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Abstract13

Parameterizations of unresolved turbulent processes compromise the fidelity of large-scale14

ocean models. In this work, we argue for a Bayesian approach to the development and15

evaluation of turbulence parameterizations. Using an ensemble of large eddy simulations16

of turbulent penetrative convection in the surface boundary layer, we demonstrate the17

method by estimating the uncertainty of parameters in the convective limit of the pop-18

ular ‘K-Profile Parameterization’. We uncover structural deficiencies and propose an al-19

ternative scaling that overcomes them.20

Plain Language Summary21

Climate projections are compromised by significant uncertainties which stem from22

the representation of physical processes that cannot be resolved – such as clouds in the23

atmosphere and turbulent swirls in the ocean – but which have to be parameterised. We24

propose a methodology for improving parameterizations in which they are tested against,25

and tuned to, high-resolution numerical simulations of subdomains that represent them26

more completely. A Bayesian methodology is used to calibrate the parameterizations against27

the highly resolved model, to assess their fidelity and identify shortcomings. Most im-28

portantly, the approach provides estimates of parameter uncertainty. While the method29

is illustrated for a particular parameterization of boundary layer mixing, it can be ap-30

plied to any parameterization.31

1 Introduction32

Earth System Models (ESMs) demand that processes which have scales too small33

to be resolved are paramterized. Uncertainties arise both due to deficiencies in the scal-34

ing laws encoded in the parameterizations and the nonlinear interactions with resolved35

model components, sometimes leading to unanticipated and unphysical results. The first36

challenge can be addressed by improving the representation of the unresolved physics (e.g.37

Schneider et al., 2017), while the second requires ‘tuning’ of the parameterizations when38

implemented in the full ESM (e.g. Hourdin et al., 2017). In this paper, we illustrate how39

to leverage recent advances in computation and uncertainty quantification to make progress40

toward the first challenge. Our focus will be on oceanic processes, but the approach can41

be applied to any ESM parameterization, provided that a high-resolution submodel can42

be constructed.43

The traditional approach to the formulation of parameterizations of subgrid-scale44

processes is to derive scaling laws that relate the net effect of such processes to variables45

resolved by the ESMs. These scaling laws are then tested with either field observations (e.g.46

Price et al., 1986; Large et al., 1994), laboratory experiments (e.g. Deardorff et al., 1980;47

Cenedese et al., 2004) or results from a high resolution simulations (e.g. Wang et al., 1996;48

Harcourt, 2015; Reichl et al., 2016; Li & Fox-Kemper, 2017). Rarely are parameteriza-49

tions tested over a wide range of possible scenarios due to the logistical difficulty and50

high cost of running many field experiments, the time necessary to change laboratory51

setups, and computational demand. The computational limitations have become much52

less severe over the last few years through a combination of new computer architectures53

such as Graphic Processing Units (GPUs; Besard et al., 2019), new languages that take54

advantage of these architectures (e.g Julia; Bezanson et al., 2017) and improved Large55

Eddy Simulation (LES) algorithms (Sullivan & Patton, 2011; Verstappen, 2018). Mod-56

ern computational resources have opened up the possibility of running libraries of LES57

simulations to explore a vast range of possible scenarios. This paper discusses how such58

computational advances can be applied to assess parameterizations in ocean models.59

LES simulations alone are not sufficient to formulate parameterizations. Statisti-60

cal methods are needed to extract from the LES solutions the functional relationships61
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between small-scale processes and large-scale variables available in ESMs. A common62

approach is to rely on well-established scaling laws and use the LES solutions to con-63

strain the non-dimensional parameters that cannot be determined from first principles.64

In this approach, only a few LES simulations, possibly only one, are necessary to find65

the optimal parameter values. However, it is rare that scaling laws and associated pa-66

rameterizations perfectly capture the functional dependencies of large-scale variables –67

if they did, they would be referred to as solutions rather than parameterizations. In gen-68

eral, it is necessary to run a large ensemble of LES simulations to estimate optimal pa-69

rameter values and test whether those values hold for different scenarios, thereby sup-70

porting the functional dependencies.71

State-estimation, which has a long tradition in geophysics (Wunsch, 2006), has been72

used to constrain parameter values. A loss function is chosen to quantify the mismatch73

between the prediction of the parameterization and observations. Uncertain parameters74

are then adjusted to minimize the loss function. One can also estimate the standard de-75

viation around the optimal values by computing the Hessian of the loss function (Thacker,76

1989; Sraj et al., 2014).77

An alternative approach, based on the seminal work of (Bayes, 1763) and its mod-78

ern incarnation (Jaynes, 2003), is arguably better suited to constrain the transfer prop-79

erties of turbulent processes. The Bayesian method allows one to estimate the entire joint80

probability distribution of all parameters. The method is a crucial extension over state-81

estimation, because the statistics of turbulent processes are generally far from Gaussian (Frisch,82

1995) and thus are not fully characterized by the first and second moments alone. In the83

Bayesian approach, one defines a prior parameter distribution, based on physical con-84

siderations, and a ‘likelihood function’ which measures the mismatch between the pa-85

rameterized prediction and the LES simulation. Based on this information, Bayes’ for-86

mula shows how to compute the posterior distribution of the parameters consistent with87

the LES simulations and the parameterization. If the posterior distribution is narrow88

and peaked, then one can conclude that a unique set of parameters can be identified which89

can reproduce all LES results. In this limit, the Bayesian approach does not provide more90

information than state-estimation. However, the power of Bayes’ formula is that it can91

reveal distinct parameter regimes, the existence of multiple maxima, relationships be-92

tween parameters, and the likelihood of parameter values relative to optimal ones.93

The Bayesian approach can also be used to test the functional dependence of the94

parameterization on large-scale variables. One estimates the posterior distribution on95

subsets of the LES simulations run for different scenarios. If the posterior probabilities96

for the different scenarios do not overlap, the functional form of the parameterization97

must be rejected. We will illustrate how this strategy can be used to improve the for-98

mulation of a parameterization.99

Bayesian methods are particularly suited to constrain ESM parameterizations of100

subgrid-scale ocean processes. Most of these processes, such as boundary layer or geostrophic101

turbulence, are governed by well understood fluid dynamics and thermodynamics. Thus102

LES simulations provide credible solutions for the physics. The atmospheric problem is103

quite different where leading order subgrid-scale processes such as cloud microphysics104

are governed by poorly understood physics that may not be captured by LES simula-105

tions.106

In this paper, we will apply Bayesian methods to constrain and improve a param-107

eterization for the surface boundary layer turbulence that develops when air-sea fluxes108

cool the ocean. LES simulations that resolve all the relevant physics will be used as ground-109

truth to train the parameterization. Our paper is organized as follows: In section 2 we110

describe the physical setup and the LES model. In section 3 we introduce Bayesian pa-111

rameter estimation for the parameters in the K-Profile Parameterization (KPP). We then112

perform the parameter estimation in the regime described by section 2 and show how113
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the Bayesian approach provides insight on how to improve the KPP parameterization.114

Finally, we end with a discussion in section 4.115

2 Large eddy simulations and K-Profile Parameterization of penetra-116

tive convection117

During winter, high latitude cooling induces near-surface mixing by convection which118

generates a ‘mixed layer’ of almost uniform temperature and salinity which can reach119

depths of hundreds of meters: - see (Marshall & Schott, 1999) for a review. At the base120

of the mixed layer, convective plumes can penetrate further into the stratified layer be-121

low – called the ‘entrainment layer’ – where plume-driven turbulent mixing between the122

mixed layer and stratification below cools the boundary layer. This process, in which the123

layer is cooled both at the surface and by turbulent mixing from the entrainment layer124

below, is called penetrative convection. Here we evaluate the ability of the K-Profile Pa-125

rameterization (Large et al., 1994) to capture penetrative convection by comparing pre-126

dictions based on it against large eddy simulations (LES) of idealized penetrative con-127

vection in to a resting stratified fluid. It provides the context in which we outline the128

Bayesian approach to parameter estimation which we advocate.129

2.1 Penetrative convection in to a resting stratified fluid130

We suppose a constant surface cooling Qh > 0 to a resting, linearly stratified bound-
ary layer with the initial state

u|t=0 = 0 and b|t=0 = N2z +N (0, αg10−10) exp(4z/Lz), (1)

where z ∈ [−Lz, 0], u = (u, v, w) is the resolved velocity field simulated by LES, b is
buoyancy, N2 is the initial vertical buoyancy gradient, and N (0, αg10−10) is a Gaussian
white noise process added to induce a transition to turbulence. The surface buoyancy
flux Qb is related to the imposed surface cooling Qh, which has units W m−2, via

Qb =
αg

ρrefcp
Qh, (2)

where α = 2 × 10−4 (◦C)−1 is the thermal expansion coefficient (assumed constant),131

g = 9.81 m s−2 is gravitational acceleration, ρref = 1035 kg m−3 is a reference density,132

and cp = 3993 J/(kg ◦C) is the specific heat capacity. Our software and formulation of133

the large eddy simulations is discussed in Appendix A.134

Results from a large eddy simulation of turbulent penetrative convection in a do-
main Lx = Ly = Lz = 100 meters is presented in Figure 1. The left panel shows the
three-dimensional temperature field θ = θ0+b/αg associated with the buoyancy b, where
θ0 = 20◦C is the surface temperature at z = 0. The right panel shows the horizon-
tally averaged buoyancy profile

b̄(z, t) ≡ 1

LxLy

∫ Lx

0

∫ Ly

0

b(x, y, z, t)dxdy. (3)

The visualization reveals the two-part boundary layer produced by penetrative con-135

vection: close to the surface, cold and dense convective plumes organized by surface cool-136

ing sink and mix ambient fluid, producing a well-mixed layer that deepens in time. Be-137

low the mixed layer, the momentum carried by sinking convective plumes leads them to138

overshoot their level of neutral buoyancy (nominally, the depth of the mixed layer), ‘pen-139

etrating’ the stably stratified region below the surface mixed layer and generating the140

strongly stratified entrainment layer. The total depth of the boundary layer is h and in-141

cludes the mixed layer and the entrainment layer of thickness ∆h. Turbulent fluxes are142

assumed negligible below z = −h.143
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Figure 1. A 3D simulation of the LES model of the Boussinesq equations and its horizontal

average at t = 2 days. The ∆h region of the figure on the right corresponds to the entrainment

layer, h−∆h corresponds to the mixed layer, and h corresponds to the boundary layer depth.

In figure 2 we show the evolution of h(t) defined as the first depth from the bot-
tom where the stratification is equal to a weighted average of the maximum stratifica-
tion and the initial stratification1. The dotted line confirms that the evolution after an
initial transient is best fit by the formula,

h '
√

3.0
Qb
N2

t, (4)

where N2 is the initial stratification and the numerical factor is a best-fit parameter.144

Equation 4 is easily understood through dimensional considerations (up to pref-
actors), but more information flows from an analysis of the horizontally-averaged buoy-
ancy equation,

∂tb = −∂z
(
wb+ q(z)

)
, (5)

where b is the horizontally averaged buoyancy, wb is the horizontally averaged vertical
advective flux and q(z) is the horizontally averaged vertical diffusive flux. Integrating the
equation in time between t′ = 0 and some later time t′ = t, and in the vertical be-
tween the surface, where q(z) = −Qb, and the base of the entrainment layer where all
turbulent fluxes vanish, one finds,∫ 0

−h

[
b̄(z, t)− b̄(z, 0)

]
dz = −Qbt. (6)

1 The weights are 2/3 for the initial stratification N2 and 1/3 for the maximum stratification N2
m so

that h satisfies ∂zb(−h) = 2N2
b /3 + N2

m/3. This guarantees that h is a depth where the local stratification

lies between the background stratification and the maximum stratification since it is defined as the first

depth starting from the bottom that satisfies such a criteria.
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Figure 2. Boundary layer depth and its evolution in time after initial transients. The blue

squares are the analytic scaling 4, the red line is an estimate of the boundary layer depth directly

from the LES (described in the text), and the purple line is the classic scaling which ignores the

entrainment layer 8.

Substituting b̄(z, 0) = b0 + N2(z + h) and b̄(z, t) = b0 + ∆b, an approximation of the
profile shown in Fig. 1b except at very early times in the simulation, yields

1
2N

2h2 − h∆b = Qbt. (7)

The first term on the left of equation 7 describes boundary layer deepening due to buoy-145

ancy loss at the surface, while the second term corresponds to the further cooling caused146

by turbulent mixing in the entrainment layer. Other authors have also arrived at a sim-147

ilar expression for the boundary layer depth upon taking into account turbulent entrain-148

ment. See, for example, Appendix F in (Van Roekel et al., 2018).149

Ignoring turbulent mixing in the entrainment layer, i.e. setting ∆b = 0, yields the
deepening rate

h =

√
2.0

Qb
N2

t, (8)

which differs by roughly 20% from the best fit expression 4 due to the effects of turbu-150

lent mixing in the entrainment layer. Equation 8 is the deepening rate associated with151

a convective adjustment parameterization and is known as the empirical law of free con-152

vection. We now review how these processes are represented in the KPP model.153

2.2 The K-Profile Parameterization of penetrative convection154

In penetrative convection in a horizontally-periodic domain, the K-Profile Param-
eterization models the horizontally-averaged temperature profile, θ̄(z, t) with the cou-
pled equations

∂tT = −∂zF (T, h;C) (9)

0 = D(T, h;C), (10)

where T (z, t) is the modeled temperature meant to approximate θ̄(z, t), h(t) is the bound-155

ary layer depth, C = {CS , CN , CD, CH} is a set of free parameters, F (T, h;C) is the156
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parameterized temperature flux, and D(T, h;C) is a nonlinear constraint that determines157

the boundary layer depth at each time t. Our formulation, which isolates the four free158

parameters {CS , CN , CD, CH}, is superficially different but mathematically equivalent159

to the formulation in (Large et al., 1994) (see Appendix C for details). Finally, we em-160

phasize that the K-Profile parameterization is deemed successful only if it accurately mod-161

els the evolution of the entire observed temperature profile θ̄(z, t), rather than, say, the162

boundary layer depth or the buoyancy jump across the base of the mixed layer.163

The K-Profile Parameterization (KPP) represents F through the sum of a down-
gradient flux and a non-local flux term (Large et al., 1994),

F = −CDδ1/3w?h
z
h

(
1 + z

h

)2︸ ︷︷ ︸
≡K

∂zT + CNQθ zh
(
1 + z

h

)2︸ ︷︷ ︸
≡Φ

, (11)

for −h ≤ z ≤ 0 and 0 otherwise, and δ = min{CS , z/h}. Here w? = (Qbh)1/3 is the164

convective turbulent velocity scale, h is the boundary layer depth, z
h

(
1 + z

h

)2
is the ‘K-165

profile‘ shape function (K is the namesake downgradient diffusivity of the K-Profile Pa-166

rameterization) and Φ is a ‘non-local’ flux term that models convective boundary layer167

fluxes not described by downgradient diffusion.168

The KPP model estimates the boundary layer depth h using the nonlinear constraint
(10). The boundary layer geometry introduced in the right panel of figure 1 motivates
the form of nonlinear constraint. The jump in buoyancy, ∆b, is the difference between
the buoyancy in the mixed layer and the base of the entrainment region. The buoyancy
jump may thus be written in terms of the entrainment region thickness, ∆h, and the en-
trainment region buoyancy gradient, N2

e , as ∆b = N2
e∆h. Using the plume theory out-

lined in Appendix B to motivate the scaling ∆h ∝ w?/Ne, we thus find

C̃H =
∆b

w?Ne
(12)

for some universal proportionality constant C̃H . KPP posits that the boundary layer depth169

h is the first such depth from the surface at which equation 12 holds.170

Large et al. (1994) estimate the mixed layer buoyancy with an average over the ‘sur-

face layer’, 1
CSh

∫ 0

−CSh
B(z)dz where B = αgT , and 0 < CS < 1 is a free parameter

that defines the fractional depth of the surface layer relative to the total boundary layer
depth, h. The buoyancy jump becomes, therefore

∆b =
1

CSh

∫ 0

−CSh

B(z)dz −B(−h) . (13)

Large et al. (1994) then express the stratification in the entrainment region, Ne, in terms
of the stratification at the base of the boundary layer, such that

Ne ∝
√

max [0, ∂zB(−h)] . (14)

The scaling in equation 14 introduces a new free parameter in addition to C̃H ; however
because this free parameter is not independent from C̃H , we combine the two into a new
free parameter CH , which we call the ‘mixing depth parameter’. To prevent division by
zero, the small dimensional constant 10−11m2 s−2 is added to the demoninator of equa-
tion 12 (Griffies et al., 2015). Combining equations 12, 13 and 14, we can write

0 = CH −
1

CSh

∫ 0

−CSh
B(z)dz −B(−h)

(hQb)
1/3
√

max [0, ∂zB(−h)] + 10−11m2s−2
. (15)

Equation 15 is the implicit nonlinear constraint in equation 10 that determines the bound-171

ary layer depth, h. In Appendix B we discuss the physical content of equation 15 for the172

case of penetrative convection.173
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The boundary layer depth criteria in equation 15 is often referred to as the bulk174

Richardson number criteria, because in mechanically forced turbulence the denomina-175

tor is replaced by an estimate of the mean shear squared and CH becomes a critical bulk176

Richardson number (Large et al., 1994). In penetrative convection there is no mean shear177

and CH is not a Richardson number. See Appendix C for more details.178

The representation of penetrative convection in KPP has four free parameters: the
surface layer fraction CS, the flux scalings CN and CD in equation 11, and the mixing
depth parameter CH in equation 15. Ranges for their default values are reported in (Large
et al., 1994). We choose reference parameters within those ranges as

(CS , CN , CD, CH) = (0.1, 6.33, 1.36, 0.96). (16)

These parameters are not the original set of independent parameters proposed by Large179

et al. (1994), but rather algebraic combinations thereof. Nevertheless, we emphasize that180

our formulation is mathematically identical to that proposed by Large et al. (1994): the181

differences merely reflect an algebraic reorganization meant to simplify the model and182

reduce the interdependence of free parameters. Our objective is to calibrate the free pa-183

rameters C = (CS , CN , CD, CH) by comparing KPP temperature profiles T (z, t;C)184

with the LES output θ̄(z, t).185

3 Model calibration against LES solutions186

We outline a Bayesian method for optimizing and estimating the uncertainty of the
four free parameters through a comparison of the parameterization solution for T (z, t;C)
and the output θ(z, t) of the LES simulations. First we introduce a loss function to quan-
tify the parameterization-LES difference,

L(C) = max
t∈[t1,t2]

{
1

Lz

∫ 0

−Lz

[
T (z, t;C)− θ(z, t)

]2
dz

}
. (17)

We choose the square error in space to reduce the sensitivity to vertical fluctuations in187

the temperature profile. We take the maximum value of the squared error in time for188

t ∈ [t1, t2] to guarantee that the temperature profile never deviates too far from the LES189

simulation at each instant in time. The parameterization is taken to be the KPP model190

given by equations 9 through 15, and the data are the horizontally averaged LES out-191

put. The initial time t1 is chosen after the initial transition to turbulence of the LES sim-192

ulations.193

A natural way to extend the concept of loss functions to account for parameter un-194

certainty is to introduce a likelihood function for the parameters. Similar to how the form195

of the loss function is critical to the estimation of optimal parameters, the form of the196

likelihood function is critical for estimating the parameter uncertainties. The likelihood197

function quantifies what we mean by “good” or “bad” parameter choices. The Bayesian198

method uses this information to estimate parameter uncertainties. These estimates are199

only as good as the choice of likelihood function, much like optimal parameters are only200

as good as the choice of the loss function. In geophysics there is much experience in how201

to define meaningful loss functions, while the concept of likelihood function is still some-202

what unfamiliar. That said, the literature is rapidly expanding (see van Lier-Walqui et203

al., 2012; Zedler et al., 2012; Urrego-Blanco et al., 2016; Sraj et al., 2016; Nadiga et al.,204

2019; Morrison et al., 2020). In Appendix D we discuss in detail the rationale for the choices205

made in this paper.206

Following Schneider et al. (2017) we define the probability distribution as:

ρ (C) ∝ ρ0(C) exp

(
−L(C)

L0

)
(18)
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where ρ0 (C) is the prior distribution of the parameter values, L (C) is a loss function,
and L0 > 0 is a hyperparameter, that is a parameter associated with the likelihood func-
tion as opposed to a parameter in the parameterization. Equation (18) is Bayes formula

P(C|data) ∝ P(C)P(data|C) (19)

where P stands for probability. Here ρ0(C) ∝ P(C) is our prior probability distribu-207

tion for the parameters2 C, while exp
(
−L(C)
L0

)
is proportional to the likelihood func-208

tion P(data|C), apart from a normalization constant, and quantifies how well param-209

eters C explain the data. In our context Bayes’ formula is an algorithm that allows one210

to update priors to yield a distribution of KPP parameters based on the LES data.211

We choose the hyperparameter L0 as the minimum of the loss function L(C). The
minimum is found using a modified simulated annealing procedure3 (Kirkpatrick et al.,
1983). Once the parameter values C∗ that minimize the loss functions have been found,
i.e. L0 = L(C∗), the likelihood of any other parameter choice C1 is given by,

ρ(C1)/ρ(C∗) = exp

(L0 − L(C1)

L0

)
. (20)

For example, if the choice C1 increases the minimum of the loss function by a factor of212

two, i.e. L(C1) = 2L0, then it is 1/e less likely. The probability distribution ρ(C) is213

then sampled with a Random Walk Markov Chain Monte Carlo (RW-MCMC) algorithm214

(Metropolis et al., 1953), described further in Appendix E.215

To illustrate our choices, as well as the RW-MCMC algorithm, we show a typical216

output from an RW-MCMC algorithm for a 2D probability distribution of the form in217

equation 18. We use the probability density function for the KPP parameterization pre-218

sented in the next section, but keep two of the four parameters fixed (CD and CH) to219

reduce the problem from four to two parameters (CN and CS). The prior distributions220

for CN and CS are uniform over the ranges reported at the end of this section. The pa-221

rameters CD and CH are set to the values that minimize the loss function. We show re-222

sults for two arbitrary values of L0 for illustrative purposes. Starting from a poor ini-223

tial guess, the RW-MCMC search proceeds towards regions of higher probability (lower224

loss function) by randomly choosing which direction to go. Once a region of high prob-225

ability is found, in this case parameter values in the “blue” region, the parameters hover226

around the minimum of the loss function as suggested by the high values of the likeli-227

hood function. The orange hexagons represent the process of randomly walking towards228

the minimum of the loss function and correspond to the “burn-in” period. The burn-229

in period is often thrown away when calculating statistics since it corresponds to an ini-230

tial transient before the RW-MCMC settles around the minimum of the likelihood func-231

tion. We see that the choice of L0 does not change the overall structure of the proba-232

bility distribution but does affect how far from optimal parameters the random walk is233

allowed to drift.234

Parameterizations such as KPP exhibit a dependence on resolution in addition to235

nondimensional parameters. Here we perform all calculations for a vertical resolution236

∆z = 6.25 m and timestep ∆t = 10 minutes representative of those used in state of237

the art ESMs. We do not use enhanced diffusivity as in (Large et al., 1994) for this res-238

olution. The parameterization is relatively insensitive to halving ∆z and ∆t, for a fixed239

set of parameters, but the results are sensitive to doubling either one. Thus the optimal240

2 The proportionality sign is introduced, because Bayes’ formula applies to probabilities, while ρ0(C) is

a probability density function.
3 In simulated annealing one finds the minimum of the loss function decreasing L0 to zero as one ex-

plores the parameter space through a random walk. Here we keep updating L0 to the new local minimum

every time the random walk stumbles on a set of parameters, for which L(C) < L0.
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L0 = L(C⇤)
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Figure 3. An example of a RW-MCMC search trajectory based on a sample probability dis-

tribution for KPP parameters using 105 RW-MCMC iterations. The trajectories starts from a

region of very low probability (white areas) and moves toward progressively higher probabilities

(the darker the blue shading, the higher the probability). The blue probability distributions on

the left side and the top are the corresponding marginal distributions of CH and CD, respec-

tively. The green star is the best known optimal of the probability distribution (i.e, the mode of

the probability distribution). The value of L(C∗) is the value of the loss function at the green

star.
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parameter values and their uncertainties are only appropriate for the resolution used for241

the calibration and would need to be updated especially if the parameterization was run242

at a coarser resolution. This dependence on resolution could be handled within the Bayesian243

method by introducing ∆z and ∆t as additional parameters in the probability distribu-244

tion, but we do not pursue this approach.245

The temporal window used to compute the loss function is from t1 = 0.25 days
(so as to eliminate initial transients in the LES) to the final simulation day chosen to
be when h ≈ 70 meters. We apply the Bayesian parameter estimation procedure to KPP
using data from one LES simulation in section 3.1 and from multiple LES simulations
using different initial stratifications in section 3.2. We use a uniform prior distributions
for the KPP parameters over the following ranges:

0 ≤ CS ≤ 1, 0 ≤ CN ≤ 8, 0 ≤ CD ≤ 6, and 0 ≤ CH ≤ 5. (21)

The surface layer fraction CS , being a fraction, must stay between zero and one. The246

other parameter limits are chosen to span the whole range of physically plausible val-247

ues around the reference values given in equation (16). The choice of uniform distribu-248

tions is made to avoid favoring any particular value at the outset.249

3.1 Calibration of KPP parameters from one LES simulation250

In this section we apply the Bayesian calibration method to the LES simulation251

of penetrative convection described in section 2.1 and quantify uncertainties in KPP pa-252

rameters in section 2.2. The horizontal averages from the LES simulations are compared253

with predictions from solutions of the KPP boundary layer scheme, equations 9 and 10.254

The boundary and initial conditions for KPP are taken to be the same as those for the255

LES simulation, i.e., 100 W/m
2

cooling at the top, ∂zT = 0.01◦C m−1 at the bottom,256

and an initial profile Tp(z, 0) = 20◦C + 0.01◦C m−1z.257

To estimate the full probability distribution function, we use the RW-MCMC al-258

gorithm with 106 iterations to sample the probability distributions of the four KPP pa-259

rameters (CS , CN , CD, CH). The large number of forward runs is possible because the260

forward model consists of a one-dimensional equation, namely, KPP in single column mode.261

The Markov chain leads to roughly 104 statistically independent samples as estimated262

using an autocorrelation length, see Sokal (1997). The RW-MCMC algorithm generates263

the entire four dimensional PDF, equation 18.264

The parameter probability distribution can be used to choose an optimal set of KPP265

parameters. Of the many choices, we pick the most probable value of the four dimen-266

sional probability distribution, the mode, because it minimizes the loss function, see Ap-267

pendix D for the detailed calculation. In figure 4a we show the horizontally averaged tem-268

perature profile from the LES simulation (continuous line) and the temperature profiles269

obtained running the KPP parameterization with reference and optimal parameters (squares270

and dots) at t = 8 days. The optimized temperature profiles are more similar to the271

LES simulation than the reference profiles especially in the entrainment region. Figure272

4b confirms that the square root of the instantaneous loss function, the error, grows much273

faster with the reference parameters. The oscillations in the error are a consequence of274

the coarseness of the KPP model: only one grid point is being entrained at any given275

moment.276

The improvement in boundary layer depth through optimization of the parame-277

ters is about 10%, or 10 m over 8 days. As discussed in section 2.1, the rate of deepen-278

ing can be predicted analytically within 20% by simply integrating the buoyancy bud-279

get over time and depth and assuming that the boundary layer is well mixed everywhere,280

i.e. ignoring the development of enhanced stratification within an entrainment layer at281

the base of the mixed layer. KPP improves on this prediction by including a parame-282

terization for the entrainment layer. The reference KPP parameters contribute a 10%283

–11–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

19.2019.2519.3019.3519.40
Temperature [ C]

75

50

25

0

de
pt

h 
[m

]

t = 8.0 days
LES
Reference
Mode

0 2 4 6 8
days

0.000

0.005

0.010

0.015

Er
ro

r [
C]

Error in Time
Reference
Mode

Figure 4. KPP and horizontally averaged LES temperature profiles for different point esti-

mates of parameters at t=8 days as well as the error in time. In the left plot, the blue squares

correspond to reference parameter choices, the red circles correspond to the optimized parame-

terization (using the mode of the probability distribution), and the blue line to the horizontally

averaged LES solution, all at time t=8 days. On the right plot we show the instantaneous error

at each moment in time. We see that the “optimal” parameter does indeed reduce the bias over

the time period. The loss function is the largest square of the error over the time interval.

improvement on the no entrainment layer prediction, and the optimized parameters con-284

tribute another 10%. While these may seem like modest improvements, they can pre-285

vent large biases for the boundary layer depth when integrated over a few months of cool-286

ing in winter rather than just 8 days. We will return to this point in the next section when287

we discuss structural deficiencies in the KPP formulation.288

To visualize the probability distribution we focus on 2D marginal distributions, e.g.,

ρ2DM (CH , CS) =

∫ ∫
ρ(C) dCDdCN , (22)

along with the other five possible pairings, as well as the 1D marginal distributions such
as

ρM (CH) ≡
∫∫∫

ρ(C) dCSdCDdCN , (23)

and similarly for the other three parameters.289

The marginal distribution can intuitively be thought of as the total of a param-290

eter (or pair of parameters) while taking into account the total uncertainty of other pa-291

rameters. Furthermore, the marginal distribution takes into account potential compen-292

sating effects that different parameters may have on one another. The marginal distri-293

bution does not capture the effect of individually varying a parameter while keeping all294

the other parameters fixed at a particular value4. That is an effect represented by a con-295

ditional distribution.296

4 That is, unless the other parameters have essentially delta function 1D marginal distributions.
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Figure 5. Marginal Distributions for KPP Parameters. The dark blue regions correspond to

regions of high probability and the light blue regions are regions of low probability. The white

space corresponds to regions that the RW-MCMC algorithm never visited. The corresponding 1D

marginal distributions (corresponding to integrals of the 2D marginal distributions) are displayed

on the left and on top of the plots for reference.

Constructing the marginal distributions only requires constructing histograms of297

the trajectories generated by the RW-MCMC algorithm. The 2D marginal distributions298

are visualized with heatmaps in figure 5 and the 1D marginal distributions of the cor-299

responding parameters are shown along the outermost edges. For the 2D marginal dis-300

tributions, the dark blue regions correspond to regions of high probability and the light301

blue regions are regions of low probability. The white space corresponds to regions that302

the RW-MCMC algorithm never visited. The 2D marginal distributions show that pa-303

rameters must be changed in tandem with one another in order to correspond to a sim-304

ilar model output. Furthermore their structure is distinctly non-Gaussian.305

The 1D marginal distribution of the mixing depth parameter CH (the bottom left306

rectangular panel) is much more compact than that of the other three parameters sug-307

gesting that it is the most sensitive parameter. The mixing depth parameter’s impor-308

tance stems from its control over both the buoyancy jump across the entrainment layer309

and the rate-of-deepening of the boundary layer. (Again it may be useful to remember310

that CH is often referred to as the bulk Richardson number in the KPP literature, even311

–13–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

19.2 19.3 19.4 19.5
Temperature [ C]

80

60

40

20

0

De
pt

h 
[m

]

Prior Ensemble

19.2 19.3 19.4 19.5
Temperature [ C]

Posterior Ensemble

5

4

3

2

1

0

Figure 6. Uncertainty propagation of the temperature profile with respect to the prior and

posterior probability distributions. The use of probability distributions for parameters has the

consequence that the temperature field is no longer a point estimate, but rather a probability

distribution at each moment in space and time. By sampling from the parameter probability dis-

tributions and evolving the parameterization forward in time, we obtain a succinct representation

of what it means to “fiddle” with parameters. The legend on the right shows what the colors

correspond to in terms of the base 10 logarithm of the probability distributions.

though it takes a different meaning in convective simulations, see Appendix C.) The pa-312

rameters CD and CN set the magnitude of the local and nonlocal fluxes. Results are not313

sensitive to their specific values, as long as they are large enough to maintain a well-mixed314

layer. The value of the surface layer fraction CS is peaked at lower values but is less sen-315

sitive to variations than CD or CH .316

The uncertainties of the parameters can be used to infer the uncertainties of the317

temperature profile at each depth and time, predicted by KPP. To do this, we subsam-318

ple the 106 parameter values down to 104 and evolve KPP forward in time for each set319

of parameter choices. We construct histograms for the temperature field at the final time320

for each location in space individually. We then stack these histograms to create a vi-321

sual representation of the model uncertainty. This uncertainty quantifies the sensitiv-322

ity of the parameterization with respect to parameter perturbations as defined by the323

parameter distributions.324

The histogram of temperature profiles at time t = 8 days as calculated by both325

our prior distribution (uniform distribution) and the posterior distribution (as obtained326

from the RW-MCMC algorithm) is visualized in figure 6. We see that there is a reduc-327

tion of the uncertainty in the temperature profile upon taking into account information328

gained from the LES simulation. The salient features of the posterior distribution tem-329

perature uncertainty are330
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1. 0-10 meter depth: There is some uncertainty associated with the vertical profile331

of temperature close to the surface.332

2. 20-60 meter depth: The mean profile of temperature in the mixed layer is very well333

predicted by KPP.334

3. 60-70 meter depth: The entrainment region contains the largest uncertainties.335

4. 70-100 meter depth: There is virtually no uncertainty. The unstratified region be-336

low the boundary layer does not change from its initial value.337

Now that we have applied the Bayesian methodology to one LES simulation and338

explored its implications, we are ready to apply the method to multiple LES simulations339

covering different regimes in the following section.340

3.2 Calibration of KPP parameters from multiple LES simulations341

We now use our Bayesian framework to explore possible sources of bias in the KPP342

model. To this end we investigate what happens when we change the initial stratifica-343

tion in penetrative convection simulations. This is motivated by recent work on bound-344

ary layer depth biases in the Southern Ocean (DuVivier et al., 2018; Large et al., 2019).345

In those studies, KPP failed to simulate deep boundary layers in winter when the sub-346

surface summer stratification was strong.347

We perform 32 large eddy simulations and calculate parameter distributions for each348

case. In the previous section we saw that CH is the most sensitive parameter. Thus our349

focus now will be on the optimization and uncertainty quantification of CH . In the back-350

ground, however, we are estimating all parameters. We keep the surface cooling constant351

at 100 W/m2 for all regimes, and only vary the initial stratification. The integration time352

was stopped when the boundary layer depth filled about 70% of the domain in each sim-353

ulation. We used 1283 grid points in the LES, ≈ 0.8 meter resolution in each direction5.354

We use a lower resolution for the LES in these trend studies as compared to those in the355

previous section, but results were not sensitive to this change. In the Bayesian inference,356

each one of the probability distributions were calculated 105 iterations of RW-MCMC,357

leading to an effective sample size on the order of 103. The stratifications ranged from358

N2 ≈ 1× 10−6 to N2 ≈ 3.3× 10−5s−2.359

We find, as visualized in figure 7, that CH is not constant but depends on the back-360

ground stratification, N2. The blue dots are the median values of the probability dis-361

tributions and the stars are the modes (minimum of the loss function). The error bars362

correspond to 90% probability intervals, meaning that 90% of parameter values fall be-363

tween the error bars. The large discrepancy between the median and the mode is due364

to the mode being the optimal value of the entire four dimensional distribution whereas365

the median only corresponds to the marginal distribution. The reference KPP value is366

plotted as a dashed line.367

The median values and optimal values increase monotonically with the initial strat-368

ification revealing a systematic bias. Furthermore, it exposes where the systematic bias369

comes from: no single value of CH , equation 15, can correctly reproduce the deepening370

of the boundary layer for all initial stratifications. This suggests that the scaling law for371

the boundary layer depth criteria is incommensurate with the LES data.372

The failure of equation 15 can be understood by going back to the buoyancy bud-
get in equation 7. Using the KPP estimate for the buoyancy jump across the entrain-

5 Although the parameter estimates will vary upon using less LES resolution, the qualitative trends are

expected to be robust.

–15–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

5.0×10 6 1.0×10 5 1.5×10 5 2.0×10 5 2.5×10 5 3.0×10 5

Background Stratification, N² [s 2]

0

1

2

3

4

C
H

Modes, Medians, and 90% Probability Intervals
Reference
Median 
Mode 

Figure 7. Mixing depth parameter optimized across various background stratification. The

dots are the median values, the stars are the mode, and the error bars correspond to 90% prob-

ability intervals. The horizontal dashed line is the default value of the mixing depth parameter

for reference. Here one can see that the mixing depth parameter when estimated across various

regimes produces different results. This is a signature of a systematic bias in the parameteriza-

tion.

ment layer,

∆b ≡ 1

CSh

∫ 0

−CSh

B(z)dz −B(−h), (24)

and introducing N2
h ≡ ∂zB(−h) for the stratification at the base of the entrainment

layer to distinguish it from the interior stratification N2, we find that the boundary layer
depth criterion, equation 15, implies,

h∆b ' CHh4/3 (Qb)
1/3

Nh. (25)

Substituting this expression in the buoyancy budget, equation 7, one obtains an implicit
equation for the evolution of the boundary layer depth h,(

1

2
N2 − CH (Qb)

1/3
h−2/3Nh

)
h2 ' Qbt. (26)

The LES simulation described in section 2.1, and many previous studies of penetrative373

convection, e.g. (Van Roekel et al., 2018; Deardorff et al., 1980), show that the bound-374

ary layer depth grows as
√
t. To be consistent, Nh would have to scale as h2/3, but this375

is not observed in the LES simulations nor supported by theory. This suggests that we376

must modify the formulation of boundary layer depth, as we now go on to describe.377

3.3 Modification of the KPP parameterization to reduce biases378

From the multi-regime study of the previous section we found that there is no op-
timal KPP mixing depth parameter CH that works for arbitrary initial stratification.
This prompted us to look for an alternative formulation of the depth criterion which sat-
isfies the well known empirical result that the boundary layer depth deepens at a rate,

h '
√
c
Qb
N2

t, (27)
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Figure 8. The modified mixing depth parameter optimized across various background stratifi-

cation. The dots are the median values, the stars are the mode, and the error bars correspond to

90% probability intervals. The dashed line corresponds to 1/6, the theoretical expectation based

on equation 30. This is similar to figure 7, but using the modification from section 3.3. Here

one can see that there mixing depth parameter when estimated across various regimes produces

similar results. This is a desirable feature in a parameterization.

where c is a dimensionless constant found to be close to 3.0 with the LES simulation in
section 2.1. Furthermore, c was found to be close to 3.0 across all the numerical exper-
iments from section 3.2. Substituting this expression in to the buoyancy budget, equa-
tion 7, we find that,

∆b

hN2
'
(

1

2
− 1

c

)
. (28)

This expression can then be used as a new boundary layer depth criterion to replace equa-
tion 15,

C? =
h
(

1
CSh

∫ 0

−CSh
B(z)dz −B(−h)

)
N2h2 + 10−11m2s−2

, (29)

where C? replaces CH as the dimensionless parameter whose value sets the boundary
layer depth. Based on equation 28 and our LES data, we expect

C? '
(

1

2
− 1

c

)
' 1

6
. (30)

Equation 29 is an implicit equation for h which guarantees that equation 27 holds.379

We now repeat the model calibration in section 3.2 but using this new boundary380

layer depth criterion to test whether there is an optimal value of C? that is independent381

of initial stratification. We estimate all KPP parameters and show the new mixing depth382

parameter for simulations with different initial stratifications in figure 8. Encouragingly383

there is no obvious trend in the optimal values of C? and the error bars overlap for all384

cases. This supports the new criterion in the sense that parameters estimated in differ-385

ent regimes are now consistent with one another. The uncertainties in C? translate into386
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an uncertainty in boundary layer depth prediction. In particular, values between 0.05 ≤387

C? ≤ 0.2 imply a boundary layer depth growth in the range
√

2.22tQb/N2 ≤ h ≤388 √
3.33tQb/N2.389

Additionally, one can check if the constants estimated following the methodology390

of section 3 are consistent with an independent measure directly from the diagnosed LES391

simulation. In particular the LES simulations suggest that C? ' 1/6 as per equation392

30. From figure 8 we see that the optimal C? is smaller than 1/6 = 0.167 (the dashed393

black line) and the value 1/6 is not within the confidence intervals for many of the sim-394

ulations. There are several potential reasons for the discrepancy, e.g., the neglect of cur-395

vature in the buoyancy budget (since we assumed a piece-wise linear buoyancy profile)396

or the finite resolution of the parameterization. Perhaps the most likely explanation is397

the difference in how the boundary layer depth was diagnosed in the LES, which need398

not have the same meaning as the one in KPP. A different definition in the LES simu-399

lation, such as the depth of maximum stratification, would yield a different scaling law,400

but still proportional to
√
t. Whatever the choice, the Bayesian parameter estimation401

bypasses these ambiguities/inconsistencies by direct comparison with the entire horizon-402

tally average temperature profile from the LES.403

We do not explore other modifications to the boundary layer depth criterion as this404

would greatly expand the scope of this article. Furthermore, biases in KPP are not lim-405

ited to the cases explored here, see (Van Roekel et al., 2018) for discussions and reme-406

dies. The criterion described in this section assumes a constant initial stratification and407

a constant surface heat loss, which leads to the
√
t growth of the boundary layer depth.408

It would be interesting to extend the criterion to arbitrary initial stratification, variable409

surface heat fluxes, not to mention the interaction with wind-driven mixing. The goal410

here is not to derive a new parameterization, but rather to illustrate and argue for a Bayesian411

methodology in the development and assessment of parameterizations.412

4 Discussion413

We presented a Bayesian approach to assess the skill of the K-Profile Parameter-414

ization (KPP) for turbulent convection triggered by surface cooling in an initially sta-415

bly stratified ocean. The KPP model for this physical setting consists of a one dimen-416

sional diffusion model together with four non-dimensional parameters. Parameters were417

estimated by reducing the mismatch between the vertical buoyancy profile predicted by418

KPP and the area-averaged buoyancy profile simulated with a three dimensional LES419

code for the same initial conditions and surface forcing. Using Bayes’ formula we fur-420

ther estimated the full joint probability distribution of the four parameters. Furthermore,421

the probability distribution was used to quantify inter-dependencies among parameters422

and their uncertainty around the optimal values.423

Repeating the Bayesian parameter optimization and uncertainty quantification for424

different initial stratifications, we found that no unique set of parameters could capture425

the deepening of convection in all cases. This implied that the KPP formulation does426

not capture the dependence of convection on the initial stratification in the simple test427

case considered here: constant surface cooling, constant initial stratification, no wind,428

and no background flow. The parameter that required re-tuning for each case was the429

one associated with the boundary layer depth criterion, thereby suggesting that this cri-430

terion has the wrong functional dependence on stratification. We thus reformulated the431

boundary layer depth criterion to capture the semi-analytical result, supported by the432

LES simulations, that the boundary layer depth deepens as the square root of time when433

the initial stratification is constant. The validity of the new formulation was vindicated434

because the Bayesian approach was able to find a set of parameters which captured the435

evolution of the boundary layer, as compared to the LES simulations, for all initial str-436
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tatifications. In this way, the Bayesian methodology allowed us identify and remove a437

bias in KPP formulation.438

The methodology outlined here could be as easily applied to other parameteriza-439

tions of boundary layer turbulence, such as those reviewed in CVMix (Griffies et al., 2015).440

Our experience is that progress is faster if one starts with simple idealized setups, like441

the ones considered here, and then move to progressively more realistic ones which ac-442

counted for variable stratification and surface heat fluxes, wind-stress forcing, background443

shear, surface waves, etcetera. The Bayesian method would then provide a rigorous eval-444

uation of parameter uncertainty, parameter dependencies, and biases in the formulation445

of the parameterization.446

Ultimately, our hope is that parameter probability distributions estimated in lo-447

cal regimes will serve as useful prior information for calibration/tuning of Earth System448

Models (ESMs). Local simulations of turbulence must be carefully designed and incor-449

porate suites of subgrid-scale processes that have leading order impact in global ocean450

dynamics: surface and bottom boundary layer turbulence, surface wave effects, deep con-451

vection, mesoscale and submesoscale turbulence, and so forth. Bayesian calibration of452

parameterization for each subgrid-scale process will then result in probability distribu-453

tions for all the nondimensional parameters associated with the parameterizations. These454

distributions can then be used as prior information for what is a reasonable range of val-455

ues that each parameter can take, when the parameterizations are implemented in an456

ESMs.457

With regards to calibration of ESMs, the parameterizations of different subgrid-458

scale processes may nonlinearly interact with each other and with the resolved physics.459

Additional calibration is then required for the full ESM. Presently this is achieved by460

perturbing the parameters within plausible ranges (Mauritsen et al., 2012; Schmidt et461

al., 2017). The Bayesian approach provides an objective approach to determine what a462

plausible range is. The same algorithm cannot be used to calibrate the ESM, because463

the methodologies described here are not computationally feasible when applied to larger464

systems. Promising approaches to address this challenge through the use of surrogate465

models such as those in (Sraj et al., 2016; Urrego-Blanco et al., 2016). Such models bring466

internal sources of uncertainty and it is not clear to what extent one can trust a surro-467

gate of a full ESM. One potential way to address this additional challenge is the Cali-468

brate, Emulate, and Sample (CES) approach outlined in (Cleary et al., 2020). There the469

surrogate model’s uncertainty is estimated through the use of Gaussian processes and470

included as part of a consistent Bayesian calibration procedure.471

Should the global problem still exhibit significant biases, even when all available472

prior information about parameterizations and about global data are leveraged, then one473

would have to conclude that there is a fundamental deficiency in our understanding of474

how the different components of the climate system interact with one another, or that475

perhaps the models do not include some key process. For example, (Rye et al., 2020) ar-476

gue that glacial melt might be one such missing process which is not currently represented477

in ESMs. The advantage of the systematic calibration approach outlined here is that it478

allows us to quantify uncertainty in ESM projections and identify the sources of such479

uncertainty.480

Appendix A Oceananigans.jl481

Oceananigans.jl (Ramadhan et al., 2020) is open source software for ocean process
studies written in the Julia programming language (Bezanson et al., 2017; Besard et al.,
2019). For the large eddy simulations (LESs) reported in this paper, Oceananigans.jl is
configured to solve the spatially-filtered, incompressible Boussinesq equations with a tem-
perature tracer. Letting u = (u, v, w) be the three-dimensional, spatially-filtered ve-
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locity field, θ be the conservative temperature, p be the kinematic pressure, f be the Cori-
olis parameter, and τ and q be the stress tensor and temperature flux due to subfilter
turbulent diffusion, the equations of motion are A1–A3,

∂tu+ (u · ∇)u+ fẑ × u+∇p = bẑ −∇ · τ , (A1)

∂tθ + u · ∇θ = −∇ · q, (A2)

∇ · u = 0. (A3)

The buoyancy b appearing in A1 is related to conservative temperature by a linear equa-
tion of state,

b = αg (θ0 − θ) , (A4)

where θ0 = 20◦C is a reference temperature, α = 2 × 10−4 (◦C)−1 is the thermal ex-482

pansion coefficient, and g = 9.81 m2 s−1 is gravitational acceleration at the Earth’s sur-483

face.484

A1 Subfilter stress and temperature flux485

The subfilter stress and momentum fluxes are modeled with downgradient closures,
such that

τij = −2νeΣij and q = −κe∇θ, (A5)

where Σij ≡ 1
2 (∂iuj + ∂jui) is the strain rate tensor, and νe and κe are the eddy vis-486

cosity and eddy diffusivity of conservative temperature. The eddy viscosity νe and eddy487

diffusivity κe in equation A5 are modeled with the anisotropic minimum dissipation (AMD)488

formalism introduced by (Rozema et al., 2015) and (Abkar et al., 2016), refined by (Verstappen,489

2018), and validated and described in detail for ocean-relevant scenarios by (Vreugdenhil490

& Taylor, 2018). AMD is simple to implement, accurate on anisotropic grids (Vreugdenhil491

& Taylor, 2018), and relatively insensitive to resolution (Abkar et al., 2016).492

A2 Numerical methods493

To solve equations A1–A3 with the subfilter model in equation A5 we use the soft-494

ware package ‘Oceananigans.jl’ written in the high-level Julia programming language495

to run on Graphics Processing Units, also called ‘GPUs’ (Bezanson et al., 2017; Besard496

et al., 2019; Besard et al., 2019). Oceananigans.jl uses a staggered C-grid finite vol-497

ume spatial discretization (Arakawa & Lamb, 1977) with centered second-order differ-498

ences to compute the advection and diffusion terms in equation A1 and equation A2, a499

pressure projection method to ensure the incompressibility of u, a fast, Fourier-transform-500

based eigenfunction expansion of the discrete second-order Poisson operator to solve the501

discrete pressure Poisson equation on a regular grid (Schumann & Sweet, 1988), and second-502

order explicit Adams-Bashforth time-stepping. For more information about the staggered503

C-grid discretization and second-order Adams Bashforth time-stepping, see section 3 in504

(Marshall et al., 1997) and references therein. The code and documentation are avail-505

able for perusal at https://github.com/climate-machine/Oceananigans.jl.506

Appendix B Parcel Theory Derivation for the KPP Boundary Layer507

Depth Criterion508

Here we summarise the derivation of the KPP boundary layer depth criterion for
penetrative convection, because we could not find a succinct description in the published
literature. Following (Deardorff et al., 1980) we consider the vertical momentum equa-
tion for a parcel punching through the entrainment layer,

w′
dw′

dz
' −(b′ − b̄) (B1)
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where b′ is the buoyancy of the parcel, assumed to be equal to the mixed layer value, and
b̄ is the area mean buoyancy profile in the entrainment layer. This equation holds if the
area occupied by sinking plumes is small compared to the total area so that b̄ is a good
proxy for the buoyancy in the environment around the plumes and b′−b̄ represents the
buoyancy force experienced by the parcel. The parcel velocity decelerates from w′ ≡ we
at the mixed layer depth (z = −h + ∆h) to zero at the boundary layer depth (z =
−h) where turbulence vanishes. Assuming that the background stratification N2

e is ap-
proximately constant in the entrainment layer we also have b′ − b̄ = N2

e (−h + ∆h) −
N2
e z. The momentum equation can then be integrated from z = −h+ ∆h to z = −h,

(we)
2 ' N2

e∆h2, (B2)

assuming that the background stratification N2
e is constant in the entrainment layer. In-

troducing ∆b as the difference between the environment buoyancy in the mixed layer and
that at the base of the entrainment layer, we have ∆b = N2

e∆h, and hence,

∆b ∝ w∗Ne, (B3)

and (Deardorff et al., 1980) assumes that we ∝ w∗(−h+ ∆h). The criterion for diag-
nosing the boundary layer depth follows from this relationship; h is defined as the first
depth z below the ocean surface where,

∆b(z)

w∗(z)Ne(z)
= CH , (B4)

for some universal constant CH . This is the KPP criterion for estimating the boundary509

layer depth. In the main text we show this scaling fails to predict the rate of deepen-510

ing of the boundary layer depth in LES simulations. Further analysis, not reported here,511

show that this failure stems from relationship (B3) which is not supported by the sim-512

ulations.513

Appendix C Relationship between the model in section 2.2 and Large514

et al. (1994)’s formulation of KPP515

The formulation of KPP in Section 2.2 represents an algebraic reorganization of516

the formulation proposed by Large et al. (1994). The two formulations are mathemat-517

ically equivalent. In this appendix, we discuss in detail how the four free parameters CH ,518

CS , CD, and CN are algebraically related to the free parameters proposed by Large et519

al. (1994).520

Large et al. (1994)’s formulation of KPP for the case of penetrative convection with521

no horizontal shear introduces six nondimensional parameters: the Von Karman constant522

κ = 0.4, the ratio of the entrainment flux to the surface flux βT = 0.2, a constant that523

sets the amplitude of the non-local flux C∗ = 10, a constant that ensures the continu-524

ity of the buoyancy flux profile cs = 98.96, the surface layer fraction ε = 0.1, and a525

parameter that controls the smoothing of the buoyancy profile at the base of the bound-526

ary layer depth Cv. Large et al. (1994) argue that Cv can take any value between 1 and527

2. We set the reference value Cv = 1.7, which corresponds to the strong stratification528

limit in the model proposed by Danabasoglu et al. (2006) and given by equation (8.184)529

in Griffies et al. (2015).530

In our formulation we introduce four parameters which are related to the original
Large et al. (1994) parameters as follows,

CH =
Cv(βT )1/2

(csκ4ε)1/6
, CS = ε, CD = (csκ

4)1/3, and CN = C∗(csκ
4ε)1/3. (C1)

We are able to reduce the number of parameters from six (ε, cs, CV , βT , κ, C
∗) to four531

(CH , CS , CD, CN ), because in the case of penetrative convection the two combinations532

Cv(βT )1/2 and csκ
4 always appear together.533
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Using the reference KPP parameter values reported above, our parameters take the
values:

CH = 0.956, CS = 0.1, CD = 1.36, CN = 6.3275. (C2)

We refer to these as the reference parameters.534

It is worth commenting why the critical Richardson number, the focus of much lit-
erature on KPP, does not appear when considering penetrative convection. The bound-
ary layer depth is determined implicitly through equations (21) and (23) in Large et al.
(1994),

Rib(z) =
(Br −B(z))(−z)
|Vr − V (z)|2 + V 2

t (z)
and V 2

t (z) =
Cv(βT )1/2

Ricκ2
(csε)

−1/2(−z)Nws, (C3)

where B is buoyancy and Br is the average of B between the surface and the depth εz.
The boundary layer depth is defined as the depth z = −h where Rib(−h) = Ric. For
convection without shear, the case considered in this paper, |Vr−V (z)|2 = 0 and ws =
w∗(csε)1/3κ4/3. The two equations can therefore be combined together:

Cv(βT )1/2

κ2/3
(csε)

−1/6 =
(Br −B(−h))h

hNw∗
. (C4)

and the critical Richardson number drops out from the expression. This expression fur-535

ther supports our decision to introduce the single parameter CH in favor of the combi-536

nation of original parameters appearing on the left hand side of (C4). In penetrative con-537

vection it is the parameter CH that controls the boundary layer depth rather than the538

critical Richardson number.539

The optimal parameters and probability distributions for (CH , CS , CD, CN ) can
be mapped on to (ε, Cv(βT )1/2, csκ

4, C∗) using the inverse transformation,

ε = CS , csκ
4 = (CD)3, C∗ =

CN

CD(CS)1/3
, and Cv(βT )1/2 = CH(CD)1/2(CS)1/6. (C5)

Appendix D A Primer on Uncertainty Quantification540

The probability distribution of the parameters in a parameterization must quan-541

tify the likelihood that the parameters take on values other than those that minimize542

the loss function L. To achieve this the probability distribution must satisfy two key prop-543

erties:544

1. In the limit of no uncertainty, the probability distribution should collapse to a delta545

function centered at the optimal parameter values that minimize the loss function.546

2. The uncertainty of a parameter value C should increase proportionally to the value547

of L(C).548

There are many probability distributions that satisfy the above properties. We choose
the following:

ρ(C) ∝ ρ0(C) exp (−L(C)/L0) , (D1)

where ρ0 is a uniform prior distribution, L is a loss function, and L0 is a hyperparam-549

eter.550

The hyperparameter L0 sets the shape of the likelihood function exp (−L(C)/L0)551

and its associated uncertainty quantification. The limit L0 → 0 corresponds to no un-552

certainty, because the likelihood function and the probability distribution collapse to a553

delta function peaked at the optimal parameter values that minimize the loss function.554
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The limit L0 →∞ instead corresponds to a likelihood function that adds no informa-555

tion to reduce the uncertainty and the posterior distribution ρ(C) is equal to the prior556

one ρ0(C). Thus L0 must take finite values between zero and infinity, if the likelihood557

function is to add useful information.558

For any finite value of L0, the probability distribution has its mode (maximum)
at the optimal parameters, if the prior distribution is uniform. This can be easily demon-
strated. Let C∗ denote the parameter values for which the loss function has its global
minimum and C denote any other set of parameter values. It is then the case that ρ(C∗)
is smaller than ρ(C) for any C,

L(C∗) ≤ L(C) ⇒ exp (−L(C)/L0) ≤ exp (−L(C∗)/L0)⇒ ρ(C) ≤ ρ(C∗). (D2)

Hence the most probable value of the probability distribution is achieved at the mini-559

mum of the loss function independent of L0 for a uniform prior distribution.560

As mentioned in section 3, it is convenient to set the hyperparameter L0 to be equal561

to the minimum of the loss function L(C∗). This choice satisfies two key requirements.562

First, the uncertainties of parameters should be independent of the units of the loss func-563

tion. Second, the hyperparameter L0 should be larger the larger the loss function L(C∗),564

because the latter is a measure of the parameterization bias and the former should be565

larger if there is more uncertainty about acceptable parameter values.566

In practice it is seldom possible to find the global minimum of L and instead we567

adopt a “best guess” of the optimal parameters C̃ and set L̃0 = L(C̃). Since L(C∗) ≤568

L(C̃), our choice is conservative because a larger L0 corresponds to more uncertainty.569

Appendix E Random Walk Markov Chain Monte Carlo570

We use the Random Walk Markov Chain Monte Carlo Method (RW-MCMC) in-571

troduced by Metropolis et al. (1953) to sample values from the probability distribution.572

While other more efficient algorithms exist, our parameter space is only four dimensional573

and computational cost is not an issue. The RW-MCMC samples the probability func-574

tion by taking a random walk through parameter space. The algorithm generates a se-575

quence of sample parameter values Ci in such a way that, as more and more sample val-576

ues are produced, the distribution of values more closely approximates the joint param-577

eter probability distribution of the parameters. At each iteration, the algorithm picks578

a candidate parameter set for the next sample value based on the current sample value.579

Then, with some probability, the candidate parameter set is either accepted (in which580

case the candidate value is used in the next iteration) or rejected (in which case the can-581

didate value is discarded, and current values reused in the next iteration). The criterion582

for acceptance and its relation to the probability distribution is best described by sketch-583

ing the algorithm:584

1. Choose a set of initial parameter values C0. We pick our best guess at the set of585

values that minimize the log-likelihood function as estimated from standard min-586

imization techniques.587

2. Choose a new set of candidate parameters by adding a Gaussian random variable588

with mean zero and covariance matrix Σ to the inital set, C̃1 = C0 + N (0,Σ).589

The algorithm is guaranteed to work independently of the choice of Σ as long as590

it is nonzero and does not vary throughout the random walk. However suitable591

choices can speed up convergence and will be discussed below.592

3. Calculate ∆` = `(C0) − `(C̃1). This is a measure of how much more likely C̃1593

is relative to C0.594

4. Draw a random variable from the interval [0, 1], e.g, calculate u = U(0, 1). If log(u) <595

∆` accept the new parameter values and set C1 = C̃1. Otherwise reject the new596

parameter values C1 = C0. This is the “accept / reject” step. Note that if ∆` >597
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0, i.e. if the proposed parameter produces a smaller output in the negative log-598

likelihood function, the proposal is always accepted.599

5. Repeat steps 2-4 , replacing C0 → Ci and C1 → Ci+1, to generate a sequence600

for Ci of parameter values.601

The sequence of parameter values generated by the algorithm can then be used to con-602

struct any statistics of the probability distribution 18, including empirical distributions,603

marginal distributions, and joint distributions. In the context of KPP it can generate604

the uncertainty of the temperature value at any depth and time as well as the uncertainty605

of the boundary layer depth at a given time.606

To guide the choice of an appropriate value for Σ, one diagnoses the “number of607

independent samples” by using approximations of the correlation length as described by608

Sokal (1997). If Σ is too small then the acceptance rate is too large since each candidate609

parameter is barely any different from the original one. Too large a Σ yields too low ac-610

ceptance rates. To find an appropriate compromise we perform a preliminary random611

walk and estimate the covariance matrix of the resulting distribution. We then set Σ equal612

to this covariance matrix.613

Last, in order to sample parameters within a finite domain, we artificially make the614

parameter space periodic and the random walk is therefore guaranteed to never leave the615

desired domain.616
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