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Abstract 20 

In recent decades, climate change has lengthened wildfire seasons globally and doubled the 21 
annual area burned. Thus, capturing fire dynamics is critical for projecting Earth system 22 
processes in warmer, drier, more fire prone future. Recent advances in fire regime modeling have 23 
linked land surface and Earth system models with fire behavior models. Such models often rely 24 
on fine surface fuels to drive fire spread, and while many models can simulate processes that 25 
control how these fuels change through time (i.e., fine fuel succession), fuel loading estimates 26 
remain highly uncertain. Uncertainties are amplified in climate change forecasts when initial 27 
conditions and feedbacks are not well represented. The goal of this review is to highlight fine 28 
fuel succession as a key uncertainty in model systems. We review the current understanding of 29 
mechanisms controlling fine fuel succession (with an emphasis on decomposition), describe how 30 
these mechanisms are incorporated into models, and evaluate the strengths and uncertainties 31 
associated with different approaches. We also use three state-of-the-art fire regime models to 32 
demonstrate the sensitivity of decomposition projections to both parameter and model structure 33 
uncertainty and show that sensitivity increases dramatically under future climate warming. Given 34 
that many of the governing decomposition equations are hard-coded in models and often based 35 
on individual case studies, substantial uncertainties are currently ignored. To understand future 36 
climate-fuel-fire feedbacks, it is essential to be transparent about model choices and uncertainty. 37 
This is particularly critical as the domain of Earth system models is expanded to include 38 
evaluation of future wildfire regimes. 39 

Plain Language Summary 40 

Wildfire is a critical force regulating carbon retention globally. This is especially true in 41 
coniferous forests, which store more than one third of the earth’s terrestrial carbon. Fine, dead 42 
materials on the forest floor (i.e., fine surface fuels) play a key role in driving fire spread. Thus, 43 
modeling the role of fire in Earth system processes requires reliable estimates of fine surface fuel 44 
loading and projections of how it will change over time (i.e., fine fuel succession). To 45 
accomplish this, we need models that can account for complex interactions among climate and 46 
vegetation—including the effects of temperature and precipitation on plant growth, mortality, 47 
litterfall, and litter decay—and that link these dynamics with projections of future wildfire. 48 
Although many models are designed to simulate these processes, fuel loading estimates remain 49 
highly uncertain. In this paper, we review the current understanding of mechanisms controlling 50 
fine fuel succession, describe how these mechanisms are represented in models, and evaluate the 51 
strengths and uncertainties associated with different approaches. We conclude with 52 
recommendations for future research needed to better model how climate change will influence 53 
fuels, wildfire, and carbon retention. 54 

1 Introduction 55 

Changes in climate, land management, and residential development are rapidly modifying global 56 
fire regimes (Bowman et al., 2017), and with them, the structure and function of ecosystems and 57 
watersheds (Schoennagel et al., 2017; Smith et al., 2014). These changes are particularly 58 
pronounced in the coniferous forests of western North America (Abatzoglou et al., 2017). Within 59 
forested fire regimes, fine surface fuel layers (including plant litter and fine woody fuels < 7.6 60 
cm in diameter Table S1) propagate fire both horizontally and vertically from the forest floor 61 
into the canopy and are a key component of fire spread, hazard, and intensity (Rothermel, 1972; 62 
Thaxton & Platt, 2006). Accurately predicting fine surface fuel loading is crucial for forecasting 63 
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future fire hazard and optimizing fuel management. This includes estimating the longevity of 64 
fuel treatments (Hood et al., 2020; Keane, 2008; Stephens et al., 2012; Tinkham et al., 2016; 65 
Vaillant et al., 2015), calculating treatment costs (Calkin & Gebert, 2006), and determining how 66 
they will affect future carbon (C) stocks (Campbell & Ager, 2013).  67 

Fine surface fuel loading is a key driver of fire spread and behavior in models, particularly those 68 
based on Rothermel (1972), such as FARSITE, BEHAVE, and SPITFIRE (Andrews, 2007; 69 
Finney, 1998; Thonicke et al., 2010). However, in-situ fuel measurements can be time 70 
consuming and expensive. Synoptic remote sensing datasets are generally insufficient because 71 
surface layers are often obscured by overlying canopies (Mutlu et al., 2008; Seielstad & Queen, 72 
2003). Apart from unmanned aerial vehicle or terrestrial lidar studies, datasets lack the precision 73 
needed to accurately represent fire-scale fuel characteristics that are needed for wildfire 74 
modeling (Loudermilk et al., 2009). As a result, fire risk and hazard assessment rely fuel 75 
characterizations that are typically derived from a generalized fuel scheme, such as the Scott and 76 
Burgan (2005) 40 stylized fuel models (Keane, 2013), the Australian Bushfire Fuel Classification 77 
(M. Cruz et al., 2018), and the Canadian Forest Fire Fire Behavior Prediction System (Forestry 78 
Canada, 1992). These classification systems are often designed to work with a particular fire 79 
behavior model such as Rothermel (1972) or Australian models that are designed for different 80 
fuel types and may or may not accept fuel loading as input (M. G. Cruz et al., 2015; Gould et al., 81 
2008). Although fire behavior models are useful in operational fire management, fuel 82 
arrangement, loading, and physical and chemical properties remain highly uncertain at large 83 
scales (Benali et al., 2017; Keane, 2013; Prichard et al., 2019). 84 

To address this uncertainty, process-based fire regime models have emerged for estimating how 85 
climate, fuels, and fire interact (e.g., LandClim; Gaillard et al., 2014, FireBGC; Keane et al., 86 
2011, and RHESSys-WMFire; Kennedy et al., 2017). Many of these models include litter as a 87 
component of the fine surface fuel load and litter dynamics play an important role in fire activity. 88 
Fire regime models are not designed to predict the path of specific fires but are a powerful tool 89 
for simulating the interactions and feedbacks controlling fire regimes through time (Keane et al., 90 
2004). Useful models must be able to resolve the mechanisms driving fine fuel succession—91 
including plant growth, litterfall, mortality, and decomposition—over space and time (Fig. 1; 92 
Agee and Huff, 1987). Fine fuel succession results from the balance between accumulation 93 
(productivity then phenology/mortality) and loss (combustion and decomposition), both of which 94 
are affected by climate change (Fig. 2). However, existing models include various 95 
simplifications that may lead to large uncertainties in fire regime projections.  96 

For process models to be reliable, they must be continually confronted with observations and 97 
empirical data, including data for parameterization, validation, evaluating uncertainty, and 98 
improving the way we represent various mechanisms. Empirical studies can help improve our 99 
representation of litter turnover but there are disconnects between our empirical understanding 100 
and ability to model processes over fire-relevant scales. These disconnects arise because 101 
empirical studies typically focus on individual scales and rarely account for feedbacks that occur 102 
across scales—such as the effects of climate change on the microbial processes regulating fine 103 
fuel decomposition, its subsequent effects on fire, and feedbacks to soil biogeochemical 104 
processes (Fig. 1). Understanding these complex climate-fuel-fire feedbacks is critical for earth 105 
systems models that forecast future fire regimes. 106 
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Although common wildfire behavior models only include fine wood in their calculations (e.g., 107 
Rothermel, 1972), most of our theoretical understanding of decomposition has focused on litter 108 
and soil organic matter (SOM) layers, with woody fuel decomposition either represented as a 109 
constant scalar (e.g., Keane, 2008; Rebain et al., 2009) or derived from theories and models 110 
developed for litter and SOM (Keane et al., 2011; C. L. Tague & Band, 2004). Understanding 111 
uncertainty in models of woody fuel dynamics therefore requires understanding current theories 112 
of litter decomposition.  113 

 114 

Figure 1: The parameters, processes, and state variables driving fire across spatial and 115 
temporal scales. This is an adaptation and extension of the conceptual figure developed by 116 
Moritz et al. (2005), which expanded the fire triangle concept to incorporate the feedbacks 117 
among fire drivers and processes at multiple scales, ranging from flames to fire regimes. 118 
Dominant drivers at each scale are identified along the sides of each triangle. Here we illustrate 119 
the processes and feedbacks that are directly relevant to fine fuel succession, which controls fuel 120 
dynamics represented by the small green triangles at each scale. We use the term O-horizon to 121 
refer to litter (Oi horizon) and duff (Oe and Oa horizons). 122 

In this paper, we: (1) review the current understanding of mechanisms controlling both litter and 123 
fine woody fuel succession (with respect to fuel inputs and decomposition) and the fundamental 124 
equations used to represent these mechanisms, (2) describe how these mechanisms are 125 
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incorporated into modeling systems that are used to investigate interactions among climate 126 
change, forest management, and future wildfire, and (3) evaluate the strengths and uncertainties 127 
associated with different approaches. We conclude with recommendations for future modeling 128 
and empirical research needed to improve forecasts of future fuel loadings, wildfire, and carbon 129 
retention.  130 

Capturing fuel and fire dynamics is critical for projecting land surface and Earth system 131 
processes in warmer, drier, more fireprone future. The goal of this review is to highlight fuel 132 
succession as a key uncertainty in current models. While the importance of fuel and vegetation 133 
succession and limitations to characterizing them in models has been acknowledged in the U.S., 134 
Australia, Mexico, and China (Fry et al., 2018a; Huang et al., 2021; Matthews et al., 2012; Zazali 135 
et al., 2020), here we use a subset of North American models to illustrate critical uncertainties 136 
that exist across the fire regime modeling domain. 137 

 138 

Figure 2: Bidirectional climate-fuel-fire feedbacks that occur across spatial and temporal 139 
scales.  140 

2 Mechanisms controlling fine fuel succession 141 

Here we define fine surface fuels broadly to include fine fuels (comprising plant litter and small 142 
twigs) and fine woody fuels (comprising woody fuels < 7.6 cm in diameter; Supplementary 143 
Table S1). Although most fire behavior models only include woody fuels in their calculations 144 
(Sullivan, 2007, 2009a,b), some fire regime models also include the entire fine fuel matrix (e.g., 145 
Kennedy et al., 2017). We define fine fuel succession as the balance between the input and 146 
removal of fuels (Fig. 2; Supplemental table S1). Fuel inputs are a function of vegetation 147 
productivity, turnover, and mortality, including background mortality and pulses of mortality due 148 
to disturbances. The classic Olson (1963) fuel accumulation model assumes that fuel succession 149 
is a function of the balance between the rate of fuel deposition and the rate at which it decays and 150 
represents this as a simple curve of fuel density over time. However, fuel loss can occur through 151 
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multiple processes including decomposition, combustion, erosion, and herbivory. In addition, 152 
wildfire can alter both accumulation and losses at multiple spatial and temporal scales and 153 
climate change may modify both processes of fuel accumulation (through vegetation 154 
productivity and mortality) and decomposition. 155 

While a great deal of progress has been made understanding and modeling the biophysical 156 
mechanisms controlling these processes, many uncertainties remain, and few studies have 157 
characterized how these uncertainties propagate into estimates of fine surface fuel loading, 158 
subsequent fire spread, and long-term carbon dynamics. Below we summarize our current 159 
understanding of the mechanisms controlling fine fuel succession. Harris et al. (2016) reviewed 160 
many of the vegetation processes controlling fuel loading and its effects on fire regimes. Here, 161 
we briefly describe some of these processes, and then focus particular attention on the role of 162 
fine fuel decomposition and the fundamental equations used to represent it. Most of these 163 
equations developed from studies of litter decomposition rather than in the context of fine 164 
surface fuels and fire. Decomposition is expected to accelerate under future warming (Hopkins et 165 
al., 2012), but its response to increasing temperature and drought remains highly uncertain.  166 

2.1. Dead fuel accumulation 167 

Vegetation type and climate regulate net primary productivity (NPP), litterfall, and mortality, 168 
which are the key processes driving fine surface fuel accumulation. Climate warming can 169 
increase NPP by increasing rates of photosynthesis (Y. Luo, 2007), lengthening the growing 170 
season (Sherry et al., 2007; Westerling et al., 2006), and increasing rates of nitrogen 171 
mineralization (Melillo et al., 1982; Xu & Yuan, 2017). However, temperature controls over 172 
NPP are also mediated through belowground resource availability, particularly water (Chapin et 173 
al., 2011). Thus, in arid and semiarid locations, rising temperatures can increase soil evaporation, 174 
aridity, and water limitation, thereby reducing NPP (Zhao et al., 2019). Temperature and 175 
moisture can also influence NPP indirectly through their effects on decomposition rates and 176 
nutrient supply.  177 

As vegetation grows, it loses foliage to the ground as litter. Branches and twigs are shed to 178 
contribute to fine and coarse woody fuels. Disturbances such as drought, insect outbreaks, 179 
windthrow, and fire can also contribute to mortality and litterfall. Dead vegetation eventually 180 
falls to the ground (e.g., snagfall; Everett et al., 1999) to form litter and fine and coarse woody 181 
debris (Johnson et al., 2020; Peterson et al., 2015; Stenzel et al., 2019). Ultimately, through 182 
conservation of mass, fuel accumulation is less than or equal to NPP.  183 

While modelers have made a great deal of progress in characterizing the mechanisms controlling 184 
photosynthesis and NPP, and how they are constrained by temperature, moisture, and nutrient 185 
availability (Farquhar & Von Caemmerer, 1982), some uncertainties remain. For example, it is 186 
not clear how NPP will respond to increasing atmospheric carbon dioxide (CO2) concentrations. 187 
Growth chamber experiments have shown photosynthesis can increase with increasing CO2 188 
(Drake et al., 1997), yet CO2 fertilization has had mixed effects among plant functional types in 189 
more natural, large-scale free-air CO2 enrichment experiments (FACE; Ainsworth and Long, 190 
2005). At large scales, and at sites with complex species assemblages, interactions between CO2 191 
fertilization and warming remain uncertain (Way et al., 2015). Because model projections of 192 
future fire regimes are highly sensitive to CO2 fertilization and its effects on NPP and fuel 193 
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loading (Ren et al. unpublished), modeling future fire requires improving our understanding of 194 
how atmospheric CO2 concentrations will affect NPP and fine surface fuel succession. 195 

2.2. Decomposition  196 

The balance between NPP and decomposition plays a key role in both fire behavior and C 197 
cycling over multiple spatial and temporal scales. Because even small changes in this balance 198 
can substantially alter atmospheric CO2 concentrations and global climate change, many studies 199 
have focused on how decomposition rates influence the net exchange of C between ecosystems 200 
and the atmosphere (net ecosystem exchange; NEE; e.g., Melillo et al., 1982; Schlesinger and 201 
Andrews, 2000; Kramer et al., 2017), or on how decomposition influences nutrient cycling and 202 
NPP (Lal, 2004). However, decomposition rates also play a key role in fine surface fuel loading, 203 
fire spread, and associated feedbacks with greenhouse gas fluxes. Thus, in addition to 204 
understanding the dynamics of old soil C stores and biogeochemical cycling, it is also crucial to 205 
understand how decomposition controls the residence time of fine surface fuels. Decomposition 206 
is controlled by three overarching factors: (1) environmental conditions, particularly temperature 207 
and moisture, (2) the amount and quality of substrate available for decomposers, and (3) 208 
microbial community structure and function (Melillo et al., 1982; Chapin et al., 2011).  209 

2.2.1. Temperature and moisture 210 

Physical environmental conditions in an ecosystem or landscape influence decomposition in 211 
large part through their effects on temperature and moisture. Therefore, wildfire modeling 212 
requires predicting future temperature and moisture regimes, not only for their direct effect on 213 
wildfire behavior and spread, but also how they will interact to drive fine fuel succession (Fig. 214 
1). These variables respond to both top-down climate drivers and bottom-up environmental 215 
drivers—such as topography, soil properties, and vegetation cover—and they influence 216 
decomposition both directly and indirectly.  217 

Temperature regulates decomposition directly through its effects on soil microbial activity and 218 
indirectly through its effects on litter and soil moisture. Increasing temperature increases 219 
microbial respiration rates exponentially across biomes. For example, in warm tropical forests, 220 
litter pools are small despite high rates of net primary productivity (NPP), whereas in temperate 221 
coniferous forests litter pools can be large even though NPP is much slower (Lieth, 1975; Chapin 222 
et al., 2011). Because temperature affects NPP and decomposition at different rates (Kirschbaum, 223 
1995), it is crucial to understand mechanistic relationships between warming and litter decay to 224 
accurately predict fine fuel succession. 225 

Traditionally, carbon cycling models have used empirically fitted temperature sensitivity 226 
functions (i.e., Q10) to describe how decomposition rates increase with warming (e.g., Luo et al., 227 
2001; Reichstein et al., 2003; Davidson et al., 2006). Q10 is a measure of the extent to which 228 
10°C rise in temperature increases the rate of a chemical reaction. However, fitting Q10 229 
functions to soil respiration data has yielded highly variable temperature sensitivities (Davidson 230 
et al., 2006). For example, Q10 can vary with season (Janssens & Pilegaard, 2003), soil organic 231 
matter content and quality (Reichstein et al., 2005), soil moisture (Meyer et al., 2018), land cover 232 
(Yuste et al., 2004), elevation (Wang et al., 2013), and latitude (Zhou et al., 2009). Modeling the 233 
effects of temperature on decomposition is extremely difficult, because these environmental 234 
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constraints can obscure the intrinsic temperature sensitivities of various substrates, and these 235 
constraints may themselves be sensitive to climate (Davidson & Janssens, 2006). 236 

One of the biggest constraints on decomposition is moisture availability. Similar to plants, 237 
decomposers are most productive in warm moist environments where they are neither oxygen 238 
nor diffusion-limited. However, soil microbes are less sensitive than plants are to drought 239 
(Austin, 2002; Hanan et al., 2017; Jackson et al., 1988; Parker & Schimel, 2011), and therefore, 240 
in some locations, warming and drying may decrease NPP and fine surface fuel inputs while 241 
increasing decomposition, thereby reducing fuel loadings and fire hazard. Furthermore, drying-242 
rewetting cycles may become more frequent with climate change and can stimulate 243 
decomposition of labile substrates while slowing rates for recalcitrant ones (Haynes, 1986).  244 

While there is a clear need to account for temperature and moisture variability into C cycling 245 
models, there are several uncertainties that still must be resolved for future projections to be 246 
reliable. For example, the extent of future drought remains highly uncertain (Cook et al., 2020). 247 
While it is clear that temperatures and evapotranspiration (ET) will continue to increase, future 248 
precipitation is less predictable and thus for ecosystems that exist near the threshold of 249 
flammability to fuel-limitation, improved projections of future aridity will be extremely valuable 250 
for predicting fire hazard (Hanan et al., 2021).  251 

Another limitation to modeling the effects of future aridity on decomposition comes from 252 
uncertainty in model structure. Models that represent moisture controls on decomposition tend to 253 
focus more on soil moisture than litter moisture. For example, in RHESSys-WMFire and 254 
FATES-SPITFIRE, the moisture controls influencing fine fuel decomposition are based on soil 255 
water content and soil matric potential, respectively (Andren & Paustian, 1987; C. L. Tague & 256 
Band, 2004), and the moisture controls influencing decomposition in LANDCLIM are a function 257 
of evapotranspiration (ET; Gaillard et al., 2014). However, these variables do not always operate 258 
on the same timescales as fine fuel moisture (Hatton et al., 1988). Although limited studies have 259 
assessed the mechanisms driving the adsorption of water by plant litter, Talhelm and Smith 260 
(2018) observed relationships between water adsorption and the structure and chemistry of leaf 261 
litter. Notably, it was shown that litter with high concentrations of heat content and lignin 262 
exhibited lower water adsorption (Talhelm & Smith, 2018). 263 

Finally, temperature and moisture can interact in complex ways, and these interactions may not 264 
be multiplicative, which can lead to possible equifinality when attempting to estimate their 265 
individual contributions through lab experiments (Tang & Riley, 2020). This is evident when 266 
comparing historical and future projections for different C cycling models. In many cases, C 267 
cycling models can have convergent projections over the historical period and highly divergent 268 
projections in the future (Z. Luo et al., 2015). We know this is problematic for slow cycling soil 269 
C stores, but it has not been tested extensively for litter/fine surface fuels. 270 

2.2.2. Litter quality  271 

At a given temperature and moisture regime, decomposition rates can vary by several orders of 272 
magnitude due to differences in litter quality (Silver & Miya, 2001). Litter quality refers to the 273 
relative proportions of labile metabolic compounds in litter stores, such as sugars, amino acids, 274 
moderately labile compounds such as cellulose and hemicellulose, and recalcitrant compounds 275 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 9 

such as lignin (Chapin et al., 2011). Two common indices for litter quality are its C:N ratio and 276 
its lignin:N ratio (Taylor, 1989). Litter with relatively high N tends to be composed of more 277 
labile C compounds and less structural material, and will therefore decompose more quickly 278 
(Hobbie, 2000; Melillo et al., 1982). Litter quality also decreases rapidly with age because labile 279 
materials decompose quickly. Belowground resource availability is a key factor influencing litter 280 
quality—vegetation in high resource sites produces litter that decomposes quickly because the 281 
physiological traits that lead to high NPP, such as high surface to volume ratio and low C:N, also 282 
tend to favor rapid decomposition.  283 

C cycling models represent decomposition as either (1) exponential decay, with a rate constant 284 
(k) that is fit empirically and associated with litter quality, or (2) as multiple sequential pools, 285 
that are increasingly recalcitrant. These approaches represent decomposition using first order 286 
kinetics (e.g., Running and Coughlan, 1988; Parton et al., 1998; Tague and Band, 2004; Nemani 287 
et al., 2005). A possible issue with both approaches is that they do not explicitly account for the 288 
role of microbes (Schimel, 2001). In other words, microbial decomposition processes are 289 
modeled using a single, first order equation that is controlled by the size of each C pool (e.g., 290 
Parton et al., 1987): 291 

(1) "#
"$
= 𝑘 ∗ 	𝑟* ∗ 𝑟+ ∗ 	𝐶  292 

In this equation, C is the size of a C pool, k is a first-order rate constant that is influenced by 293 
litter quality, and rm and rt are temperature and moisture scalars. In a multi-pool, first order 294 
model, each process has a single K value and a single set of temperature and moisture reducing 295 
functions.  296 

2.2.3. Microbial community 297 

In most biogeochemical models, decomposition is directly proportional to the size of the soil and 298 
litter C pools and includes rate coefficients that account for the effects of temperature, soil 299 
moisture, and litter quality (Georgiou et al., 2017). An implicit assumption in these first-order 300 
models is that the response functions do not change with the composition or size of the microbial 301 
community (Schimel, 2001). Research over recent decades, however, has shown that these 302 
assumptions can be problematic, particularly for slow cycling soil C pools, which can experience 303 
accelerated decomposition when inoculated with heterotrophic microbes (Z. Luo et al., 2015). 304 
First-order models are also potentially inadequate for representing processes such as priming, 305 
where the decomposition of soil organic C can be enhanced through plant root exudates or 306 
elevated CO2 concentrations that stimulate the heterotrophic microbial community (Hungate et 307 
al., 1997).  308 

More recently, models have attempted to capture the role of soil microbes in mediating 309 
decomposition and/or organic matter stabilization (e.g. Wieder et al., 2013; Kaiser et al., 2014; 310 
Hararuk et al., 2015) by explicitly representing enzymatic degradation of soil and litter C (i.e., 311 
through Michaelis Menten kinetics; Michaelis and Menton, 1913). In these models, 312 
decomposition rates depend on the sizes of both C and microbial pools. While such models may 313 
be needed to simulate decomposition of recalcitrant soil organic matter pools, they have not been 314 
tested in the context of fine surface fuels and wildfire. Furthermore, wildfire can dramatically 315 
reduce microbial biomass (e.g., Knicker, 2007; Hanan et al., 2016b, 2016a), and alter microbial 316 
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function and enzyme activity over decadal timescales (Pellegrini et al., 2020). These feedbacks 317 
are also poorly represented in biogeochemical models. 318 

3 Fuels and wildfire dynamics in land surface models 319 

In this paper, we are concerned with how the fundamental mechanisms outlined in the previous 320 
section are incorporated into modeling systems that are used in forest management and planning 321 
as well as investigating how climate change will alter future wildfire regimes. Fire models range 322 
in their complexity from simple empirical models that can be used to classify large scale fire 323 
regimes (e.g., Littell et al., 2018) to fully physical models that have the potential to predict 324 
individual wildfires with precision (e.g., Mell et al., 2007a). Our ability to understand how 325 
climate change will affect future fire regimes is one of the most pressing questions in forest and 326 
vegetation management, yet many of the existing models at all scales inadequately represent the 327 
full system of feedbacks and abiotic and biotic dynamics (Fig. 1). Models that do consider 328 
climate-fuel-fire feedbacks may not be adequately evaluated for their performance with respect 329 
to fine fuel succession and how it influences wildfire spread, behavior, and effects.  330 

3.1. Example models that do not incorporate climate-fuel feedbacks 331 

Empirical, retrospective studies have provided valuable insight into climate-wildfire 332 
relationships at regional scales (e.g., Guyette et al., 2012; Abatzoglou and Williams, 2016; 333 
McKenzie and Littell, 2017; Littell et al., 2018), but these models do not explicitly represent fuel 334 
dynamics. Therefore, projecting these relationships into the future implicitly assume that 335 
vegetation and fuels will be stationary. Because empirical models rely on pattern-matching and 336 
do not account for climate-fuel feedbacks, they have limited utility in projecting future wildfire 337 
under novel climate and fuel bed conditions (McKenzie & Perera, 2015).  338 

More complex models that rely on classical fire spread and behavior algorithms such as 339 
Rothermel (1972) typically classify the fuel bed into a stylized fuel model based on vegetation 340 
cover (e.g., Scott and Burgan, 2005). Stylized fuel models are not meant to precisely quantify 341 
fuels at a specific time or place, but instead provide exemplar fuel conditions for a given 342 
vegetation type. These fuel models provide the inputs needed for fire behavior models, which 343 
then predict fire behavior for a given fuel type. While it is possible for these classifications to be 344 
dynamic (e.g., depending on predicted stand conditions as in FFE-FVS; Rebain et al., 2009), 345 
stylized fuel models do not represent novel fuel beds that may arise from plant functional type 346 
conversions, climate change-driven changes in decomposition, or fuel treatments (Johnson et al., 347 
2011; Kennedy et al., 2021; Varner & Keyes, 2009), and they coarsen the known variability in 348 
fuel loading and structure (Prichard et al., 2019). In models that use stylized fuel layers, 349 
predicted fire behavior is relatively insensitive to changes in fuel loading that would result from 350 
dynamic changes in the fuel bed (Sandberg et al., 2007), including those that arise from 351 
uncertainty in decomposition rates (Kennedy et al., 2021) and their relationship with climate. 352 

3.2. Example models that do not incorporate fuel-fire feedbacks 353 

Various regional or landscape-scale process models have been used to simulate carbon exchange 354 
between the atmosphere and terrestrial ecosystems, and many of these models also include 355 
algorithms for prescribing fire effects (e.g., CENTURY/DAYCENT; Parton, 1996; Parton et al., 356 
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1998, BIOME-BGC; Nemani et al., 2005, and RHESSys; Tague and Band, 2004). However, in 357 
these model systems, fire may be parameterized as an exogenous driver and is not represented as 358 
an emergent property of the fuel landscape. Although these model systems provide a powerful 359 
framework for mechanistically simulating climate-vegetation feedbacks following fire, they do 360 
not include fuel-fire feedbacks that are needed to simulate decadal-scale fire regimes.  361 

For example, DAYCENT has been used to simulate how parameterized wildfires alter landscape 362 
biogeochemical processes (e.g., Gathany and Burke, 2012; Hudiburg et al., 2017). In these 363 
studies, the fire sub-model is parameterized to reduce C and N stores by a fraction that depends 364 
on a user-prescribed fire severity. Similarly, early implementation of wildfire in RHESSys 365 
involved simulating fires at fixed intervals and reducing C and N stores based on published 366 
estimates from empirical studies (e.g., Tague et al., 2009). In such applications, from the wildfire 367 
standpoint, fuels and climate are considered static even when vegetation and climate are 368 
dynamic. Other approaches involve initializing a watershed according to its fire history (Hanan 369 
et al., 2018) and/or prescribing a single wildfire at a set timepoint (e.g., Hanan et al., 2017). 370 
While these approaches are valuable for examining climate-vegetation feedbacks following fire, 371 
they would not be suitable for projecting future fire regimes because fire activity would not 372 
respond to changes in fuel loading associated with climate change or fuel self-limitation that 373 
results from increasing fire frequency (e.g., Hurteau et al., 2019).  374 

There are many models that do incorporate bidirectional couplings to represent climate-fuel-fire 375 
relationships, many of which are reviewed and classified by Keane et al. (2004). In these models, 376 
climate, vegetation, and dynamic fuels inform wildfire spread, behavior, and effects using 377 
varying degrees of abstraction for the system of feedbacks represented in Fig 1. Rather than 378 
giving an exhaustive review of these models, we will next focus on three models that have been 379 
used in fire regime projections (i.e. LandClim, FireBGCv2, and RHESSys-WMFire) and are 380 
representative of the types of models in use. We focus on how these models simulate fine fuel 381 
succession with particular emphasis on their representation of decomposition.  382 

3.2. Models that represent climate-fuel-wildfire feedbacks 383 

LandClim, FireBGCv2, and RHESSys-WMFire simulate how interacting ecosystem processes 384 
pertaining to climate, vegetation, soils, hydrology, and disturbance influence C fluxes (Gaillard 385 
et al., 2014; Keane et al., 2011; Kennedy et al., 2017). However, they differ in the set of 386 
processes they emphasize, and in the scales that they represent. LandClim is a spatially explicit, 387 
stochastic landscape model that developed from LANDIS to incorporate large-scale disturbances 388 
such as fire and feedbacks with climate change (Gaillard et al., 2014; He et al., 1999). LandClim 389 
represents stand scale (i.e., 25-m) vegetation as the number and biomass of trees in cohorts. 390 
Processes such as growth and mortality are simulated at an annual time step, and landscape-scale 391 
processes, such as fire, wind, and seed dispersal are simulated at a decadal time step (Gaillard et 392 
al., 2014).  393 

FireBGCv2 is adapted from BIOME-BGC to represent individual-tree-based succession and 394 
wildfire (Keane et al., 2011). FireBGCv2 operates at five distinct spatial scales, ranging from 395 
individual trees to entire landscapes and operates on a daily time-step. Physiological processes 396 
such as photosynthesis, respiration, and decomposition are calculated at the finest scales, 397 
whereas fire is implemented stochastically at a landscape scale.  398 
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RHESSys-WMFire is unique in that it fully couples the biogeochemical model with a hydrologic 399 
model to simulate processes such as streamflow, evapotranspiration, NPP, respiration, 400 
mineralization, nitrification, and C and N export to streams (C. L. Tague & Band, 2004). Most 401 
processes are modeled at a patch scale, which typically varies between 30-m and 270-m 402 
resolution. Subsurface and surface water are routed laterally between patches within sub-basins 403 
to produce streamflow. The largest spatial unit is the basin, which aggregates sub-basins and is a 404 
closed drainage area encompassing a single stream network. Like, FireBGCv2, RHESSys-405 
WMFire also operates at a daily timestep.  406 

These models also differ in the degree of complexity they use to represent fire. Both FireBGCv2 407 
and LandClim simulate ignition and spread based on moisture, wind, and topography, given fuel 408 
presence. FireBGCv2 scales the probability of spread by a user-specified fire return interval, 409 
which is a surrogate for fuel accumulation that does not respond to changing climate and 410 
vegetation conditions. Fire behavior in FireBGCv2 is based on either Rothermel (1972) or Albini 411 
(1976) equations, which depend on intrinsic fuel properties and on fuel loading of different size 412 
classes. Fire effects are calculated using the FOFEM model (Reinhardt et al., 2001). LandClim 413 
calculates fire intensity as function of fuel load and moisture (Schumacher et al., 2006). Fire size 414 
in both LandClim and FireBGCv2 is limited by a user-specified maximum. In such 415 
representations, the effects of fine fuel succession on wildfire area burned and feedbacks with 416 
wildfire activity would not be emergent from model projections. To demonstrate the potential for 417 
fire self-limitation on future area burned, Hurteau et al. (2019) used the Dynamic Fire Extension 418 
of LANDIS-II, which modifies the fire size distribution using climate and fire-related changes in 419 
biomass. They found that when accounting for fire self-limitation, projections of future area 420 
burned in the Sierra Nevada were moderated by 14.3 percent. 421 

RHESSys-WMFire produces fire spread maps over randomized ignitions and stochastic spread, 422 
providing probability distributions of fire activity over time. In addition to topography, wind, and 423 
climate (as in LandClim and FireBGCv.2), fire spread and effects also respond to dynamic 424 
changes in fuel loading (Bart et al., 2020; Kennedy et al., 2017), RHESSys-WMFire is therefore 425 
robust to climate non-stationarity and the positive and negative feedbacks that influence fuel 426 
dynamics fire regimes over time (Hanan et al., 2021). 427 

The models described above, and other common models such as FFE-FVS (Rebain et al., 2009) 428 
and FATES-SPITFIRE (Thonicke et al., 2010), are adaptations of existing models that were not 429 
originally developed to simulate wildfire regimes. There has not been detailed assessment or 430 
validation of their prediction of surface dead biomass, which can play an important role in 431 
projected wildfire activity. For example, Kennedy et al. (2021) found that predicted fuel 432 
succession in FFE-FVS is particularly sensitive to uncertainty in the underlying decomposition 433 
rate.  434 

Next, we compare the decomposition routines of LandClim, FireBGCv2, and RHESSys-WMFire 435 
and explore the sensitivity of these routines to simple changes in governing equations. We chose 436 
three models as examples of current state-of-the-art fire regime models, not to imply that these 437 
models are particularly problematic in this regard, but rather to illustrate potential uncertainties 438 
that occur in all models. We recognize that the results we present apply to many similar models 439 
of this type. Methods for the sensitivity analysis are detailed in Supplementary Text (Section S1). 440 
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4 Potential uncertainties in fine fuel loading due to climate-decomposition relationships 441 

As described above, decomposition depends on temperature, moisture, litter quality, and 442 
microbial communities in complex ways that may not be simply additive or multiplicative (Tang 443 
& Riley, 2020). In the process models outlined in the previous section, decomposition is 444 
calculated separately for litter and for fine and coarse woody fuels, although the routines for 445 
woody fuels may be adapted from the litter equations.  446 

Generally, the mathematical representation of changes to biomass decomposition is in the form 447 
of exponential decay with some exponential decomposition rate parameter (Equation 1). The 448 
models described above divide this into multiple conceptual pools, based on substrate quality, 449 
with varying linear decomposition rates (W. J. Parton et al., 1988). These models are updated on 450 
a discrete time step (e.g., daily or annually), rather than the continuous time model in Equation 1. 451 
The general form for a given pool would then be: 452 

(2) 𝐶-(𝑡 + 1) = 𝐶-(𝑡) − 𝐶-(𝑡)𝑟- 453 

Cj is the loading of fuel of a particular size class or pool, t is the time step (e.g., daily, annually) 454 
and rj is the decomposition rate for that fuel pool (k * rm* rT in Equation 1, for example). We will 455 
consider two sources of model uncertainty in this representation: parameter estimation 456 
uncertainty and model structure uncertainty.  457 

4.1 Woody fuel decomposition rate parameter uncertainty 458 

We use the LandClim equation for fine woody fuel decomposition to explore potential 459 
uncertainty in predicted decomposition rates due to uncertainty in parameter (coefficient) 460 
estimates. LandClim estimates the relationship between annual temperature and the annual rate 461 
of coarse wood decomposition (i.e., downed wood > 7.6 cm) based on Mackensen et al. (2003). 462 
In this study, the authors fit a curve to decomposition rates obtained across multiple studies in 463 
different locations: 464 

(3)  𝑟4 = 0.0166𝑒9.9:;+<  465 

In this equation rw is the rate of coarse wood decomposition and Ta is air temperature. To 466 
simulate fine wood (< 7.6 cm diameter) decomposition rates (rfw), LandClim assumes that fine 467 
wood decomposes at 5 times the rate of coarse wood (Schumacher et al., 2006). 468 

Each of the coefficients in the above expression are empirical (regression) estimates based on 469 
studies synthesizing multiple data sets, therefore each coefficient has an associated standard error 470 
and measures of unexplained variability. For example, the curve estimated in equation 3 471 
explained 34% of the variability in decomposition rate, and there was noticeable increasing 472 
variability in decomposition rate as temperature increased (Mackensen et al., 2003), which might 473 
be of particular concern in climate scenarios with increasing temperature. At the maximum 474 
temperature of 25 degrees C, observed decomposition rates for coarse wood varied from ~0 to 475 
~0.6. Given the fine wood multiplier of 5 in LandClim, this would propagate to decomposition 476 
rates of around 0 to 3.0. To explore the consequences of uncertainty in coefficient estimates on 477 
decomposition rates and fuel loadings, we conducted a simple sensitivity analysis (SA) by 478 
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systematically varying coefficient values in the underlying equations, decoupled from other 479 
model processes. Unfortunately, standard errors were not given in the source material, making it 480 
difficult to determine plausible bounds of uncertainty. We evaluated ranges of coefficients +/- 481 
33% of the empirical estimates and recorded both decomposition rate (Fig. 3) and percent of 482 
initial fuel loading remaining assuming no fuel inputs (Fig. 4). 483 

Given that the relationship between temperature and fine woody fuel decomposition rate is 484 
exponential, the sensitivity of that relationship to the exponent must also be non-linear (Fig. 3; 485 
Supplementary Text; S1), as is the effect on future woody fuel loading (Fig. 4). The sensitivity of 486 
decomposition rate to model coefficients increases with increasing temperature, with the widest 487 
uncertainty bounds at the highest temperature. Note also that there is no moisture effect on 488 
decomposition rate in these calculations, although the source material showed a clear peak in 489 
decomposition at middle values of precipitation (Mackensen et al., 2003). 490 

491 
Figure 3: Sensitivity of LandClim annual fine woody fuel decomposition rates to the parameter 492 
values in equation (3). The middle line is the hard-coded value in the model. The upper and 493 
lower lines illustrate how projected decomposition rates might vary if the components of the 494 
multiplication coefficient each increased or decreased by 33%. Model sensitivity to parameter 495 
uncertainty increases with increasing temperature. 496 

 497 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 15 

498 
Figure 4: Sensitivity of LandClim percent of fine woody fuel remaining at year 10 to the 499 
coefficient values in equation (2). The middle line is the hard-coded value in the model. The 500 
upper and lower lines illustrate how projected decomposition rates might vary if the components 501 
of the multiplication coefficient each increased or decreased by 33%. Model sensitivity to 502 
parameter uncertainty increases with increasing temperature. 503 

4.2 Sensitivity of decomposition rate to model structure 504 

Next, we consider how models of litter decomposition are sensitive to model structure 505 
uncertainty. For models such as FireBGCv2 and RHESSys-WMFire, woody fuel loss is 506 
calculated based on the same underlying model structure as litter decomposition (Keane et al., 507 
2011; C. L. Tague & Band, 2004), therefore any uncertainty in litter decomposition would 508 
propagate to uncertainty in woody fuel loss.  509 

In this analysis, we consider decomposition parameter values to be fixed and compare the 510 
calculated litter decomposition rates among three model structures for a given stand moisture and 511 
temperature condition. We used RHESSys-WMFire to simulate a single patch the Trail Creek 512 
watershed in middle Rockies (Hanan et al., 2021) over the years 1980-2018 and output the 513 
characteristics necessary to calculate litter decomposition rates for three different model 514 
structures: LandClim (using actual evapotranspiration), FireBGCv2 (using soil temperature and 515 
soil water potential), RHESSys-WMFire (using soil temperature and soil water content; see 516 
Appendix S1 for details). We then calculated litter loss as a function of the decomposition rates 517 
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for the three models, investigated how sensitive modeled decomposition rates are to changes in 518 
precipitation and mean soil temperature, and compared decomposition rates between models 519 
with changes in temperature and precipitation (Supplementary Text; S1). We also investigated 520 
how these comparisons changed when we increased average daily temperature by degrees C 521 
uniformly over the simulation period.  522 

Calculation of litter decomposition rate in LandClim is achieved using an empirical regression 523 
equation estimated by Meentemeyer (1978) using data from multiple sources to estimate general 524 
relationships between foliage litter decomposition rate (rl), annual actual evapotranspiration 525 
(AET), and percent lignin. The best fit synthesis model for foliage litter decomposition rate 526 
explained 70% of the variability and included AET as a main effect and an interaction between 527 
AET and lignin (represented by the ratio AET/lignin): 528 

(4) 𝑟= =
>?.;?;@:A9.9B;B9∗CD+A9.?EFGH∗ IJK

LMNOMO

?99
    529 

FireBGCv2 (Keane et al., 2011) merges Biome-BGC (Running & Coughlan, 1988) 530 
biogeochemical processes with the FIRESUM (Keane et al., 1989) gap model. Litter 531 
decomposition rate is calculated as in Biome-BGC (Thornton, 1998), using a moisture and a 532 
temperature scalar. The moisture scalar (rm.soilP) depends on the soil water potential (𝜓) relative 533 
to the range of possible soil water potentials (min, max): 534 

(5) 𝑟Q.RST=U =
=V	W
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    535 

The temperature scalar (rT) depends non-linearly on the soil temperature (Tsoil): 536 

(6) 𝑟+ = 𝑒
;9E.B@∗\ ]
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 537 

These multipliers are combined into a moisture * temperature decomposition rate scalar: 538 

(7) 𝑟Rhi=ij = 𝑟Q.RST=U ∗ 𝑟+ 539 

For litter, this rate scalar is modified by litter pool according to additional scalars for the labile 540 
(kl1), cellulose (kl2), or lignin (kl4) pools (k in equation 1). The final decomposition rate for each 541 
litter pool is then: 542 

(8) 𝑟=T = 𝑘𝑙T ∗ 𝑟Rhi=ij 543 

RHESSys-WMFire litter decomposition is similar to that for FIREBGC. RHESSys-WMFire uses 544 
the same temperature multiplier as above (equation 5), but instead the moisture scalar (rm.soilW) 545 
has been modified to follow the NGAS model (W. J. Parton et al., 1996).  546 

(9) 𝑟*.RST=l = mWn>o
i>o

Z
"Wpf<<fqZ Wn>h

i>h
Z
"
 547 
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Where 𝜃 is soil water content. RHESSys-WMFire also includes a third scalar to represent 548 
nitrogen limitation by calculating the fraction of potential nitrogen mobilization (f; Tague and 549 
Band, 2004), so that the final decomposition scalar is: 550 

(10) 𝑟Rhi=ijs = 𝑟*.RST=l𝑟+𝑓 551 

The final decomposition rate is then calculated as above in equation 8 using the same kl scalars 552 
for each pool.  553 

Litter decomposition in FireBGCv2 and RHESSys-WMFire is calculated on a daily timestep, 554 
whereas in LandClim it is calculated on an annual time step, resulting in a scale mismatch when 555 
comparing decomposition rates. To compare model structures on the same scale, we converted 556 
annual to daily decomposition rate using a mass balance approach (Supplementary Text; S1).  557 

We found large differences in decomposition rates and litter losses among the three model 558 
structures, indicating substantial uncertainty in predicting litter loading (Fig. 5). RHESSys-559 
WMFire decomposition rate is less sensitive to water limitation than the other two models (Fig. 560 
6), as indicated by its flat relationship with precipitation (Fig. 7). While its water scalar increases 561 
with precipitation, that relationship is flat relative to the relationship between precipitation and 562 
the FireBGCv2 water scalar (slopes of 0.03 and 0.08, respectively).  563 

The RHESSys decomposition rate is more sensitive to temperature, whereas the FireBGCv2 564 
decomposition rate is more sensitive to precipitation (Fig. 7). Although both models have the 565 
same temperature scalar (equation 6), it is clear that the FireBGCv2 moisture scalar (equation 5) 566 
results in a stronger moisture limitation than the RHESSys moisture scalar (equation 7; Fig. 8). 567 
At low moisture availability, the decomposition rate for RHESSys-WMFire is much higher than 568 
that for FireBGCv2, but that gap narrows within increasing precipitation (Fig. 7). The stronger 569 
moisture limitation in FireBGCv2 seems to mask any additional temperature limitation relative 570 
to that exhibited by RHESSys.  571 

The RHESSys-WMFire water scalar is less sensitive to precipitation than the water scaler in 572 
FireBGCv2. In RHESSys-WMFire the daily water scaler varies between approximately 0.4 and 1 573 
and increases with annual precipitation. In FireBGCv2, the daily water scalar varies between 0 574 
and 1 and increases with annual precipitation. Neither water scalar is influenced by temperature. 575 
Given these differences, at low moisture availability, the decomposition rate for RHESSys-576 
WMFire is much higher than that for FireBGCv2, but that gap narrows within increasing 577 
precipitation (Fig. 7).  578 

For both RHESSys-WMFire and FireBGCv2, the difference in decomposition rate with 579 
LandClim increases as temperature increases (Fig. 7). The difference decreases slightly with 580 
precipitation. Comparisons between RHESSys-WMFire and LandClim and FireBGCv2 and 581 
LandClim reflect the lack of direct temperature effects on litter decomposition in LandClim. 582 
Because LandClim only includes AET and lignin as controls on decomposition, temperature 583 
effects on decomposition only occur indirectly through their effects on decomposition. 584 
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 585 

Figure 5: Daily decomposition rate among the three model structures: LandClim, FireBGCv2, 586 
and RHESSys-WMFire (top panels) under historical (left) and +3 degrees warming scenarios 587 
(right). Precipitation and temperature inputs used to drive the sensitivity analyses are shown in 588 
the middle and bottom panels, respectively. 589 

 590 

Figure 6: Litter mass loss among the three model structures: LandClim, FireBGCv2, and 591 
RHESSys-WMFire (top panels) under historical (left) and +3 degrees warming scenarios (right). 592 
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 593 

Figure 7: Comparisons between model decomposition rates in response to temperature (left) and 594 
precipitation (right), with least squares regression lines shown for each model. The 595 
decomposition rate is calculated over an 81-year simulation and each dot represents 1 596 
simulation year. 597 

5 Discussion 598 

As Earth’s climate continues to change, we need insights from both experiments and models to 599 
understand how fine surface fuel loading and its properties will vary over space and time, and 600 
how they will affect fire behavior and fire regimes. There are a vast number of fire models in 601 
existence, including empirical, mechanistic, stochastic, and various combinations of the three 602 
(Reinhardt et al., 2001; Sullivan, 2007, 2009a,b). These models are designed to target different 603 
spatial and temporal scales of fire forecasting, ranging from the physics of individual flames to 604 
fire regimes (Fig. 1; Keane et al., 2004; Harris et al., 2016).  605 

Fire regime models use detail that matches land surface and/or Earth system models and 606 
therefore represent average conditions rather than individual fire behavior (McKenzie & Perera, 607 
2015). Such models include mechanistic representations of fuel moisture and fuel loading, which 608 
support applications under climate change scenarios. However, there are large uncertainties in 609 
how these models represent fine fuel succession. 610 

Here we examined two types model of uncertainty (parameter, and model structure) in three 611 
state-of-the-art fire regime models (LandClim, FireBGCv2, and RHESSys). We found that the 612 
sensitivity of projected decomposition to both types of uncertainty increases with climate 613 
warming and decreases with increasing precipitation (Figs. 3, 4, 8). These two drivers can also 614 
interact to influence both parameter and model structural uncertainty. The sensitivity of 615 
decomposition to model structure is highest at high temperature and low precipitation (i.e., under 616 
climate change scenarios; Fig. 7). In FireBGCv2 and RHESSys-WMFire sensitivity relating to 617 
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temperature and precipitation can also interact. In LandClim, on the other hand, temperature is 618 
not included as a direct driver of decomposition, and therefore differences in decomposition 619 
projections between LandClim and other models also increase with warming. 620 

 621 

Figure 8: Comparison of the distribution of daily (left) and annual (right) decomposition rate 622 
(top) and moisture scalar (bottom) values (rm.soilP, rm.soilW) between RHESSys-WMFire and 623 
FireBGCv2. FireBGCv2 tends to have much lower values for the moisture scalar with more 624 
variability, indicating greater sensitivity to moisture limitation than in RHESSys. 625 

Previous studies focused on SOM pools have found that the temperature and moisture 626 
sensitivities of decomposition can vary over space and time, interact in complex ways, and these 627 
interactions may not be multiplicative (Dijkstra et al., 2011; Steinweg et al., 2008). This can lead 628 

0.000

0.005

0.010

0.015

0.020

RHESSys−WMFire FireBGCv2

D
ec

om
po

si
tio

n 
ra

te
 

(fr
ac

tio
n 

of
 C

 lo
st

 p
er

 d
ay

)

Daily moisture as input
A.

0.000

0.005

0.010

0.015

0.020

RHESSys−WMFire FireBGCv2

D
ec

om
po

si
tio

n 
ra

te
 

(fr
ac

tio
n 

of
 C

 lo
st

 p
er

 d
ay

)

Annual mean moisture as input
B.

0.00

0.25

0.50

0.75

1.00

RHESSys−WMFire FireBGCv2

Model type

M
oi

st
ur

e 
sc

al
ar

C.

0.00

0.25

0.50

0.75

1.00

RHESSys−WMFire FireBGCv2

Model type

M
oi

st
ur

e 
sc

al
ar

D.



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 21 

to possible equifinality (i.e., that a given end state can be reached by multiple paths) when 629 
developing model structure and parameterizations from lab experiments (Tang and Riley 2020), 630 
which is problematic when projecting future fire regimes under novel climates. As 631 
biogeochemical models are expanded to include evaluation of both wildfire regimes and wildfire 632 
effects on landscape processes, then assessment of the prediction of fine surface fuel loading and 633 
how dynamic fuel properties are represented in wildfire simulation becomes essential.  634 

Another source of uncertainty comes from the representation of fuels themselves. For example, 635 
fire models that managers use for forest planning (e.g., Rothermel, 1972) only include the woody 636 
fuels. A prevailing challenge is that woody fuel decomposition and the interactions with fire are 637 
not well studied (J. C. Hyde et al., 2011; J. D. Hyde et al., 2012), in part because measuring mass 638 
loss of coarse woody fuels can be challenging (Fry et al., 2018b). When woody fuel 639 
decomposition is incorporated in models, it is often based on a constant value (e.g., FFE-FVS; 640 
Rebain et al., 2009), or a value adapted from litter models (e.g., FireBGCv2; Keane et al., 2011). 641 
Thus, in many models, uncertainty in decomposition rate propagates to uncertainty in the more 642 
“management-relevant” fuel layers.  643 

Other challenges that arise with modeling climate-fuel-fire feedbacks include the incorporation 644 
of processes such as snag-fall decomposition (Stenzel et al., 2019) and delayed litterfall from 645 
scorched trees that otherwise survive fires (Espinosa et al., 2018; Keane, 2008). Therefore, to 646 
improve fire management in the future, we need to not only improve our models of litter 647 
decomposition, we also must develop better theories and models for the controls on fine woody 648 
decomposition. 649 

5.2. Recommendations for future empirical and modeling research 650 

Process-based fire regime models provide an opportunity to account for feedbacks among 651 
climate, fuels, and wildfire (Fig. 1), which enables us to evaluate how fire regimes and fire 652 
effects will be transformed in response to climate change and management actions. However, to 653 
appropriately account for such feedbacks we need to evaluate and improve our understanding of 654 
the fundamental processes and parameters we use to simulate fine fuel succession. We described 655 
several uncertainties in model structure and parameters used to represent decomposition, which 656 
may lead to large uncertainties in projecting future fire under climate change. To refine our 657 
modeling approaches, future research should (1) implement long term monitoring studies of fine 658 
fuel succession and compare model predictions to observed, (2) quantify and understand fuel 659 
succession-related parameter and model structural uncertainty, and (3) consider fuel dynamics 660 
and feedbacks when assessing climate-wildfire relationships. 661 

Even though decomposition is a key component of landscape, regional and global C budgets, 662 
litter decomposition in land surface and Earth system models has not been thoroughly evaluated 663 
and most studies have focused on soil organic C stores rather than fine surface fuels (i.e., litter). 664 
To address this, Bonan et al. (2013) developed the long-term intersite decomposition experiment 665 
(LIDET; Bonan et al., 2013), which provided a 10-year study of litter decomposition at multiple 666 
locations across North and Central America. They used data collected at these sites to constrain 667 
temperature and moisture effects on decomposition in the community land model version 4 668 
(CLM4; Lawrence et al., 2012), and found that simulated carbon loss was more rapid than the 669 
observations across all sites. The large discrepancies between the laboratory microcosm studies 670 
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used to parameterize the CLM4 litter decomposition and the LIDET field study likely resulted 671 
from poorly constrained temperature, moisture, and nitrogen controls (Bonan et al., 2013).  672 

While this long-term study provides valuable in-situ benchmarks for improving our process 673 
representation in models, it does not necessarily account for feedbacks between fire and fuel 674 
decomposition dynamics. Penman and York (2010) used a 22-year dataset to examine the 675 
relative influence of climate and fire history on rates of litterfall, decomposition, and fuel 676 
loading, in a coastal Eucalypt forest in south-eastern Australia and found that litterfall and 677 
decomposition were both influenced by temperature, recent rainfall, and fire history. However, 678 
such feedbacks are not currently well-understood or represented in models. While these studies 679 
are extremely valuable for evaluating and improving models, they are relatively rare—we need 680 
many more long-term decomposition studies across climates and fire regimes to better evaluate 681 
and improve our mechanistic representation of fine fuel succession in biogeochemical models—682 
this must include studies of both litter and fine woody fuel decomposition. 683 

In many respects, these long-term decomposition studies could follow the ‘body farm’ design 684 
(Bass et al., 2004), where examples of woody debris and litter from different species commonly 685 
found in a given fire regime are tracked over the long-term with associated factors such as fire 686 
intensity, microclimate variabilities, aspect, etc. (e.g., Cornelissen et al., 2017; Trettin et al., 687 
2021). Ideally, these sites should be adjacent to sites where long-term data relevant to fires and 688 
ecosystems are also being collected, such as National Ecological Observatory Network, Critical 689 
Zone Observatory, Long Term Ecological Research Network, or the Smithsonian Forest Global 690 
Earth Observatory (ForestGEO) locations. 691 

In addition, future research should consider fuel dynamics and feedbacks when assessing 692 
climate-wildfire relationships. Decomposition and fire have typically been studied separately, 693 
even though they can strongly interact (Cornelissen et al., 2017; J. C. Hyde et al., 2011). For 694 
example, repeated, low-intensity fires can reduce microbial CO2 respiration rates and 695 
extracellular enzyme activity in coniferous forests, which may promote mineral soil C storage 696 
(Pellegrini et al., 2021). Additionally, decomposition is highly sensitive to nutrient availability 697 
and prescribed burning can deplete N and P litter stoichiometry, further slowing litter decay 698 
(Butler et al., 2019). However, such feedbacks are not well-represented in land surface models, 699 
which may cause us to overestimate decomposition in areas that experience increasing fire 700 
frequency or severity.  701 

Results from these recent studies suggest that uncertainties associated with existing model 702 
structure and parameters must be thoroughly documented. Given that many of the governing 703 
decomposition equations are hard-coded in models and often based on individual case studies 704 
from a single location, a great deal of model structural uncertainty is currently ignored and 705 
difficult to characterize. To understand future climate-fuel-fire feedbacks, it is essential to be 706 
transparent about what model choices are being made, the reasons for those choices, and the 707 
associated uncertainty. This is particularly critical as the domain of biogeochemical models is 708 
expanded to include evaluation of future wildfire regimes, wildfire effects, and how we can 709 
mitigate the effects of climate change on wildfire through management.  710 

 711 
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