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Key Points: 13 
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Abstract 20 

Computational models of the Earth System are critical tools for modern scientific inquiry. Efforts 21 
toward evaluating and improving errors in representations of physical and chemical processes in 22 
these large computational systems are commonly stymied by highly nonlinear and complex error 23 
behavior. Recent work has shown that these errors can be effectively predicted using modern 24 
Artificial Intelligence (A.I.) techniques. In this work, we go beyond these previous studies to 25 
apply an interpretable A.I. technique to not only predict model errors but also move toward 26 
understanding the underlying reasons for successful error prediction. We use XGBoost 27 
classification trees and SHapley Additive exPlanations (SHAP) analysis to explore the errors in 28 
the prediction of lightning occurrence in the NASA GEOS model, a widely used Earth System 29 
Model. This interpretable error prediction system can effectively predict the model error and 30 
indicates that the errors are strongly related to convective processes and the characteristics of the 31 
land surface. 32 

Plain Language Summary 33 

Computer models of the Earth are very important tools in the modern Earth scientist’s toolkit. 34 
Understanding when and why these models are wrong is a major challenge facing the scientific 35 
community. Work published in the last few years has shown that you can actually predict when 36 
these models are wrong using artificial intelligence. We build on that work by applying existing 37 
fancy mathematical tools to these artificial intelligence methods to understand why these these 38 
computer models are wrong. We demonstrate this approach to predictions of lightning in a model 39 
created by NASA, and find that the lightning in the model is wrong in ways that are strongly 40 
related to convection in the atmosphere and the aspects of the land surface. 41 

1 Introduction 42 

Computational models are a key component of modern scientific efforts throughout the 43 
Earth System Sciences. These models have become sufficiently complex as to include 44 
representations of a wide array of important physical and chemical processes in the atmosphere, 45 
oceans, and land (IPCC, 2021). As model complexity has grown, so has their applicability and 46 
utility for answering policy relevant questions ranging from short term forecasting through 47 
climate prediction. Central to the efforts to improve these models is accurate assessment and 48 
diagnosis of errors throughout the representations of these physical and chemical processes. 49 
Traditionally, error assessment approaches usually combine computational and statistical tools 50 
with expert judgement to uncover the error behavior in these Earth System Models. 51 

Recent work applying techniques from the artificial intelligence literature has shown that, 52 
in certain cases, errors in these models can be predicted using machine learning methods. For 53 
example, Rasp & Lerch (2018) use neural networks to correct errors in numerical weather 54 
forecasts to better predict surface temperature across Germany. Keller et al. (2021) use boosted 55 
regression trees to predict and adjust for the errors in simulating the chemical composition of the 56 
atmosphere. While these previous studies use machine learning techniques to predict model error 57 
with respect to observed quantities, similar approaches have been applied to predict the error of 58 
simplified models with more complex theoretical baselines (e.g. Silva, et al., 2021). 59 

In concurrent research, the application of so-called “interpretable AI” techniques to 60 
research problems in the Earth System Sciences has shown great promise in the ability to 61 
evaluate how and why various machine learning techniques make a given prediction. Barnes et 62 
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al. (2020) demonstrate how neural networks, when combined with interpretable A.I. techniques 63 
can be used to discover indicator patterns of change in the climate system. Toms et al. (2020) 64 
further explored how two different methods, layerwise relevance propagation and backward 65 
optimization, can be used to glean scientifically relevant information from neural network 66 
predictions of variability in the Earth System. Stirnberg et al. (2021) use an alternative method, 67 
SHapley Additive exPlanations (SHAP) applied to boosted regression trees, to quantify the 68 
importance of various meteorological drivers on particulate matter concentrations. 69 

We build upon these studies and integrate interpretable A.I. techniques with machine 70 
learning predictions of errors in Earth System Models, with the ultimate goal of improving the 71 
representation of physical and chemical processes. As a demonstration of the methodology 72 
described in this work, we apply SHAP analysis to boosted classification trees to characterize 73 
errors in lightning flash occurrence in the NASA Goddard Earth Observing System (GEOS) 74 
model. We find that these errors are strongly related to convective processes and the 75 
characteristics of the land surface. In principle, the technique we describe in this work 76 
generalizes to any error prediction that can be framed as a classification task in the Earth System 77 
Sciences. 78 

2. Methodological Approach 79 

This work centers around first developing a machine learning predictor of the error in a 80 
model system, followed by interrogating that machine learning predictor using interpretable A.I. 81 
techniques. Here, we specifically use boosted classification trees from the XGBoost software 82 
library and SHAP regression values for interpretability. Our methodological approach is 83 
summarized visually in Figure 1, and described in more detail in the following section.  This 84 
methodology is predicated on the assumption that if a machine learning system provides a high-85 
quality skillful prediction of the error in a given Earth System model, probing the behavior of the 86 
machine learning system can yield insight into the behavior of the Earth System model errors.  87 

 88 

Figure 1. A visual schematic of the methodological approach used in this work.  89 

2.1 Error Prediction 90 

For the purposes of this work, we define the model error as simply the residual of the 91 
model prediction with respect to a true value. Stated mathematically: 92 

Equation 1)  xtrue = xpred + ɛ 93 
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where xtrue is the true value, xpred is the prediction, and ɛ is the error term. While the direct 94 
calculation of the error term, ɛ, is relatively simple, in Earth System Model applications this term 95 
can vary as a highly complex function of the model state and structure. 96 

2.2 SHAP Interpretability Analysis 97 

There are a multitude of high-fidelity machine learning interpretability techniques 98 
available and applied throughout the sciences (e.g. Barnes et al., 2020; Murdoch et al., 2019; 99 
Rasp & Thuerey, 2021, Molina et al. 2021). Here we use SHapley Additive exPlanations (SHAP) 100 
regression values (Lundberg et al., 2018, 2020), as they are relatively uncomplicated to interpret 101 
and have fast implementations associated with many popular machine learning techniques 102 
(including the XGBoost machine learning technique we use in this work). 103 

Analysis of interpretability through SHAP regression values aims to evaluate the 104 
contribution of input variables (often called “input features”) to the predictions made by a 105 
machine learning predictor model. The contribution of that input feature to a prediction is 106 
calculated mathematically through the construction of a so-called “explanation model”. The 107 
explanation model evaluates the predictions of a machine learning system as the sum of the 108 
contributions of each input feature and the mean predicted value. Mathematically the explanation 109 
model can be stated as: 110 

Equation 2)  𝑦 = 𝑦# + ∑ 𝜑!!  111 

where 𝑦 is an individual prediction, 𝑦# is the average predicted value across all predictions, and 112 
𝜑! is the contribution of input feature i to the prediction (also known as the “SHAP regression 113 
value” or “SHAP value”). Input variables with larger magnitude SHAP values are interpreted as 114 
contributing more to a specific prediction than those with a smaller magnitude SHAP values. For 115 
a given case, positive SHAP values indicate a specific feature contributes toward increasing the 116 
final predicted value y, and negative SHAP values indicate a contribution toward decreasing the 117 
prediction. These SHAP values, i, are calculated following a game theoretic approach to assess 118 
prediction contributions (e.g. Štrumbelj and Kononenko, 2014), and have been extended to the 119 
machine learning literature in Lundberg et al. (2018, 2020). 120 

Explicitly calculating SHAP values can be prohibitively computationally expensive (e.g. 121 
Aas et al., 2020). As such, there are a variety of fast implementations available which 122 
approximate SHAP values, optimized for a given machine learning technique (e.g. Chen & 123 
Guestrin, 2016). In short, these techniques calculate SHAP values through sampling the 124 
predictions of a given model by replacing some model input values with random values from that 125 
input distribution. The results of those predictions are weighted as described in Lundberg et al. 126 
(2018) and the linear model shown in equation 2 is derived. A more detailed description of the 127 
SHAP calculation process and other interpretability metrics can be found in Lundberg et al. 128 
(2018, 2020) and Molnar (2019). 129 

The SHAP framework has several key desirable properties, including that the sum of the 130 
contributions accurately reproduces the predicted value, and that the contributions of input 131 
features that are not present in the machine learning model are assigned values of 0. 132 
Additionally, SHAP is a model agnostic technique and can be applied to a wide class of machine 133 
learning prediction models. Despite these key advantages, there are several potential deficiencies 134 
to the application of SHAP analysis to error characterization in the Earth System Sciences. 135 
Principle among these are that SHAP analysis cannot directly yield causal insights and that the 136 
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direct calculation of SHAP values is very computationally expensive. As such, care must be 137 
taken to properly interpret the SHAP values resulting from any particular analysis. It is important 138 
to note that to improve computational performance, common implementations of SHAP analysis 139 
in existing machine learning libraries (e.g. Chen & Guestrin, 2016) contain assumptions about 140 
the data distributions which are not always valid in applications in the Earth System Sciences 141 
(e.g., feature independence, Aas et al., 2020). 142 

3. Lightning Occurrence Case Study 143 

As a demonstration of the methodology outlined in Section 2, we evaluate the errors in 144 
the lightning occurrence parameterization in the NASA GEOS model using observations from 145 
the Geostationary Lightning Mapper (GLM) onboard the GOES-16 satellite as the ground truth. 146 
Lightning is a natural hazard in the Earth System with important interactions with biomass 147 
burning, atmospheric chemistry, and climate (Schumann and Huntrieser, 2007). Despite its 148 
importance, the representation of lightning occurrence in atmospheric models remains a key 149 
challenge (Finney et al., 2018; Liu & Yang, 2020; Murray, 2016). 150 

3.1 Dataset Description 151 

Model predicted lightning occurrences (flash rates) were generated using the NASA 152 
GEOS ESM, a General Circulation Model (GCM) and Data Assimilation System (DAS) 153 
consisting of a suite of model components that can be flexibly connected via the Earth System 154 
Modeling Framework (ESMF, Hill et al., 2004) and Modeling Analysis and Prediction Layer 155 
(MAPL, Suarez et al., 2007). Here, we use GEOS version 5 (Jason-3_5) with the finite-volume 156 
dynamical core of Putman and Lin (2007) at a cube-sphere c90 horizontal grid (approximately 157 
1x1 degrees horizontal resolution) and 72 hybrid-eta levels from the surface to 0.01 hPa. Using 158 
the GEOS ‘replay’ feature (Orbe et al., 2017), the model simulation is nudged toward the pre-159 
computed meteorological analysis fields obtained from the MERRA-2 reanalysis (Gelaro et al., 160 
2017). Convection, which is a key driver of lightning, is parameterized using a combination of 161 
the Grell-Freitas mass-flux scheme for deep convection (Freitas et al., 2018) and the Park and 162 
Bretherton parameterization for shallow convection (Park and Bretherton, 2009).  163 

The parametrization of lightning used in this work follows the unconstrained cloud top 164 
height (CTH) approach described in Murray et al. (2012).  Briefly, the parameterization 165 
calculates the occurrence of lightning at a given time using a fifth- and second-power function of 166 
cloud top height over continents and oceans, respectively, following Price and Rind (1992, 1993, 167 
1994). The cloud top height is defined as the altitude where the upward convective mass flux - as 168 
calculated by the GEOS convection code - becomes zero. Lightning is restricted to convective 169 
columns that span the full temperature range from 0 ˚C to -40 ˚C (Williams, 1985). Additionally, 170 
simulated lightning cannot occur over regions with snow or ice at the surface or regions without 171 
any clouds.  172 

While the CTH parameterization has a long development history and is widely used, 173 
several other lightning parameterizations exist that are based on different input variables and 174 
functional fits. These include parameterizations based on updraft mass flux (Allen and Pickering, 175 
2002), convective precipitation (Meijer et al., 2001) or cloud ice flux (Finney et al., 2014). While 176 
these parameterizations are not explicitly tested in this study, we include the input variables for 177 
these parameterizations in our machine learning model (see below) to probe a possible 178 
relationship between errors in the CTH parameterization and these quantities.  179 
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We used the GEOS ESM system to produce hourly-averaged lightning flash rates 180 
covering the year 2018, and evaluate this parameterization using lightning flash observations 181 
from the Geostationary Lightning Mapper (GLM) on board the GOES-16 satellite (Koshak et al., 182 
2018; Rudlosky et al., 2019). GOES-16 is the first of the latest generation of geostationary 183 
weather satellites operated by NASA and the National Oceanic and Atmospheric Administration 184 
(NOAA). It covers the GOES East position at 75 deg W, providing a continuous view centered 185 
on the Americas. GLM on board of GOES-16 is the first operational geostationary lightning 186 
mapper, offering continuous detection of lightning with a spatial resolution of ~10km. It detects 187 
and locates lightning within its field-of-view using a single-channel, near-infrared (777.4 nm) 188 
optical transient detector with a framerate of 2ms. Here, we use the GOES-16 GLM Level 2 189 
lightning flash product available on the NOAA CLASS data portal 190 
(https://www.avl.class.noaa.gov/saa/products/search?datatype_family=GRGLMPROD), which 191 
combines individual lightning events that are combined spatially and temporally (GOES-R 192 
Algorithm Working Group and GOES-R Series Program, 2018). 193 

We develop a predictor for the error in lighting occurrence predicted by the GEOS ESM 194 
by encoding the flash rates in both the GEOS model and the GLM observations as a binary 195 
prediction: 0 if there was no flash, 1 if there was a flash. This is mapped on to one of three values 196 
for the error prediction as described in Equation 1: 1 if the parameterization predicts no flash 197 
where there was an observed flash, 0 if the model predictions are consistent with the 198 
observations, and -1 if the model predicts a flash where there was not an observed flash. These 199 
three values are then treated as three different classes for a multi-label classification prediction 200 
task using the XGBoost library. In order to predict any lightning at all, the NASA GEOS 201 
parameterization requires the presence of clouds and a lack of ice at the surface. We pre-filter 202 
these trivial cases where the parameterization will never predict a flash to focus our analysis on 203 
circumstances where the entirety of the parameterization can be assessed. As lightning is a 204 
relatively infrequent event, the datasets here are highly imbalanced with respect to flash 205 
occurrence. To treat this dataset imbalance, we downsample such that parity is reached in the 206 
flash and no flash cases in the observations.  207 

3.2 Machine Learning Model Training 208 

We develop a gradient boosted classification tree using the XBoost machine learning 209 
library (Chen & Guestrin, 2016) to predict the error of the NASA GEOS model parameterization 210 
of lightning prediction relative to corresponding GLM lightning observations. The XGBoost 211 
model is trained to predict whether the GEOS model accurately predicts the occurrence of 212 
lightning for a given set of model conditions (input features). Gradient boosted classification 213 
trees are a type of machine learning classification model, wherein a number of small tree-based 214 
models are trained to predict a categorical variable. Here, that categorical variable is the error as 215 
defined in Equation 1. The possible categories are: -1, when the NASA GEOS model 216 
underestimates lightning occurrence, 0, when the NASA GEOS model correctly predicts 217 
lightning occurrence, and 1, when the NASA GEOS model over predicts lightning occurrence. 218 
After the first tree is trained, each new tree is iteratively trained to predict the residuals of the 219 
previous tree. This residual prediction through addition of trees continues for either a specified 220 
number of iterations or until satisfactory or convergent predictive skill has been achieved with 221 
respect to some particular criteria. In this multilabel classification task, the XGBoost machine 222 
learning model predicts a probability that a given set of input features will lead to any of the 223 
three classes (underestimation/correct prediction/overestimation). The class with the highest 224 
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probability is selected for the final classification. The gradient boosted tree implementation in the 225 
XGBoost library has been applied widely across applications in the Earth System Sciences (e.g. 226 
Batunacun et al., 2021; Ivatt & Evans, 2020; Keller et al., 2021; Silva, et al., 2020) and has 227 
computationally efficient open-source implementations in a variety of commonly used 228 
programming languages, including the calculation of SHAP values.  229 

The input values to the XGBoost classifier are summarized in Table 1, consisting of a 230 
variety of diagnostics related to atmospheric physics and dynamics as well as the land surface. 231 
These parameters were chosen based on the characteristics of the CTH parameterization used in 232 
GEOS, as well as other parameters thought to be important for lightning and commonly used in 233 
other lightning parameterizations, such as cloud ice, vertical updraft velocity, or convective 234 
precipitation (Meijer et al., 2001; Allen and Pickering, 2002; Finney et al., 2016). A sampling 235 
height of 440 hPa is chosen for 3-dimensional quantities, following the approach by Finney et al. 236 
(2018). 237 

 238 

Table 1. Variables used as inputs to the machine learning predictors in this work. Unless 239 
otherwise stated, all meteorological variables are taken at 440 hPa.   240 
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To treat spatial and temporal autocorrelation in the dataset, we reserve the months of 241 
February, May, August, and November as the “test set” for the machine learning method trained 242 
here. All other months are used for machine learning model development, with 10% of that data 243 
used as a validation set for hyperparameter tuning. All results here are shown for the test set 244 
only.  245 

We explore the hyperparameter optimization space using a grid search technique for both 246 
the maximum depth and learning rate hyperparameters associated with the XGBoost framework. 247 
The maximum tree depth hyperparameter is searched as 2x, where x ranges in integer steps from 248 
2 to 12, and the learning rate is searched within the range of 0.1 to 0.9 in steps of 0.1. Other fixed 249 
hyperparameters associated with the XGBoost framework include a maximum of 1000 boosting 250 
iterations and early stopping set to 25 iterations. All other hyperparameters are maintained at 251 
package default values (Chen & Guestrin, 2016). Results of the hyperparameter search are 252 
summarized in Figure 2. A learning rate of 0.4 and a maximum depth of 14 minimized the 253 
classification error on the validation set, and is what we used for the final model trained in this 254 
work. We optimize the XGBoost classifier using a multiclass softmax prediction and the package 255 
default cross-entropy loss function. The softmax prediction predicts a value between 0 and 1 for 256 
each class that can be interpreted as the probability that a given prediction belongs to a specific 257 
class. The maximum class probability is taken as the final class prediction.  258 

 259 

Figure 2. Validation classification error as a function of the learning rate and maximum depth 260 
hyperparameters.  261 

The overall machine learning classifier accuracy is 75% across all data available in the 262 
test set. This is considerably higher than a random baseline accuracy of 33%. On a per class 263 
basis, the true positive rate tends to be higher for classes that are more represented in the dataset 264 
at 69%, 79%, and 58% for the underestimation, correct prediction, and overestimation classes, 265 
respectively. The prevalence of these classes are 37%, 61%, and 1%, respectively. As a best 266 
practice we evaluate the use of XGBoost for this prediction task with a far simpler benchmark 267 
that is nonetheless more advanced than a random baseline. Here we use multiple linear 268 
regression treating the values as a regression and optimized using ordinary least squares. We find 269 
that the linear model has an overall accuracy of 69%, with performance heavily biased on a per-270 
class basis. The linear model per-class accuracy is 43%, 87%, and 0.07% for the 271 
underestimation, correct prediction, and overestimation classes, respectively. This poor per-class 272 
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performance of the linear baseline further motivates the use of a more advanced prediction 273 
technique, such as the XGBoost method applied here. 274 

3.3 Error Characterization 275 

We explore the error term learned by the XGBoost classifier through computing the 276 
SHAP values for all prediction cases. We first explore the average SHAP values across all 277 
predictions, and then investigate individual predictions and their dependence on the input 278 
variable distributions. As stated in Section 2, this work assumes that the behavior and 279 
interpretation of the skillful XGBoost classifier can provide information on the error in the actual 280 
NASA GEOS lightning parameterization.   281 

Figure 3 summarizes the median SHAP value magnitude for all prediction cases and 282 
input variables, with the interquartile range across ensemble members shown as the line ranges. 283 
For a given prediction and input variable, larger SHAP value magnitudes correspond to a larger 284 
contribution from that variable to that prediction. Following this, the average magnitude of the 285 
SHAP values across all predictions is commonly interpreted as a metric of variable importance 286 
(Molnar, 2019). Variables that have larger associated SHAP values are ranked as more important 287 
for the prediction task as they have larger average contributions to the predictions. In the case of 288 
lightning occurrence as simulated by the GEOS model, the most important variables for 289 
predicting the error of the CTH lightning scheme are the CAPE (Convective Available Potential 290 
Energy) for a surface parcel, the convective updraft velocity, the Land/Water/Ice flag, the lifting 291 
condensation level, the specific humidity at 600mb, and the convective precipitation. This is 292 
consistent with the lightning scheme errors varying with meteorological conditions across the 293 
observational domain, and the known importance of convective processes and the land surface 294 
type in influencing lightning formation (Murray et al., 2012). 295 

 296 
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Figure 3. The median SHAP magnitude across all prediction cases, selecting for the predicted 297 
class for each case. Line ranges represent the upper and lower quantile (25th to 75th percentile) 298 
across the distribution, and points represent the median average absolute SHAP value.  299 

We further investigate the error behavior through comparison of the SHAP value with the 300 
original value of the input feature, visualized through so-called “SHAP dependence plots”. This 301 
comparison can help illuminate the relationship between the value of an input feature and its 302 
contribution to a given prediction case, potentially highlighting model biases in certain input 303 
feature regimes. We explore in detail three important variables as identified in Figure 3 as 304 
illustrative examples: CAPE for a surface parcel, the maximum updraft vertical velocity, and the 305 
convective precipitation.  306 

Figure 4 shows the SHAP dependence plot for CAPE, the highest importance ranked 307 
variable in Figure 3. As with the analysis of the median SHAP value magnitudes, values closer to 308 
zero in the SHAP dependence plots are indicative of a smaller contribution to the prediction of 309 
the error by the XGBoost classifier. Positive values (shown in red) indicate a contribution toward 310 
predicting a given class, negative values (shown in blue) indicate a contribution toward not 311 
predicting a given class, and values with interquartile ranges that cross zero (shown in black) 312 
indicate little contribution to a prediction case. In general, across the three prediction cases, 313 
symmetries are common. Regimes that are strongly predictive of one class (e.g. underestimation) 314 
are commonly predictive against the other classes (e.g. correct predictions). For CAPE, there are 315 
two dominant regimes in the SHAP dependence figure. Very low model CAPE values contribute 316 
toward predicting the underestimation class in the dataset, whereas higher values contribute 317 
toward predicting away from the underestimation class (e.g. either the correct prediction class or 318 
the overestimation class). From the earth system model lightning prediction perspective, lower 319 
simulated CAPE values are associated with lightning prediction underestimation, and higher 320 
values are likely not associated with driving that underestimation. SHAP values near zero at 321 
approximately 1000 J kg-1are consistent with a CAPE regime that does not necessarily imply 322 
anything about the model behavior. While these regimes can indicate potential drivers of earth 323 
system model error behavior, it is important to note that causality cannot be determined through 324 
the SHAP analysis presented here.  325 
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 326 

Figure 4. The SHAP dependence plot for convective available potential energy (CAPE) for a 327 
surface parcel. Line ranges represent the upper and lower quantile (25th to 75th percentile), and 328 
points represent the median SHAP value. Data are binned in 250 J kg-1 size bins. Colors 329 
represent the sign of the quantile range, positive as red, negative as blue, and crossing zero as 330 
black.  331 

The second highest ranked variable is the convective updraft velocity, and the associated 332 
SHAP dependence plot is shown in Figure 5. In contrast to the CAPE SHAP dependence figures, 333 
convective updraft velocity is treated as nearly a binary variable in the XGBoost classifier. For 334 
cases where the convective updraft velocity is identically zero, the variable is a very strong 335 
predictor that the model is not underestimating lightning occurrence, where the SHAP value of 336 
~-5.0 is among the largest magnitudes in the entire dataset. Additionally, while convective 337 
updraft velocities less than zero contribute very little to the correct prediction class, they strongly 338 
reduce the likelihood of predicting the overestimation class.  339 
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  340 

Figure 5. The SHAP dependence plot for the convective updraft velocity. Line ranges represent 341 
the upper and lower quantile (25th to 75th percentile), and points represent the median SHAP 342 
value. Data are binned in 0.01 hPa s-1 size bins. Colors represent the sign of the quantile range, 343 
positive as red, negative as blue, and crossing zero as black.   344 

While the general SHAP dependence behavior of both the correct prediction and 345 
overestimation prediction classes are similar in Figures 4 and 5, this is not always the case. This 346 
is illustrated in Figure 6, which shows the SHAP dependence plot for convective precipitation. In 347 
this case, very low convective precipitation values correspond to an increased prediction of the 348 
underestimation class, and higher precipitation values lead to a decrease in the prediction of that 349 
class. The reverse is true for the correct prediction class, where very low precipitation values 350 
lead to a reduction in that predicted value, whereas higher values increase the prediction toward 351 
the correct prediction class. For low-mid range convective precipitation values, the 352 
overestimation class follows the correct prediction class. At ~2e-4 kg m-2 s-1, convective 353 
precipitation ceases to contribute toward the overestimation task, and actually trends toward 354 
contributing away from predicting that class. 355 
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 356 

Figure 6. The SHAP dependence plot for the convective precipitation. Line ranges represent the 357 
upper and lower quantile (25th to 75th percentile), and points represent the median SHAP value. 358 
Data are binned in 3x10-4 kg m-2 s-1 size bins. Colors represent the sign of the quantile range, 359 
positive as red, negative as blue, and crossing zero as black.  360 

Taken as a whole, the results from this SHAP dependence analysis highlight several key 361 
regimes that can be used to guide interpretation of errors in the NASA GEOS lightning 362 
occurrence parameterization. Consistent with previous literature, convective processes have a 363 
large influence on predictions of lightning model errors (e.g. Murray et al., 2012). More 364 
specifically, model input variable regimes with substantial influences on classification 365 
predictions include low CAPE values (below ~1000 J kg-1), and identically zero convective 366 
updraft velocity. Additionally, high convective precipitation values are strongly predictive of the 367 
correct prediction class, and negatively predictive of both error classes (over- and under-368 
prediction). These results allow for data-driven hypothesis generation regarding improving 369 
representations of lightning formation in the NASA GEOS model, in particular that changes in 370 
the computational representation of convective processes will likely have a strong influence on 371 
the errors in the lightning prediction scheme.  372 

3.4. Input Variable Dependence 373 

As stated previously, one potential disadvantage of the SHAP calculation implementation 374 
in the XGBoost library is that the algorithm assumes independence across input features. This 375 
assumption is violated in many applications in the Earth system sciences, including the 376 
application in this work. This ultimately calls into question the validity of the results presented in 377 
this work. To address this, we evaluate the SHAP values calculated from the XGBoost library 378 
against an approach that does more directly account for dependent input variables described in 379 
Aas et al. (2020).  380 

For machine learning tasks with large datasets with many input features (such as the one 381 
used here) the SHAP value calculation approach in Aas et al. (2020) is many orders of 382 
magnitude more computationally expensive than the Lundberg et al. (2018) method, and does 383 
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not currently support multi-label classification. This ultimately makes it impossible to apply the 384 
Aas et al. (2020) method to the entire dataset used in this work. However, we can compare the 385 
two methods on a smaller representative example problem to get a sense for the potential cost 386 
associated with assuming independence across the input variables. We trained a binary 387 
classification problem using the top six most important variables as identified through the 388 
Lunberg et al. (2019) approach (see section 3.3) on 2575 observations from 9 days of data in 389 
June, focusing on classifying a case as either “underestimation” or “correct prediction”. The 390 
dataset was class balanced and the same hyperparameters were used as in the larger classification 391 
task in Section 3.3. The overestimation cases were removed and only constituted ~1% of the data 392 
(61 cases). Overall prediction accuracy for this small subset example was ~64%. We then 393 
compare the SHAP values calculated from the Aas et al. (2020) method, and the implementation 394 
in the XGBoost software package. A comparison of all calculated SHAP values is summarized in 395 
Figure 7 below. In general we find a strong correlation between the two calculated SHAP values 396 
(R = 0.82), though the absolute magnitudes of the SHAP values differ. This is consistent with 397 
different attribution calculation methodologies, but overall similar attribution interpretations.  398 

 399 

Figure 7. Hexbin comparison of the SHAP Value predictions from the XGBoost library and the 400 
Aas et al. (2020) method. Colors represent the log of the number of cases in a given hexagon.  401 

Spearman rank correlations across individual cases (i.e. evaluating if both methods 402 
produce the same variable ranking of the six input features) are additionally high, with a median 403 
value of 0.77. A histogram of the  rank correlations across prediction cases is shown in Figure 8. 404 
Additionally, the final median(|SHAP|) comparisons between the two methods show the same 405 
final variable rankings. This lends confidence to the application of the SHAP value calculations 406 
from the XGBoost library for this use case. It is important to note that a comparison of this sort is 407 
likely necessary for all applications of SHAP analysis when input variables are dependent. The 408 
quality performance in this work is not a guarantee of algorithm skill for all applications in the 409 
Earth Sciences.  410 
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 411 

Figure 8. A histogram of the Spearman rank correlation between the prediction case-specific 412 
SHAP Value predictions from the XGBoost library and the Aas et al. (2020) method for all test 413 
dataset cases on the subset of data described in section 3.4. Histogram bins have a width of 0.1.  414 

4. Summary and Implications for Earth System Model Development 415 

Here we describe an application of interpretable artificial intelligence methods for the 416 
characterization of errors in computational models of the Earth System. This application operates 417 
in a two-step process, where first the model errors are learned through a widely used machine 418 
learning classification technique, followed by the use of SHAP value analysis for interpretability. 419 
This ultimately results in a domain agnostic technique for the characterization and exploration of 420 
model errors as a function of related parameters. 421 

From an Earth System Model development perspective, we can use this analysis 422 
technique to guide efforts toward model improvement and as a data-driven approach to inform 423 
hypothesis generation. We demonstrate this approach through investigation of the lightning 424 
occurrence parameterization in the NASA GEOS model. The convective available potential 425 
energy is on average assigned the most credit for predicting the error in the lightning 426 
parameterization, with the highest average magnitude SHAP values. Additional important input 427 
variable regimes include very low convective updraft velocities and high convective 428 
precipitation values. These results are consistent with issues surrounding capturing convective 429 
processes being important drivers of model biases. Other important variables include the local 430 
Land/Water/Ice flag, the lifting condensation level, and the specific humidity at 600mb. On 431 
aggregate these variable importances are consistent with the importance of convective processes 432 
and land-surface heterogeneities in influencing errors in the lightning parameterization. From the 433 
results presented here, we can hypothesize that changes to the representation of convective 434 
processes in the NASA GEOS model will likely have a substantial impact on the errors in the 435 
model prediction of lightning occurrence.  436 

As modern Earth System Models grow in complexity, approaches for the characterization 437 
and diagnosis of process-level errors which complement existing efforts are highly valuable. 438 
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Techniques from the machine learning and data analytics research literature can be particularly 439 
useful in this regard, as they are ideal tools to exploit the massive volumes of data currently 440 
generated by modern computational earth system science. 441 
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