monsoons, with about 90% of the annual rain falling in the wet season from May to October 178 

(Cramb, R., 2020). The dry season occurs between November and April. Shifting cultivation is a 179 

significant land use and a major driver of forest disturbance and regrowth in Laos (Department 180 

of Forestry, 2018; Saphangthong and Kono, 2009). To reduce net carbon emissions, the 181 

Government of Lao PDR committed to increasing forest cover to 70% by 2020 (The Government 182 

of Lao PDR, 2005); however, this goal was not reached and has now been set to 2025. Accurate 183 

and timely monitoring of shifting cultivation is central to this commitment and to Laos’s 184 

participation in REDD+. The current REDD+ reporting of Laos is based on land cover maps 185 

from 2005, 2010 and 2015 to generate the activity data (Department of Forestry, 2018). Such 186 

post-classification comparisons at five-year intervals are inadequate to map shifting cultivation. 187 

 188 

Monitoring shifting cultivation is also valuable for understanding agriculture production 189 

and food security issues in Laos. Of relevance to the issue of shifting cultivation is that Laos 190 

ranks 87 of 117 countries on the 2019 Global Hunger Index (GHI) list with a score of 25.7 which 191 
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is considered “serious hunger” on the GHI Severity Scale (Wiesmann, 2006; Von Grebmer et al., 192 

2019). While over 80% of all arable land is used for rice, Lao rice farming is the least 193 

commercialized in the Lower Mekong (Manivong and Cramb, 2020). The lack of 194 

commercialization makes the production vulnerable to floods and droughts, which has hindered 195 

the creation of a reliable national rice surplus (Manivong and Cramb, 2020). Food security for a 196 

large proportion of the Lao population still depends on subsistence agriculture based on shifting 197 

cultivation (Roder, W., 2000; Heinimann et al., 2013). In 2011, about half of all villages in Laos 198 

cultivated upland rice under shifting cultivation (Epprecht et al., 2018). Especially in northern 199 

Laos, many villages devoted more than 75% of their agricultural land to grow upland rice under 200 

shifting cultivation, since it is difficult to develop alternatives of shifting cultivation due to the 201 

mountainous topography and low potential for irrigation development (Epprecht et al., 2018). 202 

 203 

 204 

Fig. 1 Study area. 205 

 206 
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3 Method 207 

 208 

3.1 Overview 209 

 210 

All available Landsat Collection 1 surface reflectance data from 1987 to 2020 for the 24 211 

Landsat scenes covering Laos were analyzed on Google Earth Engine. In our method (Fig. 2), 212 

forest disturbance is detected using Continuous Change Detection and Classification - Spectral 213 

Mixture Analysis (CCDC-SMA) (Chen et al., 2021) (Section 3.2). The time series of different 214 

types of forest disturbances and CCDC-SMA model fits were investigated (Section 3.3) in 215 

support of differentiating drivers of disturbance. Annual land cover maps were created to 216 

differentiate Shifting cultivation from New Plantation or Deforestation (Section 3.4). Object-217 

based image analysis was applied to differentiate Shifting cultivation from large-scale natural 218 

disturbance, such as Severe drought (Section 3.5). Disturbance magnitude was used to 219 

differentiate Shifting cultivation from Subtle disturbance, such as pest damage and mild drought 220 

(Section 3.6). These different maps were combined to map shifting cultivation and other types of 221 

disturbance (Section 3.7). Following the creation of maps, the accuracy and areas of the various 222 

forest disturbances were estimated in a sampling-based approach (Section 3.8).  223 
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 224 

Fig. 2 Flowchart of the method. (“Recently” refers to the period 2015 - 2020.) 225 

 226 

3.2 CCDC-SMA 227 

 228 

CCDC-SMA, developed by Chen et al. (2021), combines Continuous Change Detection 229 

and Classification (CCDC (Zhu & Woodcock, 2014)) and Spectral Mixture Analysis (SMA) on 230 

GEE. CCDC-SMA uses Normalized Difference Fraction Index (NDFI) and the fraction of 231 
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endmembers instead of the original spectral bands to detect breaks, since the SMA-derived 232 

indices are more sensitive to forest degradation (Chen et al., 2021; Bullock et al., 2020). 233 

Harmonic models are used to predict NDFI and fractions of endmembers for any given date. A 234 

model break is triggered if the predictions significantly deviate from the observations for a 235 

certain number (five in this step) of consecutive observations. Then, a new harmonic model is 236 

initiated. This process is conducted repeatedly from the start to the end of the time series.  237 

 238 

The endmembers of green vegetation (GV), non-photosynthetic vegetation (NPV), soil, 239 

and cloud were collected in Landsat data for Laos. The endmember of shade is assigned to zeros 240 

at all bands. We created two image composites of Laos using the median of the spectral 241 

reflectance (one from the dry season and the other from wet season). In total, 16 subsets of image 242 

composites in 8 regions with different land cover types were used to extract endmembers. We 243 

used PySptools to facilitate the endmember extraction (Therien, 2018; Winter, 1999). Spectra of 244 

5000 random sample points drawn from the two image composites were extracted and plotted in 245 

the spectral space. The pixels located at the extremes of the spectral space were identified as 246 

endmembers. Surface reflectance of the endmembers are shown in Table 1 and Fig. 3. A linear 247 

spectral mixture model was used to calculate the fraction of endmembers. The fractions were 248 

constrained to be non-negative and sum to one. To evaluate the endmembers, RMSEs of the 249 

SMA model of image composites for seven selected years were calculated and examined (Fig. 4 250 

as an example). The RMSEs are all very low, indicating a good performance of the SMA model 251 

(Table 2).  252 

 253 
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Table 1 Surface reflectance of the endmembers collected in Laos (NIR: Near-infrared; SWIR: 254 

Short-wave infrared. The reflectance is scaled by 10,000). 255 

Endmembers Blue Green Red NIR SWIR1 SWIR2 

GV 374 898 344 7456 2833 966 

Soil 1817 1740 1818 3347 5647 5565 

NPV 976 1553 2369 3660 5582 4323 

Cloud 7984 8394 8445 6682 4574 3317 

Shade 0 0 0 0 0 0 

 256 

 257 

Fig. 3 Spectral reflectance of the endmembers. 258 

 259 
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 260 

Fig. 4 RMSE of SMA model of dry season in 2020. (The reflectance is scaled by 10,000.) 261 

 262 

Table 2 The mean of RMSE of the SMA model of seven selected years. (Scaled by 10,000.) 263 

Year 1990 1995 2000 2005 2010 2015 2020 

RMSE 73 82 68 74 74 56 57 

 264 

After removing cloudy observations using the fraction of cloud, we ran CCDC-SMA on 265 

GEE by grid: The whole country of Laos was split into 19 grids and CCDC-SMA was run using 266 

the Landsat data in each grid. We used NDFI and the fraction of endmembers (except for cloud) 267 

as the inputs considered for finding breaks using the CCDC function in GEE. To facilitate land 268 

cover classification (Section 3.6), we also saved the coefficients from the harmonic regression 269 

for the original spectral bands. We used CCDC-SMA for temporal segmentation and detecting 270 

forest disturbances, and CCDC (with original bands) for land cover classification (similar to 271 

Chen et al., 2021), because using the SMA-derived indices are more sensitive to forest 272 
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degradation (Chen et al., 2021), whereas using the original bands works better for classifying 273 

land cover in non-forest regions.  274 

 275 

To determine the optimal threshold to classify breaks into disturbances and stable, we 276 

drew a simple random sample of 2500 units (pixels) and interpreted the time series of sample 277 

points into Undisturbed forest, Forest disturbance (including both natural and anthropogenic 278 

disturbance in this step) and Non-forest, by investigating Landsat and high-resolution images on 279 

Google Earth. Only the points with high-confidence interpretation were used in the later analysis. 280 

The change magnitude of NDFI (median of the observation minus the prediction for 5 281 

consecutive observations) was tested to separate Undisturbed forest and Forest disturbance. The 282 

optimal threshold was found to be -2400 (Fig. 5).  283 

 284 

 285 

Fig. 5 Optimal threshold for the change magnitude used to classify breaks into Forest 286 

disturbance and Undisturbed forest. The plots show the accuracies and errors of these tests. 287 

(Max_Accuracy: maximum overall accuracy; Opt_Threshold: Optimal threshold; T: Thresholds) 288 
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 289 

 290 

3.3 Time series of different types of disturbance 291 

 292 

The major types of forest disturbance in Laos are shifting cultivation, deforestation, 293 

drought and plantation. Fig. 6 - 10 show the time series of these different types of disturbance. 294 

Shifting cultivation usually has several cycles of disturbance, although in some places only one 295 

cycle occurred. Each cycle started with a slash-and-burn event, followed by a short cropping 296 

period (typically one to two years), and a fallow period for vegetation to regrow. These stages of 297 

shifting cultivation can be observed in the time series of Landsat data (Fig. 6). Each slash-and-298 

burn event results in a large and sudden decrease in NDFI. During the cropping period, NDFI is 299 

higher than the slash-and-burn stage and has a larger seasonality than the fallow period. When 300 

the land is left to regrow (fallow period), NDFI recovers to high values and low seasonality, as 301 

the land cover returns to forest. Forest to plantation (New plantation) shows a different pattern in 302 

the time series (Fig. 7). Although the clearing of a forest for plantation causes a large decrease in 303 

NDFI similar to shifting cultivation, the seasonality of a plantation is larger than that of a 304 

secondary forest in the fallow period of shifting cultivation. Thus, we can use the seasonality of 305 

the time segment after the disturbance to differentiate Shifting cultivation and New plantation. 306 

Similarly, the land cover after deforestation has different spectral-temporal signatures compared 307 

to the regenerated forest after slash-and-burn events, and thus differentiating Shifting cultivation 308 

from Deforestation can be achieved by classifying the land cover after a disturbance (Fig. 8). 309 

Severe drought leads to a time series similar to shifting cultivation with one slash-and-burn event 310 

(Fig. 9) but the spatial pattern is different. Also, severe drought results in an area of disturbance 311 
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that is larger than that of slash-and-burn events. Thus, we can use an object-based analysis to 312 

separate Severe drought and Shifting cultivation. Subtle disturbance, such as selective logging 313 

and mild drought, result in more subtle decreases in NDFI than slash-and-burn (Fig. 10), which 314 

suggests that the magnitude of decrease in NDFI can be used for classification of disturbance 315 

types.  316 

 317 

 318 

Fig. 6 Time series of an example of shifting cultivation. Slash-and-burn events occurred in 2001, 319 

2006, 2010, and 2017. The Landsat images captured the events and the fallow periods. The three 320 

Landsat images in 2017 captured the “slash-and-burn” process: The images on 03/21 and 04/06 321 

show the “slash” process and the image on 05/08 shows the “burn” process. (Example location: 322 

20° 2' 14"N, 100° 50' 7" E. In the time series plot, the blue points are the Landsat observations, 323 

and the colored lines are the CCDC-SMA model fits, where different colors indicate different 324 

segments. In the Landsat images (Red-green-blue), the yellow squares show the pixel location.)  325 

 326 

 327 
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 328 

 329 

330 

Fig. 7 Time series of an example that includes both shifting cultivation and forest to plantation. 331 

Clearing for shifting cultivation occurred in 1991 and 2001. In 2006, the land was cleared for 332 

rubber plantation. The Landsat images show the stages of shifting cultivation and the high-333 

resolution images show the plantation. (Example location: 20°27'35"N, 101°24'50"E. In the time 334 

series plot, the blue points are Landsat observations, and the colored lines are the CCDC-SMA 335 

model fits, where different colors indicate different segments. In the Landsat images (Red-green-336 

blue), the yellow squares show the pixel location. In the high-resolution images, the white circles 337 

show the center of the pixel.) 338 

 339 

 340 
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Fig. 8 Time series of an example of deforestation that occurred in 2011. Both the Landsat images 341 

and the high-resolution images show that the land cover was permanently converted from forest 342 

to non-forest. (Example location: 17°56'10"N, 102°40'45"E. In the time series plot, the blue 343 

points are Landsat observations, and the colored lines are the CCDC-SMA model fits, where 344 

different colors indicate different segments. In the Landsat images (Red-green-blue), the yellow 345 

squares show the pixel location.)  346 

 347 

Fig. 9 Time series of an example of severe drought in 2016. The three Landsat images were 348 

acquired before, during and after the disturbance. (Example location: 20°17'8"N, 103°18'25"E. In 349 

the time series plot, the blue points are Landsat observations, and the colored lines are the 350 

CCDC-SMA model fits, where different colors indicate different segments. In the Landsat 351 

composites (Red-green-blue), the yellow points show the pixel location. The reddish-brown 352 

region was affected by severe drought.)  353 

 354 
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 355 

Fig. 10 Time series of an example of subtle disturbance, such as selective logging or mild 356 

drought. Selective logging occurred in November 1994, and a mild drought affected this location 357 

in 2016. (Example location: 20°17'40"N, 103°10'30"E. In the time series plot, the blue points are 358 

Landsat observations, and the colored lines are the CCDC-SMA model fits, where different 359 

colors indicate different segments. In the Landsat images (Red-green-blue), the yellow squares 360 

show the pixel location.) 361 

 362 

3.4 Land-cover-based monitoring 363 

 364 

To classify disturbance types, annual land cover maps for Laos were created. First, we 365 

collected training data for the following land cover classes: Forest, Plantation, Agriculture, 366 

Shrub or grass, Wetland or water and Non-vegetated. We interpreted the land cover in 2017 for 367 

the 2500 random training points described in Section 3.2. Only the points with high-confident 368 

interpretation and stable land cover between 2012 to 2020 were included in the training data. 369 

After an initial test of classification, we found that plantations and dry forest were not mapped 370 

well in some regions, and thus we augmented the training points by collecting an additional 1799 371 

training points in places where high-resolution (high-res) images are available in Google Earth. 372 
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A total of 3769 training points (1970 from random selection and 1799 from selection in areas of 373 

high-res coverage) were used in the classification. Second, we ran CCDC with the original bands 374 

from 1987-2020. Third, we trained a random forest classifier using the CCDC coefficients and 375 

training data to classify the time series segments. Each classified segment is continuous in time 376 

and can be transformed into maps at any discrete time interval.  377 

 378 

An important difference between the method presented here and the routine method of 379 

making maps from CCDC (e.g. Tang et al. (2021) and Arévalo et al. (2019) is an additional step 380 

of land cover classification at the model breaks between different segments, which is required to 381 

detect shifting cultivation. As mentioned, CCDC makes a continuous prediction of reflectance; 382 

the prediction halts or “breaks” when the observations in the time series behave differently than 383 

the predicted. The years between a break and the initiation of a new model are referred to as 384 

“break years” in this paper. Classifying the land cover during break years is essential for 385 

monitoring shifting cultivation. Taking the shifting cultivation in Fig. 6 as an example, the 386 

segments of the fallow periods were all classified as forest. If land cover classification in the 387 

break years is ignored, the land cover of this pixel for the whole time would be classified as 388 

forest, and the temporary forest-to-agriculture change associated with shifting cultivation would 389 

be omitted in the annual land cover maps. To identify the land cover in the break years, we 390 

created image composites using the median reflectance of the original bands from February to 391 

May. This period was chosen because the slash-and-burn events usually happen in February to 392 

May, and February to April is the dry season of Laos, which is less affected by clouds. We used 393 

the median composites and the training data described above to classify the land cover in break 394 

years. Finally, annual land cover maps from 1990 to 2020 were created by combining the 395 
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segment classification results and the land cover classification in break years (Fig. 11 as an 396 

example). 397 

 398 

Land-cover change was one of the rules used to determine disturbance type. If the land 399 

cover changed from Forest to Plantation, the disturbance type was New plantation. If the land 400 

cover changed from Forest to permanent Non-forest, the disturbance type was Deforestation. If 401 

the land cover temporarily changed from Forest to Agriculture or Shrub, the disturbance was 402 

Shifting cultivation. 403 

 404 

 405 

Fig. 11 Land cover map of Laos in 2020 as an example of the annual land cover maps of 1990 - 406 

2020. 407 

 408 
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3.5 Object-based image analysis 409 

 410 

Object-based image analysis has traditionally been mostly used in land cover 411 

classification (Costa et al., 2017; Belgiu and Csillik, 2018; Toure et al., 2018; Rendenieks et al., 412 

2020) and less so for attributing change (Hermosilla et al., 2015; Yu et al., 2016). As we 413 

mentioned in Section 3.3, here we use object-based image analysis to differentiate Shifting 414 

cultivation from Severe drought. We used the Palmer Drought Severity Index (PDSI) to identify 415 

the dry years. PDSI uses precipitation and temperature data to estimate the severity of dry or wet 416 

spells of weather (Palmer, 1965). Positive values denote a wet spell and negative denote a dry 417 

spell. We calculated annual PDSI of Laos using the TerraClimate data (Abatzoglou et al., 2018) 418 

(Fig. 12). PDSI < -2 indicates moderate to extreme drought (Wells et al., 2004). Years with PDSI 419 

< -2 are considered as dry years in this study.  420 

 421 

Object-based image analysis was applied to the annual forest disturbance map (Section 422 

3.2) for all the dry years. Pixels of Forest disturbance were aggregated to objects based on their 423 

connectedness and then the sizes of the objects were calculated (Fig. 13 (a)). We interpreted the 424 

disturbance type (Shifting cultivation or Severe drought) of 411 pixels located in different objects 425 

by investigating time series and imagery of Landsat, and high-resolution imagery on Google 426 

Earth if available. After summarizing the sizes of these objects associated with the 411 example 427 

pixels in a histogram (Fig. 13 (b)), we determined that objects larger than 650 ha were affected 428 

by severe drought. Applying this rule to the objects created in the OBIA, we identified objects as 429 

Severe drought in the dry years.  430 

 431 
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 432 

Fig. 12 Annual Palmer Drought Severity Index (PDSI) for Laos calculated from the 433 

TerraClimate data (Abatzoglou et al., 2018).  434 

 435 

 436 

Fig. 13 (a): Size of objects identified as Forest disturbance; (b): Histogram of the size of objects 437 

of Severe drought and Shifting cultivation.  438 

 439 

3.6 Disturbance-magnitude-based monitoring 440 

 441 

A further process for attributing disturbance is calculating the magnitude of disturbance. 442 

Two methods of calculating magnitude of disturbance to separate between Shifting cultivation 443 

and Subtle disturbance were tested: (1) the default change magnitude in CCDC-SMA: median of 444 
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the observed NDFI minus the prediction for the 5 consecutive observations following a break; 445 

and (2) the minimum NDFI in the break year minus the NDFI before the break (called 446 

“disturbance magnitude” to distinguish from the default change magnitude). To determine the 447 

effectiveness of the two methods, we interpreted the disturbance type of the sample points 448 

labeled as Forest disturbance (described in Section 3.2). The points interpreted as Shifting 449 

cultivation and Subtle disturbance were used in this test. Since few observations of Subtle 450 

disturbance were identified, we collected an additional 148 points of Subtle disturbance. Using 451 

these points, we tested different thresholds and the two different methods of calculating 452 

magnitude of disturbance mentioned before to differentiate Shifting cultivation and Subtle 453 

disturbance. The test showed that the second method (maximum overall accuracy of the tests is 454 

94%) performed better than the first one (maximum overall accuracy of the tests is 81%). The 455 

optimal threshold of disturbance magnitude to classify Shifting cultivation and Subtle 456 

disturbance is -6100 (Fig. 14).  457 

 458 

Based on our visual examination, we found omissions of Shifting cultivation in the maps 459 

due to missed breaks in the CCDC-SMA model, especially in the early years when the data 460 

density is relatively low. To solve this problem, we set the number of consecutive observations 461 

to three. To speed up the computation and save storage, only the break year and the magnitude of 462 

NDFI was saved. Similarly, we calculated the disturbance magnitude, and detected places with 463 

disturbance magnitude < -6100 as Shifting cultivation. We found that by combining the runs of 464 

the model with the number of consecutive observations set to three and five, the detected Shifting 465 

cultivation is better than using either of them alone. Thus, if either one detected Shifting 466 

cultivation, it is labeled as Shifting cultivation in the final map. 467 
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 468 

Fig. 14 Optimal threshold of disturbance magnitude to differentiate Shifting cultivation and 469 

Subtle disturbance. The plots show the accuracies and errors of testing different thresholds. 470 

(Max_Accuracy: maximum overall accuracy of the tests; Opt_Threshold: Optimal threshold; T: 471 

Thresholds) 472 

 473 

3.7 Combining maps  474 

 475 

The land-cover maps, object-based maps, and disturbance-magnitude maps were 476 

combined following the workflow in Fig. 2. First, we used the land cover maps to determine 477 

whether the disturbance was caused by conversion of forest to plantation. Second, if the 478 

disturbance was not plantation-driven and occurred in a dry year, we applied the severe drought 479 

mask created from OBIA to map areas of Severe drought. If the disturbance was neither drought- 480 

or plantation-driven, we investigated if the land cover changed from forest to non-forest (except 481 

for water) and back to forest, in which case we assumed the presence of Shifting cultivation. 482 

Shifting cultivation was also detected if the land cover remained forest and the disturbance 483 
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magnitude exceeded the threshold. Deforestation was mapped if the disturbance happened in or 484 

before 2015 and the land cover remained non-forest after the disturbance. Further, we mapped a 485 

disturbance as Shifting cultivation rather than Deforestation if the disturbance happened after 486 

2015 and the disturbance magnitude exceeded the threshold even if the land cover had not 487 

recovered to forest. This is because Shifting cultivation affects a much larger area than 488 

Deforestation in Laos, and hence is more likely to occur. Conversion of forest to water was 489 

labeled Deforestation. To avoid omitting the edge of Shifting cultivation, pixels within a 2-pixel 490 

buffer of Shifting cultivation and mapped as Forest disturbance were labeled Shifting cultivation. 491 

Finally, based on these rules, we created annual maps from 1991-2020 of Shifting cultivation, 492 

Deforestation, Forest, New plantation, Plantation, Severe drought, Subtle disturbance, and Non-493 

forest.  494 

 495 

3.8 Accuracy assessment 496 

 497 

Following the guidelines recommended in the remote sensing literature (Olofsson et al. 498 

2014), we drew a sample of pixels from the study area and observed reference conditions in 499 

satellite data at sample locations to assess the accuracy of the maps. To design an efficient 500 

sampling design, we created strata based on the annual maps (Section 3.7) for the whole study 501 

period (1991-2020) (Fig. 19). The definitions of the strata are:  502 

 503 

- Stable forest: Stable forest pixels during the study period, without significant 504 

anthropogenic disturbances. Forests that only have natural disturbance, such as drought, 505 

were still mapped as stable forest.  506 
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- Non-forest: Non-forest pixels during the study period. 507 

- Shifting cultivation: Pixels that have experienced shifting cultivation at any point during 508 

the study period. 509 

- New plantation: Pixels that changed from forest to plantation at any point during the 510 

study period. 511 

- Deforestation: Pixels that had permanent conversion from forest to non-forest (except for 512 

plantation) at any point during the study period. Land cover remained non-forest after 513 

disturbance for at least 5 years and has never recovered to forest.  514 

 515 

The weight of the Shifting cultivation stratum was 36% (i.e. shifting cultivation affected 516 

36% of Laos 1991-2020. The weights of all strata presented in the column of “Map area 517 

proportion” in Table 3). Stratified random sampling is common in land change studies as it 518 

ensures sufficient sampling of rare change classes (Olofsson et al., 2013). Here, because the 519 

Shifting cultivation stratum has such a large weight, we decided to use simple random sampling. 520 

The benefit of simple random sampling is the ability to use the same post-stratified estimator for 521 

area and accuracy estimation even if the stratification is altered after sampling (Stehman, 2013; 522 

Olofsson et al., 2020).  523 

As recommended by Olofsson et al. (2014), the sample size was determined by solving 524 

the variance estimator for n under simple random sampling and specifying a target margin of 525 

error. A margin of error of 30% at the 95% confidence level, which is the target for estimating 526 

forest change suggested by the Forest Carbon Partnership Facility (FCPF, 2020), a World Bank 527 

funded REDD+ program that Laos participated in, yields a sample size of n = 79 if targeting 528 

shifting cultivation, and n = 855 if targeting deforestation. Based on these calculations, we draw 529 
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a sample of 1,000 units (each unit is a Landsat pixel) under simple random sampling with the 530 

aim of estimating both shifting cultivation and deforestation with a margin of error of 30%.  531 

 532 

Time series of Landsat data were extracted for each of the 1000 sample units and 533 

interpreted by two interpreters using the AREA2 tools (Arevalo et al., 2020). The interpreters 534 

were asked to interpret the reference class of the whole time series and the confidence level of 535 

their interpretation. If shifting cultivation happened in the study period, the interpreters recorded 536 

the number of the slash-and-burn events and the year of each event. For each sample unit, the 537 

interpreters examined time series of Landsat observations of NDFI, fraction of endmembers 538 

(GV, NPV, Soil, Shade), NIR, SWIR1, NDVI (Normalized Difference Vegetation Index) 539 

(Carlson et al., 1997), NBR (Normalized Burn Ratio) (Roy et al., 2006), and NDMI (Normalized 540 

Difference Moisture Index) (Jin and Sader, 2005) on GEE. The interpreters also examined 541 

Landsat imagery on GEE and high-resolution imagery on Google Earth to determine the 542 

reference conditions and disturbance year (Fig. 15). The two interpreters first collected reference 543 

observations independently and then compared their observations. Each sample unit was 544 

interpreted at least twice. Sample units with different interpretations were discussed in a group 545 

effort to provide an agreed-upon label. A sample unit was discarded if the disagreement could 546 

not be reconciled; a total of 23 sample units were discarded which yielded a final sample size of 547 

977 units.  548 

 549 

 550 
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 551 

Fig. 15 Reference data collection. This sample unit was interpreted as “Shifting cultivation”. The 552 

number of slash-and-burn events is 4, and the year of events are 1992, 2000, 2009, and 2018. 553 

(Sample unit location: 20°35'54"N, 101° 0'11"E. The images on the left side are Landsat images 554 

and a high-resolution image on Google Earth. The plots on the right side are Landsat 555 

observations of fraction of NPV, fraction of GV and NDFI. All these time series show significant 556 

change in each slash-and-burn event.)  557 

 558 

3.9 Post-processing 559 

 560 

After a preliminary inspection of the maps, we found commission errors for Shifting 561 

cultivation caused by drought in some regions. Thus, in the dry years, we added an extra rule to 562 

reduce such commission errors: If the minimum NDFI one year after a break minus the NDFI 563 

before the break was less than 0.3, the break was mapped as Drought. The rule was based on the 564 
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assumption that forests affected by drought recover faster than shifting cultivation. Also, we 565 

found commission errors of Shifting cultivation due to misclassifying plantations as forest after 566 

disturbance. Thus, we added more training data of plantations in these regions and updated the 567 

land cover map to reduce the commission errors. After these two post-processing steps, the 568 

user’s accuracy of shifting cultivation increased from 78.0% to 80.2%.  569 

 570 

 571 

4 Results 572 

 573 

4.1 Annual disturbance type 574 

 575 

We created annual disturbance maps from 1991-2020 of Forest, Plantation, Non-forest, 576 

Shifting cultivation, Deforestation, New plantation, Severe drought and Subtle disturbance (Fig. 577 

16 shows an example map in 2016). In the annual maps, Shifting cultivation refers to the slash-578 

and-burn events that occurred in a certain year. New plantation refers to land cover change from 579 

forest to plantation in a certain year. Plantation refers to plantations that were previously 580 

established. Severe drought refers to drought events that occurred on a large-scale. Subtle 581 

disturbance include pest damage, mild drought, or subtle anthropogenic disturbances, such as 582 

selective logging. A map of the first year of shifting cultivation was created, which shows the 583 

expansion of shifting cultivation from places adjacent to permanent agriculture to places close to 584 

stable forests in some regions (Fig. 17). We calculated the areas of the disturbance classes based 585 

on pixel counting from the annual maps (Fig. 18), and it shows that shifting cultivation is the 586 

major disturbance type for every year.  587 
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 588 

Fig. 16 Disturbance map of Laos in 2016 as an example of annual disturbance maps from 1991-589 

2020. 590 

 591 

 592 
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 593 

Fig. 17 First year of shifting cultivation in Laos. Places without shifting cultivation were mapped 594 

as Stable forest, Permanent agriculture and Others. In the magnified view of a region, shifting 595 

cultivation expanded from places adjacent to permanent agriculture to places close to stable 596 

forest.  597 

 598 
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 599 

Fig. 18 Annual area proportion of different disturbance types calculated from the map. The 600 

histograms are stacked, meaning that the total height of the bar for each year is the sum of the 601 

area proportions of all five types of disturbance for this year. 602 

 603 

4.2 Accuracies and area estimates for the study domain 604 

 605 

Based on the annual maps, an aggregated disturbance map of Stable forest, Non-forest, 606 

Shifting cultivation, Deforestation and New plantation for the whole study period was created 607 

(Fig. 19). The definitions of these classes are explained in Section 3.8. We used the reference 608 

data to conduct an accuracy assessment of the aggregated map and area estimation of the classes 609 

(Table 3 and Table 4). Shifting cultivation was the major disturbance, affecting 32.9% ± 1.9% 610 

of Laos (95% confidence interval) over the period 1991-2020. Shifting cultivation was mapped at 611 

high accuracy: the producer’s accuracy is 87.7%; the user’s accuracy is 80.2%; and the margin of 612 

error of the area estimates is 5.9%. The errors of Shifting cultivation are mostly due to the 613 
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misclassification between Shifting cultivation and Stable forest class (note that Stable forest class 614 

includes natural disturbances) (Table 3). Stable forest was also mapped at high producer’s 615 

(89.6%) and user’s accuracy (93.0%). The accuracy of Deforestation is relatively low due to 616 

misclassification between Shifting cultivation and Deforestation. Plantation is a very small class 617 

with relatively few observations in the sample results which results in rather uncertain area 618 

estimates. The overall accuracy of the map is (84.5%). The margins of error of area estimates are 619 

below 25% for all classes except for New plantation. The mapped area of Shifting cultivation is 620 

close to the sampling-based estimates, although slightly larger than the upper bound of the 95% 621 

confidence interval (Fig. 20). The mapped areas of other classes are all within the 95% 622 

confidence interval of the area estimates (Fig. 20).  623 

 624 

If combining all the disturbance classes (Shifting cultivation, New plantation, and 625 

Deforestation) into one Forest disturbance class, the area estimate of the Forest disturbance 626 

class is 88,555 ± 4,315 km2 (38.4% ± 1.9%). The user’s and producer’s accuracy of the Forest 627 

disturbance class is 84.2% and 90.6%, respectively. The margin of error of the area estimate of 628 

Forest disturbance is 4.9%. The overall accuracy of this combined map (Stable forest, Non-629 

forest and Forest disturbance) is 87.7%. 630 

 631 
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 632 

Fig. 19 Map of Stable forest, Non-forest, Shifting cultivation, Deforestation and New plantation 633 

of Laos during 1991-2020. 634 

 635 

 636 
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Fig. 20 Sampling-based area estimation (expressed in proportion) of Stable forest, Non-forest, 637 

Shifting cultivation, Deforestation and New plantation of Laos during 1991-2020. (Colored bars 638 

and numbers in red: The area estimates in proportion; black bar: error bar showing uncertainty of 639 

the estimates; blue cross: mapped area). 640 

 641 

Table 3 Confusion matrix expressed in sample counts, mapped area and mapped area 642 

proportions of the classes. 643 

    Reference               

  
Stable 

forest 

Non-

forest 

Shifting 

cultivation Deforestation 

New 

plantation Total 

Map area 

(km2) 

Map area 

proportion 

 Stable forest 439 6 26 1 0 472 109934 47.7% 

Map Non-forest 14 78 2 5 1 100 25154 10.9% 

 

Shifting 

cultivation 30 16 264 17 2 329 82966 36.0% 

 Deforestation 4 14 15 29 0 62 11382 4.9% 

 New plantation 0 0 0 0 14 14 969 0.4% 

  Total 487 114 307 52 17 977 230405 100.0% 

 644 

 645 

 646 

Table 4 Sampling-based area estimates, accuracies and uncertainties of the classes. 647 
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Class name Stable forest Non-forest Shifting cultivation Deforestation New Plantation Total 

Area estimates (km2) 114069 ± 4067 27623 ± 3257 75887 ± 4460 11101 ± 2712 1725 ± 855 230405 

Area proportion  49.5% ± 1.8% 12.0% ± 1.4% 32.9% ± 1.9% 4.8% ± 1.2% 0.7% ± 0.4% 100% 

Margin of error 3.6% 11.8% 5.9% 24.4% 49.5%  

User’s accuracy 93.0% 78.0% 80.2% 46.8% 100.0%  

Producer’s accuracy 89.6% 71.0% 87.7% 48.0% 56.2%  

Overall accuracy           84.5% 

 648 

 649 

4.3 Accuracies and area estimates of shifting cultivation by period 650 

 651 

We estimated the area of disturbance caused by shifting cultivation for 5-year periods 652 

from 1991 to 2020 (Fig. 21 and Table 5). Any slash-and-burn event occurring in a certain 5-year 653 

period was included in the area estimates for that period. Specifically, sites cultivated multiple 654 

times in different periods were included in the 5-year estimates multiple times, whereas for sites 655 

cultivated multiple times within the same period, only one time is included in the area estimates. 656 

Therefore, the area estimates show how much area is affected by slash-and-burn events for each 657 

period.  658 

 659 

The areas of slash-and-burn events are estimated with low uncertainty. For all 5-year 660 

periods, the overall accuracies of the slash-and-burn by period are all higher than 92%, and the 661 



39 

margins of error all less than 17%. Except for the first and the last period, the mapped areas are 662 

all within the 95% confidence intervals which suggests that the maps exhibit a low level of area 663 

bias. For the first period, the mapped area was lower than the sampling-based estimates, because 664 

the Landsat density is relatively low in the first period, which causes high omission errors of 665 

slash-and-burn events. The mapped area was higher than the sampling-based estimates for the 666 

last period, because the algorithm misclassified some regions affected by drought in 2016 and 667 

2019 as Shifting cultivation. The user’s and producer’s accuracies for 2001-2005, 2006-2010, 668 

and 2011-2015 are all higher than 72%. For the first two periods, the producer’s accuracy was 669 

low due to relatively low Landsat data density. The producer’s accuracy of the period 2016-2020 670 

is high (89%), whereas the user’s accuracy of the 2016-2020 time period is lower (70%) due to 671 

the misclassification between Drought and Shifting cultivation. 672 

 673 

The GEE codes and apps in this study are hosted on 674 

https://github.com/shijuanchen/shift_cult  . 675 

 676 

 677 
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Fig. 21 Area estimates of slash and burn events by period during 1991-2020. (Colored bars and 678 

numbers in red: The area estimates in proportion; black bar: error bar showing uncertainty of the 679 

estimates; blue cross: mapped area) 680 

 681 

Table 5 Sampling-based area estimates, accuracies and uncertainties of slash and burn events for 682 

the 5-year periods during 1991-2020. 683 

Period 1991-1995 1996-2000 2001-2005 2006-2010 2011-2015 2016-2020 

Area estimates (km2) 22307 ± 3757 24124 ± 3532 28295 ± 3480 27582 ± 3246 27687 ± 3337 34241 ± 3545 

Area proportion  9.7% ± 1.6% 10.5% ± 1.5% 12.3% ± 1.5% 12.0% ± 1.4% 12.0% ± 1.5% 14.9% ± 1.5% 

Margin of errors 16.5% 14.3% 12.2% 11.7% 12.5% 10.1% 

User’s accuracy 68.5% 68.0% 72.2% 73.9% 72.8% 69.6% 

Producer’s accuracy 38.6% 58.5% 73.6% 78.8% 72.1% 89.2% 

Overall accuracy 92.3% 92.8% 93.3% 94.1% 93.4% 92.6% 

 684 

 685 

5. Discussion  686 

 687 

Our results show that shifting cultivation affected 32.9% ± 1.9% of Laos from 1991 to 688 

2020 and the slash-and-burn activities increased significantly in the most recent 5-year period. 689 

From 1991 to 2005, the slash-and-burn activities increased gradually, and slightly decreased in 690 

2006-2010 and remained the same until 2015. Recently, slash-and-burn activities increased from 691 
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12% of Laos in 2011-2015 to 15% in 2016-2020. Note that in this analysis, the area estimates 692 

include slash-and-burn activities that occurred in both previously and newly shifting cultivated 693 

fields.  694 

 695 

In our map, most errors of Shifting cultivation were due to misclassification between 696 

Stable forest and Shifting cultivation. Commission of Shifting cultivation errors occurred mostly 697 

during dry conditions which cause a decrease in NDFI that may result in a break in CCDC-SMA 698 

model (Fig. 22). In this case, the break may be misclassified as Shifting cultivation if the 699 

minimum differences of NDFI during and before the break year exceeds the threshold. Although 700 

object-based analysis partly solves this problem, it is still difficult to separate Drought and 701 

Shifting cultivation in a highly fragmented and complex landscape – an example of such a 702 

situation is shown in Fig. 22. The omission errors of Shifting cultivation usually occurred at the 703 

edge of patches of Shifting cultivation or before 2000. 81% of the omission errors of Shifting 704 

cultivation occurred at the edge of Shifting cultivation (Fig. 23 an example). This phenomenon of 705 

omission errors occurring at edges has been witnessed in other types of change studies as well, 706 

and methods have been proposed to mitigate the impact of such errors on area estimates 707 

(Olofsson et al., 2020). Because Shifting cultivation has such a large area weight and the 708 

reference sample was drawn by simple random sampling, such statistical technique was not 709 

necessary in this study. Another cause of omission errors was the relatively low data density 710 

before 2000. For example, in Fig. 24, although the slash-and-burn event in 1996 resulted in a 711 

large decrease in NDFI, no break was triggered as there was only one observation that 712 

significantly deviated from the predicted value of CCDC-SMA.  713 
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 714 

Fig. 22 An example of a commission error of Shifting cultivation. The disturbances in 1999 and 715 

2013 were caused by drought but misclassified as Shifting cultivation. (Example location: 716 

16°33'19"N, 104°58'15"E. In the time series plot, the blue points are Landsat observations, and 717 

the colored lines are the CCDC-SMA model fits, where different colors indicate different 718 

segments. In the Landsat images (Red-green-blue), the yellow squares show the pixel location. In 719 

the high-resolution images, the white circles show the center of the pixel.)  720 

 721 
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 722 

Fig. 23 An example of omission error of Shifting cultivation. The sample unit is located at the 723 

edge of a patch of shifting cultivation that occurred in 2019 but was misclassified as Stable 724 

forest. (Example location: 20°22'3"N, 100°25'46"E. In the time series plot, the blue points are 725 

Landsat observations, and the colored lines are the CCDC-SMA model fits, where different 726 

colors indicate different segments. In the Landsat images (Red-green-blue), the yellow squares 727 

show the pixel location.)  728 

 729 
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 730 

Fig. 24 An example of omission error due to low data density of Landsat in the early years. 731 

Shifting cultivation happened in 1996 but was misclassified as Stable forest. (Example location: 732 

20° 3'1"N, 104° 3'16"E. In the time series plot, the blue points are Landsat observations, and the 733 

colored lines are the CCDC-SMA model fits, where different colors indicate different segments. 734 

In the Landsat images (Red-green-blue), the yellow squares show the pixel location.) 735 

 736 

There are a few directions for our future research. First, we will analyze the spatial-737 

temporal patterns of shifting cultivation based on our results and put the results in a socio-738 

economic context. More analysis of the impact of change of fallow length and number of cycles 739 

of shifting cultivation is needed. Fallow length is an important characteristic of shifting 740 

cultivation and analysis of changes of fallow length is required for understanding the long-term 741 

impact of shifting cultivation. We will also investigate the geographic factors that influence the 742 

occurrence and frequency of shifting cultivation. Second, future research will quantify the carbon 743 

dynamics associated with shifting cultivation. The current guidelines for reporting of carbon 744 

dynamics associated with shifting cultivation in the REDD+ context are incomplete (GFOI, 745 



45 

2020). Shifting cultivation is a complicated process that involves highly dynamic carbon 746 

emissions and sequestration, which will require methods that go beyond those used for 747 

estimating emissions from deforestation. In the long term, the carbon emissions and 748 

sequestration of shifting cultivation depend on the fallow length and recovery status. In the 749 

future, we hope to combine our results on shifting cultivation with Global Ecosystem Dynamics 750 

Investigation (GEDI) data to investigate the effect of shifting cultivation on biomass. Third, the 751 

method to attribute forest disturbances can be expanded to a larger region, for example Southeast 752 

Asia. In the future, we will expand our research of attribution of forest disturbance to the whole 753 

of Southeast Asia.  754 

 755 

6. Conclusion 756 

 757 

We developed a method on GEE that combines CCDC-SMA, object-based analysis and 758 

post-disturbed land cover classification to monitor shifting cultivation. With the method, we 759 

were able to map 30 years of shifting cultivation across Laos with producer’s accuracy of 88%, 760 

user’s accuracy of 80% and the margin of error of area estimates of 6%. Our method is capable 761 

of detecting the highly-dynamic cycles of change associated with shifting cultivation, where 762 

traditional change detection methods are unable to accomplish. Our method and products are 763 

useful for estimating carbon emissions resulting from shifting cultivation, which are now rarely 764 

included in greenhouse gas inventories even if stipulated by international reporting guidelines. 765 

Furthermore, our research indicates that forest disturbance can be attributed at the pixel-level by 766 

combining time series analysis and object-based image analysis. We found that object-based 767 

image analysis is useful for separating large-scale natural disturbance from fine-scale 768 
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anthropogenic disturbance. Finally, our products and results provide valuable information for 769 

policy makers in terms of understanding the extent and trends of shifting cultivation. Our results 770 

indicate that shifting cultivation accounts for 33% ± 2% of Laos and the slash-and-burn activities 771 

have increased in recent years, which policy makers should pay attention to.  772 

 773 
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Fig. 1 Study area. 1016 
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Fig. 2 Flowchart of the method. (“Recently” refers to the period 2015 - 2020.) 1018 
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Fig. 3 Spectral reflectance of the endmembers. 1020 

 1021 

Fig. 4 RMSE of SMA model of dry season in 2020. (The reflectance is scaled by 10,000.) 1022 

 1023 

Fig. 5 Optimal threshold for the change magnitude used to classify breaks into Forest 1024 

disturbance and Undisturbed forest. The plots show the accuracies and errors of these tests. 1025 

(Max_Accuracy: maximum overall accuracy; Opt_Threshold: Optimal threshold; T: Thresholds) 1026 

 1027 

Fig. 6 Time series of an example of shifting cultivation. Slash-and-burn events occurred in 2001, 1028 

2006, 2010, and 2017. The Landsat images captured the events and the fallow periods. The three 1029 

Landsat images in 2017 captured the “slash-and-burn” process: The images on 03/21 and 04/06 1030 

show the “slash” process and the image on 05/08 shows the “burn” process. (Example location: 1031 

20° 2' 14"N, 100° 50' 7" E. In the time series plot, the blue points are the Landsat observations, 1032 

and the colored lines are the CCDC-SMA model fits, where different colors indicate different 1033 

segments. In the Landsat images (Red-green-blue), the yellow squares show the pixel location.) 1034 

 1035 

Fig. 7 Time series of an example that includes both shifting cultivation and a rubber plantation. 1036 

Clearing for shifting cultivation occurred in 1991 and 2001. In 2006, the land was cleared for 1037 

rubber plantation. The Landsat images show the stages of shifting cultivation and the high-1038 

resolution images show the plantation. (Example location: 20°27'35"N, 101°24'50"E. In the time 1039 

series plot, the blue points are Landsat observations, and the colored lines are the CCDC-SMA 1040 

model fits, where different colors indicate different segments. In the Landsat images (Red-green-1041 
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blue), the yellow squares show the pixel location. In the high-resolution images, the white circles 1042 

show the center of the pixel.) 1043 

 1044 

Fig. 8 Time series of an example of deforestation that occurred in 2011. Both the Landsat images 1045 

and the high-resolution images show that the land cover was permanently converted from forest 1046 

to non-forest. (Example location: 17°56'10"N, 102°40'45"E. In the time series plot, the blue 1047 

points are Landsat observations, and the colored lines are the CCDC-SMA model fits, where 1048 

different colors indicate different segments. In the Landsat images (Red-green-blue), the yellow 1049 

squares show the pixel location.) 1050 

 1051 

Fig. 9 Time series of an example of severe drought in 2016. The three Landsat images were 1052 

acquired before, during and after the disturbance. (Example location: 20°17'8"N, 103°18'25"E. In 1053 

the time series plot, the blue points are Landsat observations, and the colored lines are the 1054 

CCDC-SMA model fits, where different colors indicate different segments. In the Landsat 1055 

composites (Red-green-blue), the yellow points show the pixel location. The reddish-brown 1056 

region was affected by severe drought.) 1057 

 1058 

Fig. 10 Time series of an example of subtle disturbance. Selective logging occurred in November 1059 

1994, and a mild drought affected this location in 2016. (Example location: 20°17'40"N, 1060 

103°10'30"E. In the time series plot, the blue points are Landsat observations, and the colored 1061 

lines are the CCDC-SMA model fits, where different colors indicate different segments. In the 1062 

Landsat images (Red-green-blue), the yellow squares show the pixel location.) 1063 

 1064 
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Fig. 11 Land cover map of Laos in 2020 as an example of the annual land cover maps of 1990 - 1065 

2020. 1066 

 1067 

Fig. 12 Annual Palmer Drought Severity Index (PDSI) for Laos calculated from the 1068 

TerraClimate data (Abatzoglou et al., 2018). 1069 

 1070 

Fig. 13 (a): Size of objects identified as Forest disturbance; (b): Histogram of the size of objects 1071 

of Drought and Shifting cultivation. 1072 

 1073 

Fig. 14 Optimal threshold of disturbance magnitude to differentiate Shifting cultivation and 1074 

Subtle disturbance. The plots show the accuracies and errors of testing different thresholds. 1075 

(Max_Accuracy: maximum overall accuracy of the tests; Opt_Threshold: Optimal threshold; T: 1076 

Thresholds) 1077 

 1078 

Fig. 15 Reference data collection. This sample unit was interpreted as “Shifting cultivation”. The 1079 

number of slash-and-burn events is 4, and the year of events are 1992, 2000, 2009, and 2018. 1080 

(Sample unit location: 20°35'54"N, 101° 0'11"E. The images on the left side are Landsat images 1081 

and a high-resolution image on Google Earth. The plots on the right side are Landsat 1082 

observations of fraction of NPV, fraction of GV and NDFI. All these time series show significant 1083 

change in each slash-and-burn event.) 1084 

 1085 

Fig. 16 Disturbance map of Laos in 2016 as an example of annual disturbance maps from 1991-1086 

2020. 1087 
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 1088 

Fig. 17 First year of shifting cultivation in Laos. Places without shifting cultivation were mapped 1089 

as Stable forest, Permanent agriculture and Others. In the magnified view of a region, shifting 1090 

cultivation expanded from places adjacent to permanent agriculture to places close to stable 1091 

forest. 1092 

 1093 

Fig. 18 Annual area proportion of different disturbance types calculated from the map. The 1094 

histograms are stacked, meaning that the total height of the bar for each year is the sum of the 1095 

area proportions of all five types of disturbance for this year. 1096 

 1097 

Fig. 19 Map of Stable forest, Non-forest, Shifting cultivation, Deforestation and New plantation 1098 

of Laos during 1991-2020. 1099 

 1100 

Fig. 20 Sampling-based area estimation (expressed in proportion) of Stable forest, Non-forest, 1101 

Shifting cultivation, Deforestation and New plantation of Laos during 1991-2020. (Colored bars 1102 

and numbers in red: The area estimates in proportion; black bar: error bar showing uncertainty of 1103 

the estimates; blue cross: mapped area). 1104 

 1105 

Fig. 21 Area estimates of slash and burn events by period during 1991-2020. (Colored bars and 1106 

numbers in red: The area estimates in proportion; black bar: error bar showing uncertainty of the 1107 

estimates; blue cross: mapped area) 1108 

 1109 
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Fig. 22 An example of a commission error of Shifting cultivation. The disturbances in 1999 and 1110 

2013 were caused by drought but misclassified as Shifting cultivation. (Example location: 1111 

16°33'19"N, 104°58'15"E. In the time series plot, the blue points are Landsat observations, and 1112 

the colored lines are the CCDC-SMA model fits, where different colors indicate different 1113 

segments. In the Landsat images (Red-green-blue), the yellow squares show the pixel location. In 1114 

the high-resolution images, the white circles show the center of the pixel.) 1115 

 1116 

Fig. 23 An example of omission error of Shifting cultivation. The sample unit is located at the 1117 

edge of a patch of shifting cultivation that occurred in 2019 but was misclassified as Stable 1118 

forest. (Example location: 20°22'3"N, 100°25'46"E. In the time series plot, the blue points are 1119 

Landsat observations, and the colored lines are the CCDC-SMA model fits, where different 1120 

colors indicate different segments. In the Landsat images (Red-green-blue), the yellow squares 1121 

show the pixel location.) 1122 

 1123 

Fig. 24 An example of omission error due to low data density of Landsat in the early years. 1124 

Shifting cultivation happened in 1996 but was misclassified as Stable forest. (Example location: 1125 

20° 3'1"N, 104° 3'16"E. In the time series plot, the blue points are Landsat observations, and the 1126 

colored lines are the CCDC-SMA model fits, where different colors indicate different segments. 1127 

In the Landsat images (Red-green-blue), the yellow squares show the pixel location.) 1128 
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