
Geophysical Research Letters1

Supplementary material for: Bathymetric influences on Antarctic ice-shelf2

melt rates3

4

5

6

Authors: D. N. Goldberg, T. A. Smith, S. H. K. Narayanan, and M. Morlighem7

Contents8

1 Modifications to the MITgcm adjoint 19

2 Resilient Adjoints 210

1 Modifications to the MITgcm adjoint11

The MITgcm, and in particular a configuration using the SHELFICE physics package for an Antarctic12

ice shelf, has been differentiated algorithmically4, and so no additional modifications were required for13

applications to ice sheet-ocean interactions. However, there are technical issues in using bathymetry14

as a control variable. For instance, fluid fractions at grid cell faces (see Section ?? of main text) are15

based on the minimum fraction of adjacent cells, leading to potential non-differentiability. We adopt16

the approach of5 of “smoothing” the min/max functions, but we note that this feature has not been17

used outside of bathymetric sensitivity studies.18

Another computational challenge in treating bathymetry as a control variable lies with the implicit19

solve for the free surface at each time step6. The model solves the linear system Aη = b for η, where η20

is the free surface at the next time step, and b is a field arising from the baroclinic step of the model.21

A is a linear, self-adjoint operator on η and the propagation of sensitivity from η to b can be calculated22

analytically:23

δ∗b = A−1δ∗η, (1)24

where δ∗η is the adjoint sensitivity of η and likewise for b. This formulation is standard in the MITgcm25
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for adjoint based sensitivity analyses of any control variable except for fluid depth. However, the operator26

A depends on ocean column depth, which in the present study is a control variable, and therefore the27

backward-propagation of sensitivities from η to A must be considered as well.5 dealt with this issue28

by allowing the AD tool to differentiate the linear solver code; however, as it is an iterative solver,29

this approach requires storing intermediate variables at each solver iteration during every time step of30

the forward model, which hinders performance and does not scale well to high dimensional problems.531

recommend, but do not implement, using the approach of2, which augments Eqn. (1) with32

δ∗A = −δ∗b ηT . (2)33

In this work we implement this approach, obviating the need for the AD tool to differentiate the implicit34

solver.35

2 Resilient Adjoints36

Simulation of large models requires the use of high performance computing (HPC), generally with defined37

job time limits. For instance, standard batches on the ARCHER supercomputer have a walltime limit38

of 24 hours (there is a special queue for jobs that take up to 48 hours, but there are fewer resources39

available and generally longer wait times for this queue). Additionally, imposed time limits aside, longer40

computational jobs increase the risk of network or server errors leading to crashes. The MITgcm has41

a restart capability allowing to circumvent these limits: the “state” of the model is periodically saved42

to file, and new jobs can begin from this time stamp by reading the saved state. To restart the adjoint43

model, simulations must save both the forward and adjoint states – a capability referred to as resilient44

adjoints. A similar capability was previously implemented with TAF as the Divided Adjoint (DIVA).45

Here we provide an overview of resilient adjoints, a strategy that enhances the default checkpointing46

scheme used by OpenAD. Checkpointing approaches store the state of the primal (forward) computation47

and reduce the amount of memory that is required to compute adjoints. By default, OpenAD uses48

binomial checkpointing for the time-stepping loop3. Consider a computation consisting of l timesteps,49

with c the number of checkpoints that can be stored. Figure S1 (top) illustrates binomial checkpointing50

for l = 10 and c = 3.51
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A two-level checkpointing approach can build upon this approach by converting the time stepping52

loop into a loop nest containing l2 outer iterations and l1 inner iterations where l = l2 × l1
1. The inner53

loop uses binomial checkpointing as before; the outer loop uses periodic checkpointing. The left part54

of Figure S1 (bottom) illustrates two level checkpointing for l2 = 5, l1 = 10 and c1 = 3. The resilient55

adjoints capability enhances two level checkpointing by storing to disk the adjoint state computed at56

the end of each outer level iteration. To restart a computation at the granularity of an l2 timestep then,57

only the stored l2 state checkpoints and the last adjoint checkpoint, if any, are required.58
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Figure S1: Top: Binomial checkpointing schedule for l = 10 time steps and c = 3 checkpoints. Bottom
Left: Two level checkpointing schedule for l = 50 with (l2 = 5) outer level iterations and (l1 = 10) inner
level iterations. Periodic checkpointing is used in the outer level and binomial checkpointing shown by
the dashed box is used at the inner level. Bottom Right: Enhanced two level checkpointing schedule
with support for resilient adjoints through the writing and reading of the adjoint state at the outer level.
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Figure S2: Perturbed beds (dotted contours) and corresponding perturbed barotropic stream functions
(shading) in different regions of high sensitivity in Fig. 3 of the main text. (a) through (d) correspond to
finite perturbations in locations (1) through (4) in Fig. 3(a) of the main text, respectively. Bathymetric
peturbations plotted with δR=10 (Eqn. 3 of the main text) and 1m isolines. Isolines of unperturbed
stream functions are also shown (solid where positive, dashed where negative; .05 Sv spacing).
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