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Abstract13

Predicting the future contribution of the ice sheets to sea level rise over the next decades14

presents several challenges due to a poor understanding of critical boundary conditions,15

such as basal sliding. Traditional numerical models often rely on data assimilation meth-16

ods to infer spatially variable friction coefficients by solving an inverse problem, given17

an empirical friction law. However, these approaches are not versatile, as they sometimes18

demand extensive code development efforts when integrating new physics into the model.19

Furthermore, this approach makes it difficult to handle sparse data effectively. To tackle20

these challenges, we propose a novel approach utilizing Physics-Informed Neural Net-21

works (PINNs) to seamlessly integrate observational data and governing equations of ice22

flow into a unified loss function, facilitating the solution of both forward and inverse prob-23

lems within the same framework. We illustrate the versatility of this approach by ap-24

plying the framework to two-dimensional problems on the Helheim Glacier in southeast25

Greenland. By systematically concealing one variable (e.g. ice speed, ice thickness, etc.),26

we demonstrate the ability of PINNs to accurately reconstruct hidden information. Fur-27

thermore, we extend this application to address a challenging mixed inversion problem.28

We show how PINNs are capable of inferring the basal friction coefficient while simul-29

taneously filling gaps in the sparsely observed ice thickness. This unified framework of-30

fers a promising avenue to enhance the predictive capabilities of ice sheet models, reduc-31

ing uncertainties, and advancing our understanding of poorly constrained physical pro-32

cesses.33

Plain Language Summary34

Our ability to predict the future contribution of the ice sheets to future sea-level35

rise is limited due to the lack of observations, especially at the base of the ice sheets. Tra-36

ditional computer models infer basal sliding from observations at the surface based on37

ice flow physics, a process that becomes complex and inflexible when incorporating new38

information or a more sophisticated description of ice flow. Our solution involves Physics-39

Informed Neural Networks that seamlessly integrate data and physical laws in a unified40

framework. We demonstrate the versatility of PINNs on Helheim Glacier in Southeast41

Greenland, showcasing their ability to handle missing or incomplete data. Additionally,42

we extend PINNs to address a challenging problem, which consists of inferring basal slid-43

ing while filling gaps in sparsely observed ice thickness at the same time. This unified44

approach holds promise for improving ice sheet predictions and advancing our understand-45

ing of complex ice dynamics.46

1 Introduction47

The Greenland and Antarctic ice sheets are collectively responsible for more than48

half of the observed global sea-level rise in recent decades (Frederikse et al., 2020). This49

mass loss is primarily driven by the dynamic behavior of marine-terminating glaciers,50

which discharge icebergs into the ocean (Mouginot et al., 2019; Rignot et al., 2019). Cur-51

rent projections of sea level rise rely on transient simulations (Nowicki et al., 2016; Eyring52

et al., 2016) that capture the response of these outlet glaciers to climate forcings. These53

numerical models solve forward problems to compute the evolution of ice velocity and54

geometry (Durand et al., 2009; Mangeney & Califano, 1998; Bueler & Brown, 2009; Col-55

inge & Blatter, 1998), which, in turn, affect the discharge of ice into the ocean.56

Among all the physical processes influencing current and future ice discharge, basal57

friction is a major control on the dynamics of these outlet glaciers. Basal friction char-58

acterizes a relationship between the ice basal velocity and the stress exerted by the un-59

derlying bed (Budd et al., 1979; Weertman, 1957; Gagliardini et al., 2007). This rela-60

tionship has a significant influence on how the ice sheets respond to external forcings,61

particularly in the context of climate change (Yu et al., 2018; Brondex et al., 2019; Barnes62
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et al., 2021). Therefore, improving our understanding of basal conditions and accurately63

representing them in ice sheet numerical models is critical (Brondex et al., 2017; Åkesson64

et al., 2021).65

Empirical friction laws typically incorporate a friction “coefficient”, which is spa-66

tially and sometimes temporally variable, encapsulating less-understood physical pro-67

cesses. This friction coefficient cannot be directly measured and is generally inferred from68

surface observations using data assimilation methods (Tarantola, 2005; D. MacAyeal, 2002;69

Petra et al., 2012; Morlighem et al., 2013). These methods involve solving inverse prob-70

lems aimed at minimizing an objective or cost function, which is constructed based on71

the misfit between observed and modeled variables, such as surface velocity or surface72

elevation (Goldberg & Sergienko, 2011; Morlighem & Goldberg, 2023). These observa-73

tional data are often associated with noise, and the uncertainties, as well as model er-74

ror, propagate through the inverse model and end up lumped into the friction coefficient75

(Karniadakis et al., 2021; Cheng & Lotstedt, 2020), which contributes significantly to76

the overall uncertainty in ice sheet modeling. Furthermore, solving inverse problems of-77

ten requires specially designed numerical methods, demanding different formulations and78

sometimes complex computer codes (Griewank et al., 1996; Vogel, 2002). These challenges79

underscore the pressing need for novel approaches to potentially alleviate these issues80

and enhance our ability to model and understand the dynamics of ice sheets.81

Recent advances in Machine Learning techniques together with the wealth of new82

remote sensing data offer opportunities to develop new approaches to better constrain83

numerical models with data. Physics-Informed Neural Networks, for example, have been84

specifically designed to tackle complex problems associated with intricate mathemati-85

cal operations (Raissi et al., 2019; Karniadakis et al., 2021; Lu et al., 2021). PINNs seam-86

lessly integrate observational data with underlying physical laws and have been used in87

a wide range of applications (e.g., Lu et al., 2021; Karniadakis et al., 2021; Riel et al.,88

2021). The PINN loss function represents a weighted sum of data misfits and the resid-89

uals of the governing equations, typically in the form of partial differential equations (PDEs).90

This contrasts with standard deep neural networks, which solely learn from available data.91

By enforcing physical laws as soft constraints, PINNs make it possible to infer quanti-92

ties without direct observations.93

Here, we explore the use of PINNs in ice sheet modeling by solving two-dimensional94

forward and inverse problems on a real Greenland glacier. By training PINNs with a care-95

fully designed loss function, while knowing all variables except one, we try to recover the96

unknown. Depending on the choice of training data, we use this framework as a forward97

solver to get the ice velocity, or as an inverse solver to infer the basal friction coefficient.98

To evaluate whether PINNs can effectively and accurately reconstruct the hidden infor-99

mation, we compare its solution with the true solution obtained from a conventional nu-100

merical model. Furthermore, we try to infer other parameters within the governing equa-101

tions using this framework, even those challenging to invert using traditional numerical102

methods. In a second set of experiments, we extend the application of PINNs to address103

a challenging mixed-inversion problem: we test the ability of the framework to infer the104

basal friction coefficient while simultaneously filling in gaps in sparsely observed ice thick-105

ness. This mixed inversion problem represents a class of scenarios that has not yet been106

explored by conventional numerical methods due to its intrinsic complexity.107

2 Method108

2.1 The physics-informed neural networks109

Following Raissi et al. (2019), we implement a PINN to assimilate both the phys-110

ical model detailed in section 2.2 and the data presented in section 2.3. The architec-111

ture of the PINN is schematically illustrated in Figure 1. In this configuration, fully con-112
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nected parallel neural networks are employed, with the inputs designated as the coor-113

dinates x and y in the two-dimensional plane (or x in the one-dimensional cases). The114

PINN generates predictions for five different outputs. Specifically, three parallel neural115

networks, each comprising 6 layers with 20 neurons per layer, are utilized to generate116

predictions for ice velocity, ice geometry, and friction coefficient, respectively. We em-117

ploy the hyperbolic tangent activation function for all neurons in the PINN. To ensure118

the reliability of the network predictions, we normalize the input variables to the range119

[−1, 1] across the computational domain before feeding them into the network. Addi-120

tionally, the network outputs are denormalized from the range [−1, 1] to their actual val-121

ues as used in the governing PDEs.122

The total loss function, L, comprises two parts. The first component captures the123

total data misfit at locations where observational data are available. The second com-124

ponent captures the residual of the governing PDEs at a set of randomly selected col-125

location points. The training process involves optimizing the loss function with respect126

to the coefficients of the neural networks, which strikes a balance between fitting the avail-127

able data and satisfying the physical equations that govern the ice sheet flow.
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Figure 1. Illustration of the Physics-Informed Neural Network. Note that the neural network

architecture depicted here is for illustrative purposes only, and does not represent the actual

configuration used in this study described in the text.

128

2.2 Physical model – Shelfy Stream Approximation129

Consider a two-dimensional domain x = (x, y) ∈ Ω, where the ice velocity is de-
noted as u = (u, v)T . The governing ice dynamics are described by the Shelfy Stream
Approximation (MacAyeal, 1989, SSA), expressed as a system of PDEs:

∇ · σ + τ b = ρigH∇s (1)
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where τ b = (τbx, τby)
T represents the basal shear stress, ρi is the ice density, g is the

gravitational acceleration. σ is the stress tensor of the SSA model defined as

σ = µH


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The ice viscosity, µ, is determined by Glen’s flow-law (Glen, 1958), which in two dimen-
sions reads:
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where n = 3 is the flow-law exponent, and B is the pre-factor dependent on ice tem-130

perature (Cuffey & Paterson, 2010), among other factors.131

We assume here that the basal shear stress τ b is related to the ice velocity u by
Weertman’s friction law (Weertman, 1957)

τ b = −C2|u|m−1u, (4)

where C is a spatially varying friction coefficient and m = 1/3. While various empir-132

ical friction laws exist (e.g., Budd et al., 1979; Weertman, 1957; Gagliardini et al., 2007),133

for simplicity, we focus on Weertman’s law in this work. Nevertheless, the methodology134

presented can be generalized to accommodate other friction laws.135

Many of the Greenlandic glaciers are marine-terminating glaciers, which have calv-
ing fronts at the ice-ocean interface. The boundary conditions on the calving front Γ are
defined as

n · σ =
1

2
g
(
ρiH

2 − ρwb
2
)
n (5)

where n = (nx, ny)
T is the outward normal unit vector on Γ, ρw is the density of sea136

water, and b = s−H is the bed elevation. For the remaining outer boundaries of the137

domain, we apply Dirichlet boundary conditions.138

2.3 Data139

We rely on a diverse set of observations from both direct measurements and reanal-140

ysis models. These datasets include ice velocity, surface elevation, ice front positions, ice141

thickness, and inferred basal friction coefficients. In this work, we use the data from Hel-142

heim Glacier in Southeast Greenland, as shown in Figure 2.143

The ice surface velocity mosaic is from NASA’s MEaSUREs products (Joughin et144

al., 2018). We denote the velocity observations at Nu distinct locations {xu
j }Nu

j=1 as ûj =145

(ûj , v̂j)
T . Surface elevation data ŝj at the location {xs

j}Ns
j=1 are from the Greenland Ice146

Mapping Project (Howat et al., 2014), while ice thickness Ĥj at {xH
j }NH

j=1 is from Bed-147

Machine Greenland v6.1 (Morlighem et al., 2017). The ice front position is derived us-148

ing the ice mask from Howat et al. (2014).149

To train and validate the PINNs, we require the friction coefficient Ĉj at some lo-150

cation {xC
j }NC

j=1. Since there is no direct observation of the friction coefficient, we per-151

form an inversion using the Ice-sheet and Sea-level System Model (ISSM, Larour et al.,152

2012), using the aforementioned datasets to infer the friction coefficient following the method153

described in Morlighem et al. (2013).154
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Figure 2. Reference data from Helheim Glacier. (a) velocity magnitude (b) basal friction

coefficient (c) ice thickness (d) surface elevation.

2.4 The loss function155

We formulate a loss function L(θ) to optimize the coefficients θ of the neural net-
works. This loss function takes the form

L = Lu + Lg + LC + Lφ (6)

where each term represents the contributions to the loss function associated with sub-156

scripts u (velocity), g (ice geometry), C (friction coefficients), and φ (PDE residuals).157

Specifically, our loss function comprises a weighted sum of data misfits and residuals from158

the governing PDEs. We further denote these misfits and residuals by ε, and the weights159

by w, with the same subscripts as the ones described above.160

The data misfits are calculated by the mean-square errors (MSE) of the PINN’s
predictions at locations where the corresponding observational data is available, and they
contribute to the loss function as

Lu =wu(εu + εv) =
wu

Nu

Nu∑

j=1

((
u(xu

j )− ûj

)2
+
(
v(xu

j )− v̂j
)2)

, (7)
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Ns∑

j=1

(
s(xs

j)− ŝj
)2

+
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NH∑

j=1

(
H(xH

j )− Ĥj

)2
, (8)

LC =wCεC =
wC

NC

NC∑

j=1

(
C(xC

j )− Ĉj

)2
, (9)

where u(x), v(x), s(x), H(x), and C(x) are the output of the PINN as shown in Figure161

1. The weights, wu, wg, and wC , are scaled according to the typical values of the ice ve-162

locity, ice thickness, and friction coefficient in the International System of Units (SI), to163

balance their contributions to the total loss function. For Helheim Glacier, the typical164

values of these variables and the corresponding weights are shown in Table 1.165

The PDEs in (1) are evaluated using the output of the PINN at a distinct set of
collocation points {xΩ

j }NΩ
j=1, which are different from the observational datasets in sec-

tion 2.3. The residual of the PDEs is expressed as the mean-square errors among these
collocation points together with the boundary conditions. Specifically, for the Helheim
Glacier, we include the calving front boundary condition along the points at {xΓ

j }NΓ
j=1

in evaluating the residual of the PDEs as

Lφ = wΩεΩ+wΓεΓ =
wΩ

NΩ

NΩ∑

i=1

∥∇ · σ + τ b − ρigH∇s∥2+wΓ

NΓ

NΓ∑

i=1

∥∥∥∥n · σ − 1

2
g
(
ρiH

2 − ρwb
2
)
n

∥∥∥∥
2

,

(10)
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Table 1. Typical values of variables in Helheim Glacier

variable typical value weights value

|u| 104 myr−1 wu 10−8 × (315360002) m−2 s2

s,H 103 m wg 10−6 m−2

C 104 Pa1/2m−1/6s1/6 wC 10−8 Pa−1 m1/3 s−1/3

τ b 105 Pa wΩ 10−10 Pa−2

ρigH
2 109 Pa m wΓ 10−18 Pa−2m−2

where the weights wΩ and wΓ are chosen by scaling the basal shear stress and bound-166

ary force as in Table 1.167

Effectively constructing a robust loss function for the PINN poses a significant chal-168

lenge due to the diverse nature of its components, each representing distinct physical quan-169

tities with inherently different orders of magnitudes. Importantly, these components serve170

as soft constraints within the loss function, collectively influencing the learning process171

of the neural network (Iwasaki & Lai, 2023; Lu et al., 2021). The success of PINNs in172

ice sheet modeling critically relies on the careful selection of weights assigned to each com-173

ponent in the loss function. To optimize the predictive capabilities of the PINN before174

applying it to real problems at Helheim Glacier, we perform an extensive grid search to175

find the best weights outlined in Table 1. We fix wu and vary the other four weights by176

several orders of magnitude around the typical values. This search aims to validate that177

the values in Table 1 are indeed optimal for the diverse components in the loss function.178

We systematically vary wg and wC by ±2 orders of magnitude, while adjusting wΩ by179

±5 orders of magnitude. For wΓ, the ratio wΩ/wΓ is fixed at 10−8. To ensure robust-180

ness, each experiment is repeated at least 25 times using a Glorot normal initializer with181

distinct random seeds. To speed up the grid search procedure, we perform these valida-182

tion experiments exclusively on an inverse problem along a flowline of Helheim Glacier,183

treating it as a one-dimensional problem with fewer data points. The main results are184

shown in section 3.1.185

2.5 Numerical experiments186

After validating the choice of the weights, we apply the PINN to the two-dimensional187

datasets obtained from Helheim Glacier, as detailed in section 2.3. Subsequently, we con-188

duct three distinct sets of numerical experiments by intentionally concealing one com-189

ponent within the observational datasets.190

In the first experiment, we test the ability of the PINN to solve the forward prob-191

lem. This involves utilizing the friction coefficient, Ĉ, and the ice geometry, ŝ and Ĥ,192

to solve for the ice velocity, u. The second experiment tests the ability of the PINN to193

solve an inverse problem and infer basal friction based on observed velocities. Here, we194

train the network with ice velocity, û, and ice geometry, ŝ and Ĥ, and infer the basal195

friction coefficient, C. In the third experiment, we test the ability of the PINN to infer196

the ice thickness, H. This is accomplished using the ice velocity, û, surface elevation,197

ŝ, and the basal friction coefficient, Ĉ, as training datasets.198

For all three experiments, we use 4, 000 data points for the training sets, and 9, 000199

collocation points for evaluating the PDE residual. The calving front is described by 121200

data points with spacing of 200 m, and the Dirichlet boundary around the domain has201

541 data points. All the experiments are trained with Adam optimization up to 1, 000, 000202

epochs on the NVIDIA Tesla V100 SXM2 32GB GPU. We use TensorFlow 2.4.1 imple-203
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Table 2. RMSE for all experiments

Experiments |u| (m/yr) C (Pa1/2 m−1/6 s1/6) H (m) s (m)

Forward problem 193.75 269.54 30.33 26.99
Inverse problem 56.01 589.61 18.96 14.11
Invert for H 70.64 114.55 69.47 12.99
Dual inversion 126.83 899.53 88.39 22.08

mentation of the Adam optimizer, with a learning rate at 0.001, β1 = 0.99, β2 = 0.999,204

and ϵ = 0.1.205

3 Results206

3.1 Choice of weights207

In total, we conducted over 15, 000 experiments, systematically exploring various208

combinations of weights. Perhaps unsurprisingly, balancing the different data misfits is209

relatively straightforward by scaling to the same magnitude within the SI unit system.210

However, the balance between the data misfit and PDE residual is particularly delicate211

in order to obtain satisfactory results.212

In Figure 3, we vary wΩ while keeping all other weights fixed, as specified in Ta-213

ble 1. Each point in the figure represents an experiment, and due to randomization in214

the training process, we repeated these experiments multiple times to derive an average215

behavior of the PINN. Figures 3 (a)-(c) exhibit distinct ‘L-curve’ patterns. As wΩ de-216

creases from 10−7 to 10−15 Pa−2, the data misfit diminishes, reflecting the increased fo-217

cus of the loss function on the data, while placing less emphasis on the PDE constraints.218

The minimum data misfit is achieved at wΩ = 10−11 Pa−2. However, errors, particu-219

larly the MSE of the velocity, start to diverge, which is indicative of overfitting. This trend220

becomes more pronounced for wΩ < 10−11 Pa−2. Figure 3 (d) further illustrates this221

by presenting the mean and standard deviation of test errors for each wΩ. Test error is222

computed by comparing the PINN’s prediction of C with the reference data Ĉ. From223

this figure, we conclude that the optimal choice for wΩ is 10−10 Pa−2. This value cor-224

responds to the square of 1/(100 kPa), a typical driving stress in ice sheet modeling, serv-225

ing as the right-hand side of the PDE. This choice of weight aligns well with physical226

expectations.227

3.2 Forward problem228

Now that we know how to best choose the weights of the cost functions, we can per-229

form our first set of experiments. We train the PINN with the dataset of friction coef-230

ficient, Ĉ, ice thickness, Ĥ, and surface elevation, ŝ, described in section 2.3. In this case,231

the PINN is treated as a solver for the forward problem, aiming to determine the ice ve-232

locity u. Since we are not exposing the ice velocity to the PINN, the ice velocity is solely233

inferred by the PDE constraint in the loss function. The PINN’s predictions and the cor-234

responding misfits with respect to the reference data are shown in Figure 4. All predic-235

tions agree well with the reference data in Figure 2, particularly where training data is236

available, i.e., C, H, and s, as shown in Figure 4 (f-h). The root mean squared error (RMSE)237

of these misfits is presented in Table 2.238

The PINN’s prediction of the flow velocity closely matches the true solution over239

most of the area, capturing all branches of Helheim Glacier. Although there are some240

large misfits locally (e.g., ±700 m/yr) in the fast flow region, the RMSE of the misfit is241
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Figure 3. MSE of the (a) velocity, (b) surface elevation, and (c) ice thickness versus the PDE

residual εΩ. (d) The mean test error of the PINNs predictions using different weights wΩ.

193.75 m/yr. This represents approximately less than 10% of the average flow velocity242

over the entire domain (2, 028.69 m/yr) and about 2.7% of the highest velocity (7, 152.93243

m/yr).244

3.3 Inverse problem245

We change the training dataset to use ice velocity û, ice thickness Ĥ, and surface246

elevation ŝ. In this configuration, the PINN serves as an inverse solver to infer the basal247

friction coefficient C. Again, because we don’t expose the PINN to the “true” friction248

coefficient from the ISSM model inversion, the PINN is inferring C solely based on the249

PDE constraint that is linking the friction coefficient to the other variables that the PINN250

is exposed to. The predictions and misfits are presented in Figure 5, and the RMSE of251

the misfit is provided in Table 2. Similar to the forward problem in section 3.2, the pre-252

dictions of PINN align well with the “true” solution. Particularly for those learning from253

the reference data, the relative errors are all below 3% (the average ice thickness is 716.61254

m, and the average surface elevation is 987.66 m).255

The RMSE of the misfit in C is 589.61 Pa1/2 m−1/6 s1/6. However, as shown in Fig-256

ure 5(f), the pattern of large errors is located primarily in the slow-moving region (ve-257
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Figure 4. (a)-(d) Predictions of the PINN solving a forward problem without exposure to ice

velocity during training. (e)-(h) Corresponding misfits between the predictions and the “true”

velocity in Figure 2.

locity < 10 m/yr), where there is minimal ice coverage (ice thickness < 30 m). In con-258

trast, the predicted friction coefficient is highly accurate in the fast-flow region, captur-259

ing all features, including branches and shear margins. The RMSE of misfit in C over260

the region with |u| > 10 is 392.54 Pa1/2 m−1/6 s1/6.
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Figure 5. (a)-(d) Predictions of the PINN solving an inverse problem without exposure to the

friction coefficient during training. (e)-(h) Corresponding misfits between the predictions and the

“true” solution in Figure 2.
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3.4 Inferring ice thickness261

The flexibility of the PINN framework provides the possibility to infer the ice thick-262

ness H using ice velocity û, surface elevation ŝ, and friction coefficient Ĉ. The PINN pre-263

dictions and their corresponding misfits are shown in Figure 6. Similar to sections 3.2264

and 3.3, the predictions of u, s, and C align well with the training data, with relative265

errors of 3.5%, 4.3%, and 1.3%, respectively. The PINN’s prediction of the ice thickness266

in Figure 6 (c) is a smoothed version of the true solution shown in Figure 2 (c). The mis-267

fit in Figure 6 (g) is distributed fairly evenly in the entire domain with an RMSE of 69.47 m,268

primarily located along the sharp transition of the H, such as the ice front and a part269

of the northern branch of Helheim Glacier.
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Figure 6. (a)-(d) Predictions of the PINN inferring ice thickness using ice velocity û, surface

elevation ŝ, and friction coefficient Ĉ in the training procedure. (e)-(h) Corresponding misfits

between the predictions and their corresponding reference data in Figure 2.

270

4 Discussion271

4.1 A unified framework272

The results presented above show how a single PINN architecture can solve both273

forward and inverse problems within the same framework. It is worth noting that there274

are no inherent distinctions between solving different types of problems within this frame-275

work. In other words, solving for ice velocity or inferring basal traction or ice thickness276

is implemented by switching on and off terms in the loss function during the training pro-277

cess. Depending on the training data provided, the PINN learns variables from both ob-278

servational data and the underlying physics. This approach considerably simplifies the279

code development process compared to conventional numerical methods.280

The training data serves as a foundational basis for the PINN to learn from, while281

the governing PDEs act as soft constraints, guiding the estimation of unknown param-282
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eters in the system. The PDE constraints provide additional relationships between all283

the variables involved, and act as a regularizing operator, particularly for the terms in-284

volving gradients (Karniadakis et al., 2021). For variables with available data during train-285

ing, the PINN acts as a smooth interpolator. On the contrary, for variables without data,286

the PINN behaves as a solver, effectively satisfying the soft constraints imposed by the287

governing PDEs.288

This unified framework, illustrated in Figure 1, offers flexibility for incorporating289

new variables and physics into the system. The addition of new variables involves intro-290

ducing additional outputs from the neural network, while the inclusion of new physics291

requires adding an extra term to the loss function to assess the residual of the new gov-292

erning equation. Furthermore, this framework can be readily extended to time-dependent293

problems by introducing time as an input variable to the neural network and evaluat-294

ing time-dependent PDEs in the loss function.295

4.2 Model performance296

The results presented in section 3 show that the PINN is able to produce solutions297

for all three experiments with reasonable accuracy. The relative errors in all cases are298

below 5%. For the variables learned directly from the data (e.g., surface topography),299

the errors are evenly distributed throughout the entire domain, with some larger errors300

associated with steep changes in the data. On the other hand, when inferring solutions301

based on the PDE constraints, the errors depend on the location. In the forward run,302

the error in the predicted velocity (u) is larger in the high-velocity region. Similarly, when303

inferring the ice thickness, larger errors are observed in the fast-flowing region and at304

sharp transition zones in the ice thickness.305

However, in the basal friction inverse experiment, the errors in the inferred param-306

eter C show a different pattern. Larger errors are observed in the slower-moving regions307

with thinner ice. This difference is likely due to the MSE of the velocity misfit that tends308

to prioritize the fast-flowing regions over the slower-moving ones. Considering the ex-309

tensive range of ice velocities observed in Helheim Glacier, spanning five orders of mag-310

nitude, the solution for C in the inverse problem detailed in Figure 5 exhibits more sub-311

stantial errors in regions characterized by low ice velocities (less than 10 m/yr) compared312

to those in the fast-moving regions. This situation is not unique to this approach, and313

traditional numerical methods also face this problem when inverting for the basal fric-314

tion coefficient. The solution to tackle this problem in conventional inverse methods is315

to complement the L2 norm for the velocity misfit with a logarithmic norm of the ve-316

locity that will place more weight on the slow-moving regions (Morlighem et al., 2010).317

Additionally, the SSA equations ((1)) may not be a good approximation of the ice dy-318

namics in slow-moving regions where vertical shear cannot be neglected. Since the flow319

velocity does not strongly depend on the friction coefficient in these slow-moving regions,320

the error is expected to be high.321

The experiment in section 3.4 is particularly noteworthy as it demonstrates the ca-322

pability of PINNs to infer ice thickness using momentum conservation (SSA). To our knowl-323

edge, this has not yet been achieved using conventional numerical methods. Together324

with the other experiments presented in section 3, these results underscore the inherent325

flexibility of the PINN framework. Ideally, this approach can be applied to infer any vari-326

able within the governing equation in a similar manner.327

4.3 Dual inversion328

In many real-world scenarios, the basal friction coefficient is unknown and needs329

to be inferred from surface observations, and the ice thickness is only known along flight330

lines, leaving large gaps that are generally filled using interpolation methods. Figure 7331
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illustrates all available flight tracks around Helheim Glacier, with dots representing re-332

sampled points at 200 m intervals along the tracks. These flight track data are notably333

sparse, even along the main branch of Helheim Glacier, where only one flight track is present334

in the center of the ice stream. Various numerical methods have been developed to lever-335

age flight track data along with other observations to fill gaps in regions lacking direct336

measurements. Some examples include the BedMachine Greenland and Antarctica mod-337

els (Morlighem et al., 2017, 2020), which use mass conservation principles to constrain338

ice thickness. Ice thickness

(m)

0 500 1000 1500

Figure 7. Available ice thickness data in the region of interest. The dots are resampled at 200

m intervals, overlaid with an image map from MEaSUREs MODIS Mosaic of Greenland (Haran

et al., 2018).

339

Given the flexibility of the PINN, we perform one more test here to assess its abil-340

ity to address a dual inversion problem. Here we would like to test the ability of the PINN341

to infer the basal friction coefficient, C, while simultaneously filling gaps in sparsely ob-342

served ice thickness, H. Following the same procedure as the ones described above, we343

expose the model to ice velocity, û, surface elevation, ŝ, and ice thickness only along flight344

tracks, H̄, as shown in Figure 7. The predictions from the PINN and their correspond-345

ing misfits are presented in Figure 8. Notably, the PINN predictions for ice velocity and346

surface elevation align well with the true solutions (shown in Figure 2), and the RMSE347

of the misfits are 126.83 m/yr for the velocity and 22.08 m for the surface elevation. Both348

are below those obtained in the forward problem (193.75 m/yr and 26.99 m). The pre-349

dicted ice thickness closely reproduces the shape and magnitude observed in the true so-350

lution as well. While the predicted friction coefficient shows a high misfit in slow-moving351

regions, as expected given the limitations of SSA in slow-moving regions discussed above,352

it aligns well with the true solution in fast-flow regions. The RMSE values for both C353

and H are comparable to those obtained in the individual inversions discussed in sec-354

tions 3.3 and 3.4 (see Table 2).355
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It is important to note that only the ice velocity, surface elevation, and ice thick-356

ness along flight lines are incorporated into the training procedure and exposed to the357

PINN. The governing equation in the PINN is based on momentum conservation rather358

than mass conservation, which is the principle employed by BedMachine for inferring ice359

thickness. Consequently, discrepancies between the PINN predictions and the reference360

ice thickness from BedMachine are expected, constituting the likely primary reason for361

the observed misfit in Figure 8 (g). Furthermore, considering that the reference friction362

coefficient is inferred from ISSM using the ice thickness from BedMachine, differences363

are expected, particularly in regions where the two ice thickness datasets diverge.364
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Figure 8. (a)-(d) Predictions of the PINN inferring ice thickness and basal friction coefficient

using ice velocity û, surface elevation ŝ, and flight track data H̄ (as in Figure 7) in the train-

ing procedure. (e)-(h) Corresponding misfits between the predictions and their corresponding

reference data in Figure 2.

4.4 Limitations365

While our study highlights the capabilities of PINNs in ice sheet modeling, certain366

limitations should be acknowledged. For the forward model, which is mathematically well-367

posed, traditional grid-based solvers clearly outperform PINNs (Karniadakis et al., 2021).368

For instance, while training the PINN for a forward problem (section 3.2) requires ap-369

proximately 10 hours on one GPU, the same problem can be solved within minutes us-370

ing established solvers like ISSM with 40 CPUs for a mesh of approximately 20, 000 el-371

ements. Another challenge is that the governing equations are imposed as soft constraints372

in the loss function and compete with the data misfit during the optimization, causing373

occasional non-convergence. Furthermore, it is well known that SSA serves as a reliable374

approximation for ice dynamics in fast-flowing regions but its assumptions break down375

in the interior of the ice sheet. Generalizing this approach to the entire Greenland Ice376

Sheet may necessitate the use of alternative physics or a combination of different physics377

to infer ice thickness, for example.378

Future research directions will need to address the identified limitations and fur-379

ther enhance the application of PINNs in ice sheet modeling. To enhance its efficiency,380

the training process could be optimized and potentially integrate parallel computing strate-381
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gies for faster execution. The handling of PDEs as soft constraints in the PINN frame-382

work could be revised in order to mitigate convergence issues. Finally, improving the ac-383

curacy of the ice sheet interior will involve alternative physics or hybrid approaches that384

better capture the complexities of ice dynamics in slow-moving regions. These steps will385

collectively contribute to advancing the robustness, accuracy, and computational efficiency386

of PINNs for comprehensive ice sheet modeling.387

5 Conclusion388

This study explores several applications of PINNs in typical problems of ice sheet389

modeling. In contrast to traditional numerical methods, we utilize PINNs to construct390

a unified framework for both forward and inverse modeling. The inherent adaptability391

of PINNs is particularly easy to use and expand, enabling the inclusion of new physi-392

cal parameters into the numerical model. This approach offers a promising avenue for393

enhancing the flexibility of ice sheet models and data assimilation, beyond the traditional394

categories of forward or inverse problems.395

The dual inversion case presented in this study further demonstrates the ability of396

PINNs to simultaneously infer the basal friction coefficient and fill in gaps in partially397

sparse ice thickness observations. PINNs, with their capacity to integrate data misfit and398

physical principles, contribute to advancing numerical ice sheet modeling. This study399

suggests the potential of PINNs in improving our understanding of ice dynamics, con-400

tributing to more accurate predictions of future sea-level rise in glaciology and climate401

science.402
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