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Abstract15

Abrupt frictional fault failure is normally accompanied by acoustic emission (AE)—impulsive16

elastic wave broadcast—with amplitude proportional to particle velocity. The cumulative17

sum of the fault particle velocities is a slip displacement. In laboratory shear experiments18

described here, measurements of a sequence of laboratory earthquakes includes local measurement19

of fault displacement and AE. Using these measurements we illuminate the connections20

between “cumulative sum of AE” and “slip displacement”. Additionally, the composition21

of the AE broadcasts reveals inhomogeneity in the fault mechanical structure from which22

they arise. This inhomogeneity, leading to a time invariant white AE component and an23

articulated AE, indicates that the articulated cumulative sum of the AE reveals a fault24

“state of the mechanical structure” diagnostic, that follows a distinctive pattern to frictional25

failure. This pattern explains why the continuous AE map to fault displacement as well26

as fault friction, shear stress, etc., as shown in many recent studies.27

Plain English28

In two hundred and fifty BCE Archimedes measured the volume of an oddly shaped29

object by slowly lowering it into a filled glass of water and determining the spillage. The30

motion in an inaccessible, seismically active zone is coded in the “spillage” of elastic waves31

from the active zones interior. Today 2024CE Archimedes can listen to the spillage of32

elastic waves and deduce the active zones motion. This 2024CE principle is stated and33

confirmed in this paper.34

1 Introduction35

In the last decade it has been discovered that continuous dynamic elastic wave broadcasts36

from laboratory faults, referred to here as acoustic emission (AE), are rich with information37

beyond classical precursors to frictional failure (P. A. Johnson et al., 2021, and references38

therein). By applying machine learning models to the continuous waveforms, these AEs39

can show where the fault is in the slip cycle. With this demonstration, a fundamental40

open question is why. The AE from a seismic zone carry an evolving record throughout41

the earthquake cycle describing the fault zone mechanics that presage the next “big” event.42

This observation helps drive the extant enthusiasm for the value of new powerful machine-43

learning-based data acquisition and analysis schemes being used in studying seismology44

problems (Bergen et al., 2019; Mousavi & Beroza, 2022, 2023).45

Today there are an abundance of high-fidelity AE data and state-of-the-art data46

processing techniques driving these new analyses (Beroza et al., 2021; Kong et al., 2018).47

One example of current practice, and the focus here, is the successful use of machine learning48

methods to glean seismic zone evolution from the temporally evolving feature space of49

the continuous AE (C. W. Johnson et al., 2020; Lubbers et al., 2018; C. W. Johnson &50

Johnson, 2023; Rouet-Leduc et al., 2019b, 2017; Hulbert et al., 2019, 2020; Corbi et al.,51

2019; Shreedharan et al., 2021; Rouet-Leduc et al., 2019a; Wang et al., 2021, 2022; Borate52

et al., 2023; Seydoux et al., 2020; Holtzman et al., 2018; Jasperson et al., 2021; Shokouhi53

et al., 2021; Laurenti et al., 2022). In this study, we step back from the current machine54

learning practice to understand why the AE is a powerful predictor of contemporaneous55

displacement, friction, etc. We do so by analyzing data from a carefully instrumented56

laboratory bi-axial “earthquake machine” experiment. The experiment analyzed (p5702)57

is typical of those conducted on a double direct shear device (e.g., Bolton et al., 2021)58

and allows us to follow the AE while the mechanical state of the “earthquake machine”59

unfolds. Thus, we can decompose the AE into separable components that have understandable60

behavior and understandable participation in the evolution of the mechanical state.61
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2 Laboratory Data62

2.1 p5702 Earthquake Experiment63

The experiment comprises a granite slider block that is pushed between two granite64

substrate blocks by a normal stress (N) of 6, 9, 12, 15 MPa respectively, during the experiment.65

See Supporting Information Figure S1a for a schematic of the system and complete details.66

The granite slider block is driven at a constant servo-controlled load point velocity of67

V0 = 10 µm/sec. The slider-substrate interfacial region (yellow area shown in Figure68

S1a) comprises a shear support structure that carries the shear stress between slider and69

substrate. Broadcasts from this region are the AE as the shear support structure evolves70

in time through asperity and fault gouge breaking, rearranging, resetting, etc. and typically71

detected away from the interfacial region. The experiment is designed so that the normal72

stress (N) is applied uniformly over a 100 cm2 area, but it passes non-uniformly through73

this area due to the shear support structure (e.g., Latour et al., 2013; Selvadurai & Glaser,74

2016; Caniven et al., 2017).75

The state of the mechanical system is set by the choice of normal stress and load76

point velocity (N,V0). Measurements are made through time of (1) the shear stress (determined77

from the applied stress in the load cell), (2) the position of the on-board-displacement78

point (relative to the two side blocks in the laboratory frame of reference), and (3) the79

AE (15-bit Verasonics data acquisition system continuously recording at 4 MHz using80

broadband ∼0.0001–2 MHz piezoceramic sensors and downsampled to 100 kHz). Under81

the conditions (N,V0) for the p5702 experiment, the motion of the slider undergoes repeated82

slip-stick cycles of approximately constant duration as observed in the shear stress through83

time (Figure S1b). The length of substrate crossed in a slip-stick cycle is of order 50−84

100 µm (dependent on N). For example at N = 6 MPa, during slip the slider moves85

quickly (0.4 seconds) through about 40 µm followed by “creep” for about 5 seconds through86

an additional 7 µm. During creep the composition of the AE evolves as the slip-stick cycle87

unfolds. This evolution of the AE is a target of our investigation.88

2.2 Displacement89

To track the motion of the slider we examine the on-board-displacement, denoted90

XS , that locates the slider block relative to the laboratory reference frame. In Figure91

1a we show XS through time for the last six slip-stick events at N = 6 MPa. Note,92

there is a slow evolution of the amplitude of the slip-stick behavior throughout the experiment93

as shown in Figure S1b and described in the Supporting Information. To minimize the94

effect of this evolution, we examine the last six slip-stick events at each applied normal95

stress (N). These six events are part of a set of steps; there is a “riser” shown by an increase96

in XS of about 40 µm that is abrupt in time and a “tread” having complex behavior as97

seen in the Figure 1b. To describe XS on the ”tread”, we fit XS to a line of constant98

slope, XS = Ut + h, where h allows us to align the “treads”. For the six “treads” in99

Figure 1, the slopes U are 0.0014, 0.0013, 0.0013, 0.0013, 0.0013, 0.0012 mm/sec; very100

consistent among themselves with U about 10% of the load point velocity, V0 = 0.01 mm/sec.101

At no point on the “tread” is dXS/dt = 0. We further decompose XS by examining102

the difference between the XS on the “tread” and the model Ut. We show XS−Ut, the103

residual, in Figure 2. The residual is typically of order 0.001 mm and less than UTSS ≈104

0.007 mm, where TSS is the time on “tread” (see Table S1 in the Supporting Information105

for numerical details). The residual is articulated in time, i.e., it varies in time markedly106

over the “tread” in much the same way for all six slip-stick events.107

We adopt the view that the slider-interface is inhomogeneous with some regions108

at essentially constant friction that are sliding parallel to other regions containing shear109

support structures with sufficient strength to deliver a noticeable impulse to the slider.110

Thus, the displacement XS on the “tread” comprise two components; a white component111
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(going as Ut) and a articulated component (varying non-trivially in time) as the slider112

crosses the “tread”. This articulated component of XS is shown in Figure 2.113

2.3 Acoustic Emission (AE)114

We inform our treatment of the AE by the mechanical perspective described above.115

There are important prefacing remarks gleaned from numerical experiments (Gao et al.,116

2018, 2019, 2020), as follows. When an element of the shear support structure fails, a117

short lived force dipole, with strength δF , appears in the system. One component of the118

dipole pushes the slider toward the load point and the other component pushes the (massive)119

substrate backward. An elastic wave is launched from the domain of the failure and a120

velocity impulse δv is delivered to the slider proportional to the strength δF of the failed121

support structure. Additionally, the elastic wave, which is a contribution to the AE, is122

broadcast with an amplitude that is proportional to δF ∝ δv. All δF and δv are positive123

since a failure pushes the slider toward the load point. The expectation is that the integral124

over time of the magnitude of the AE, approximately an integral over δv, is proportional125

to the displacement of the slider. Instead of studying the raw AE, we study the AE in126

the context of this expectation, i.e., we study127

C(t) =
∫ t

0

β(t
′
) dt

′
, 0 ≤ t on the ”tread”, (1)

where β(t) is the upper envelope of the AE, α(t), detected at time t.128

In Figure S2a we show the N = 6 MPa AE α(t) for one “tread” where the adjacent129

slider block slips are at the bounding red lines. The “tread” is about 5 seconds in duration130

and is sampled by about 5 × 105 data points. In Figure S2b we show β(t), the upper131

envelope of α(t). In Figure 3 we show C(t) vs t from Equation 1 for six slip-stick events132

during each of the four applied normal stresses N . The quantity shown is C(t) on each133

“tread” divided by the length of time of the “tread” to scale C(t) so the results fit conveniently134

on a single plot.135

The striking feature of the behavior of C(t) is that in leading approximation, for136

all six slip-stick events and for all four applied normal stresses N , C(t) rises linearly with137

time. That is, β(t) is essentially constant through time,
∫ t

0
β(t)dt ≈ β

∫ t

0
dt . This may138

not be apparent when looking at the continuous s (Figure S2b). The noticeable spikes139

in β(t) are weighted by their time duration in the construction of C(t) and are minimally140

contributing amidst the large number of nearly continuous smaller amplitude contributions.141

Emulating the treatment of the on-board-displacement we fit C(t) to a line: C(t) = Wt.142

Then, in Figure 4 we show the residual, C(t)−Wt, for the six “treads” during the four143

applied normal stresses N . We note that the residual is essentially the same for each of144

the six “treads” for each applied normal stresses N . The shape in time of the residual145

is much the same for all N . The residual, C(t) − Wt, closely resembles the articulate146

component of the on-board-displacement, Figure 2. These findings support the assertion,147

based on the “prefacing remarks”, of the physical connection between the construct involving148

the AE, Equation 1, and the on-board-displacement.149

3 Results and Discussion150

The data show both XS and C(t) on a “tread” comprise a white component that151

is trivially dependent on t, with no important structure in time beyond proportionality152

(Figure 3). By removing the white component to isolate the articulated component it becomes153

evident there is structure in time to XS and to C(t) over the entire length of the “tread”154

(Figures 2 and 4). The similarity of the articulated component of XS and the articulated155

component of C demonstrate the connection between the load-point-displacement XS156

and AE α(t) that informed our data treatment. The two parts of XS and C(t) belong157

to the two parts of the inhomogeneous shear support structure. They exist adjacent to158
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one another (Trugman et al., 2020) and are associated with two different friction components.159

An equation of motion for the slider might take the form160

MẌ = k(V0t−X)− Fw − Fa, (2)

where Fw and Fa are the forces associated with the white and articulated components.161

The spatial domains of the two components of the shear support structure are determined162

by the way in which the normal stress crosses through the shear support structure. These163

spatial domains appear to be approximately “location invariant”, i.e., they retain their164

integrity as the slider goes through repeated slip-stick cycles as seen in Trugman et al.165

(2020) and Marty et al. (2023).166

In Table S1 we show the numerical values of the parameter that describe the motion167

of the slider over one slip-stick cycle length. During slip the articulated component of168

the shear support structure is dis-engaged and the slider rapidly advances distance b0169

(ranging from 37 µm to 151 µm as N increases). Slip stops abruptly when the articulated170

component of the shear support structure re-engages, holding the slider to approximately171

constant velocity (from ≈ 1 µm/sec to ≈ 0.2 µm/sec as N increases), then slow motion172

toward a new slip unfolds. The slip-to-slip time, TSS , basically the time on the “tread”,173

varies from 5.5 sec to 22.6 sec as the applied normal stress N increases. Both b0 and TSS174

scale approximately with N . The total slip-stick length, b0+UTss, varies from 44 µm175

to 155 µm as N increases.176

In Table S2 we show the numerical values of the parameters that describe the cumulative177

AE over one slip-stick length. The cumulative AE, C(t) varies from 24.54 to 105.07 as178

N increases. It comprises a white component, which is almost all of it, and the articulated179

component shown in Figure 4. The articulated component of C(t) is of order 1% of the180

total (listed in the last column of Table S2). Interestingly, the velocity W with which181

C(t) increases on a “tread” is approximately independent of the applied normal stress182

N . In Table S3 we list the independent scaling with N of the parameters describing the183

behavior of XS and C.184

4 Conclusions185

We have undertaken the study of a laboratory earthquake system for which we have186

access to measurement of (1) the on-board-displacement, XS , and (2) the AE, α(t). Therefore,187

we can conduct an empirical test of the relationship between mechanical variables (displacement,188

stress, ...) and the AE. Our treatment of the analysis is informed by a physical model189

of shear support structure (Gao et al., 2019) to form C, the cumulative sum of the magnitude190

of the AE. Both XS and C are able to be separated into a white component and an articulated191

component. For both XS and C the white component is time independent as the system192

moves between slip events. In contrast, the articulated component of C and Ca, has much193

the same time dependence as the articulated component of XS and Xa. This similarity194

is present during repeated stick domains (i.e., between slip events) for each normal stress195

as it is varied from 6 MPa to 15 MPa (Figure 2). We take these similarities to establish196

that Ca is essentially equivalent to the articulated part of XS . That is, the important197

motion of the slider in time, Xa(t), can be tracked by following a properly formed (i.e.,198

Gao et al., 2019) measure of the AE, i.e., Ca(t). From 2024CE “Archimedes” (Plain English)199

Ca(t) is a valid diagnostic for following slider motion through time. [There are important200

differences in Figures 2 and 4 early in time. These differences arise because the timing201

on a “tread” in the mechanical data is set by the on-board-displacement “jump”, whereas,202

the timing in the AE data is set by the “noise pulse” in that data.]203

How are the findings here related to the recent studies employing AE? In the typical204

machine learning based AE study (e.g., Rouet-Leduc et al., 2017) the basic outcome is205

a point-wise in time equation of state, i.e., at each moment of time a one-to-one correspondence206

is established between the properties of the feature space derived from the AE and the207
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shear stress state of the slider. It is straight forward in such calculations to replace the208

shear stress state of the slider with the on-board displacement. Then, an equation of state,209

that is at each time a one-to-one correspondence between the properties of the feature210

space of the AE and the on-board-displacement, can be established. In short, the machine211

learning model is applied in these calculations in order to find within the AE the set of212

features that carry the information correlated with the on board displacement. For instance,213

in laboratory shear experiments (Rouet-Leduc et al., 2017) a single feature equation of214

state is demonstrated from laboratory experiment AEs and in repeating caldera collapse215

sequence (C. W. Johnson & Johnson, 2023) an equation of state is demonstrated using216

AEs that carry the evolving ground displacement information. That is why the machine217

learning analyses “work” and similarities in the articulated components emphasizes this218

point.219
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Figure 1. Shown in blue is the slider block on-board-displacement during the 6 MPa normal

stress for the last six slip-cycles of the p5702 experiment. The red line shows the constant applied

loading velocity of V0 = 10 µm/sec. The inset box is showing one “tread” as described in Section

2.2 Displacement for one loading cycle.

.
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Figure 2. The six loading cycles on-board displacement stacked in time for the N =

6, 9, 12, 15 MPa experiments shown in (a), (b), (c), (d), respectively. Shown here is the on-

board-displacement as measured from the shear stress using aτ = V0t−b−XS , with a and b found

from the parameters characterizing the load cell. The on-board-displacement is directly measured

in the experiment but there is increased variance in the direct measurement for N = 12 MPa

and N = 15 MPa when compared to the shear stress.
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Figure 3. The integral C(t) from Equation 1 for the six “tread” values shown in groups from

left to right for the increasing applied normal stress in the experiment.
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Figure 4. The residual values of C(t): Ca(t) = C(t) − (Wt + d) for the six applied

normal stresses in the experiment. Each “treads” during is shown in a different color for each

experiment.
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