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Introduction

This supporting information document presents text, figures, and tables that provide
additional details about the methods and results outlined in the manuscript.



Text S1. Hydrologic model set-up.

We used the Soil and Water Assessment Tool (SWAT), a semi-distributed, physically
based hydrologic model, to simulate the hydrologic processes in the Maumee River Basin.
The SWAT model solves the water balance equation at its smallest calculation unit, known
as a hydrologic response unit (HRU), to quantify water flux and changes in storage. Each
HRU is determined from the unique combinations of land use, soil, and slope data. The key
strength of the SWAT model is that it can represent the physical hydrologic processes and
model agricultural and water management changes, all while being computationally faster
than commonly used distributed hydrologic models like Variable Infiltration Capacity (VIC).

We used topography, soil, land use, and meteorological time series data to set up
the SWAT model for the Maumee River Basin. Table S1 lists the type, source, and resolution
of each data set used for the SWAT model. We followed four key steps for model
development.

First, we delineated the watersheds using topographic data (via a digital elevation
model, or DEM). The elevation data was used to compute flow direction and flow
accumulation (i.e., the number of grids contributing flow to each grid). Streams generally
have relatively higher flow accumulation value (or higher number of grids upstream
contributing flow), which then used to separate stream networks. Based on the threshold
area for flow accumulation, the stream network density was determined. Using smaller
thresholds yielded denser networks. We tested several thresholds in an attempt to obtain
stream network density resembling the USGS HUC-12 watersheds, ultimately using a
threshold of 3000 ha, or 30 km2. However, we note that the areas we obtained are not
identical to HUC-12 watersheds.

Furthermore, to obtain simulated outputs at locations with USGS water quality and
flow measurements, we added outlet points at these locations. In a few cases, USGS
monitor locations are not exactly on the streamlines due to errors in delineated stream
network locations. The typical approach in this scenario is to snap the monitor locations to
the streamline, which we did for distances up to 100 m from the stream. We note that
positioning outlets subdivides a subwatershed into two, which in some cases resulted in
the creation of much smaller subwatersheds. Furthermore, we identified two channels in
the NHDPlus stream network that are undirected cycles (loops independent of edge
direction); these generally occur when there are bypasses or irrigation channels. Because
we seek to aggregate the channel contributions at subwatershed scale, we collapsed these
loops into single edges. In summary, the watershed delineation process yields



subwatersheds with outlets located at the water quality monitors and stream junctions. For
reference, these monitor and junction nodes are later used to simulate pollutant transport
through the stream network, while the subwatersheds are used as source nodes.

Second, we used the land use map from USDA Cropland Data Layer (Han et al.,
2012), the soil map from SSURGO (Soil Survey Staff, 2015), and slope information derived
from DEM to determine HRUs. SWAT used these three datasets to find unique
combinations of land parcels, which are defined to be the HRUs. All simulation in SWAT is
first computed at the HRU level, then aggregated at the subwatershed level.

Third, we forced the model with temperature and precipitation data from PRISM
(PRISM Climate Group, 2014) to simulate the model at daily time steps from 2014 through
2020. We used 2014 as the spinning period (or warming period, which is necessary for
model stability), so the simulation output is available from 2015 to 2020.

Fourth, we calibrated the model using SWAT-simulated streamflow as the calibration
variable and the USGS streamflow data as the ‘observed’ data. The objective function for
calibration was to maximize Kling-Gupta Efficiency (KGE). Details about calibration and
validation are provided in the following section (Text S2).

Figure S1 shows the elevation, land use, and soil maps used as inputs to the SWAT model.



Figure S1. Input data to the SWAT hydrologic model. (a) 30-m elevation map from Shuttle
Radar Topographic Mission (SRTM). (b) 30-m land use and crop type map from USDA-NASS.
Legend for land use includes only the dominant land use types; others are not shown for
concision. (c) 10-m SSURGO soil map from USDA. Legend for soil type, which consists of a
large number of soil types, is not shown for brevity.



Text S2. SWAT calibration and validation.

When calibrating the SWAT model, we search for the model parameter values for
which model simulation most closely matches the in-situ measurements. Because we use
simulated flow and runoff for source attribution, we calibrate the model using streamflow,
or river discharge. Hydrologic model calibration is generally suggested to be treated as a
multi-objective problem using either multi-site or multi-variable measurements or
multi-response function (Gupta et al., 2009; van Griensven & van Bauwens, 2003; Madsen,
2003). In this study we performed multi-site calibration. For calibration, we chose
Kling-Gupta-Efficiency (KGE) as the objective function (Kling et al., 2012). KGE includes
correlation (r), variability (α), and bias error (β) in its goodness-of-fit criterion (Gupta et al.,
1998; Kling et al., 2012). This goodness-of-fit criterion measures the match between
simulated and observed values on a scale ranging from negative infinity to 1, where 1
indicates a perfect match.

The objective function for optimization is:
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calibrated the streamflow for three years: 2015, 2017, and 2019. The validation periods
were the alternate years: 2016, 2018, and 2020.

We used the Dynamically Dimensioned Search Algorithm (DDS), a widely used method for
hydrologic calibration, to optimize SWAT model parameters (Lin et al., 2017; Tolson and
Shoemaker, 2007). The key advantage of DDS over commonly-used global search
algorithms (e.g., the shuffled complex evolution algorithm) is the ability to dynamically
adjust search space by successively decreasing parameter dimension until iterations reach
a user-defined limit. For this study, we calibrated seven parameters and iterated 3000
times, using the tool Ostrich that has a built-in DDS algorithm (Matott, 2017). Parameter



selection was based on the most commonly-used parameters for streamflow calibration
(Abbaspour et al., 2015; Zambrano-Bigiarini & Rojas, 2013), as well as our experiments to
identify most sensitive parameters. The calibration parameters used in our SWAT model
are listed in Table S1.

Table S1. Calibrated parameters for the SWAT model. Here, R indicates that an existing
parameter value is multiplied by (1+ a given value), while V indicates that the existing
parameter value is replaced by a given value.

Parameter Definition Type of change Range Fitted value
CN2 Curve number for moisture condition II R -0.25 ⎯ 0.25 0.04
ALPHA_BF Baseflow alpha factor for bank storage

(days)
V 0 ⎯ 1 0.99

SURLAG Surface runoff lag coefficient V 0.01 ⎯ 2 0.3
GW_DELAY Groundwater re-evaporation factor V 0.01 ⎯ 50 0.07
SOL_AWC Available soil water capacity (mm

H2O/mm soil)
R -0.8 ⎯ 0.2 0.04

SOIL_K Saturated hydraulic conductivity
(mm/h)

R -0.8 ⎯ 0.2 0.0017

GWQMN Threshold depth of water in the
shallow aquifer required for return
flow to occur (mm)

V -1000 ⎯ 1000 657

Table S2 shows the performance metrics. We find the KGE values for the calibration and
validation periods are 0.78 and 0.82, respectively. R2 for the calibration and validation
periods are 0.87 and 0.83, respectively. The KGE and R2 values testing the match between
simulated and observed flow indicate overall satisfactory model performance.

Table S2. Performance metrics for calibration and validation periods.

Evaluation criterion Calibration period Validation period
KGE 0.78 0.82
R2 0.87 0.83

Figure S2 compares simulated and observed streamflows at multiple USGS sites.



Figure S2. SWAT-simulated vs. USGS observed flow at selected sites.



Figure S2. SWAT-simulated vs. USGS observed flow at selected sites (continued).
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