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Abstract

A nonlinear, time-dependent model for an equivalent-barotropic flow
1s examined. The model 1s solved numerically to investigate the
equivalent-barotropic dynamics of experimental and observational ex-
amples 1n comparison with a purely barotropic flow.

Some antecedents

The motion of an equivalent-barotropic flow varies in magnitude at dif-
ferent vertical levels while keeping the same direction. The governing
equations at a specific level are identical to those of a homogeneous
flow over an equivalent depth, determined by a pre-defined vertical
structure. The 1dea was proposed by Charney (1949) [1] for modelling
a barotropic atmosphere. More recently, steady, linear formulations
have been used to study oceanic flows, especially the Antarctic Cir-
cumpolar Current [2,3].

1 Physical model

Quasi-2D, shallow-water flow on a S-plane with fluid depth (A, y), ve-
locity (v, w) and vertical structure P(z) [4]:
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where subindex s indicates surface values. Vertical scales:
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Horizontal velocity components in terms of transport function:
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Vertical velocity:
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In this study P(z) is exponential with reference depth z:

P(z) = ez/zo, (5)

Vorticity equation including wind-stress forcing 7 and bottom friction
with coefficient R:
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Error in the nonlinear terms associated with separation (1):
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2 Simulations of vortices around seamounts

e Strongly nonlinear, cyclonic vortices, f-plane (rotation period 1" =
30 s), no external forcing.

e Comparison with laboratory experiments with barotropic vortices
performed 1n the Coriolis platform (Grenoble, France) [3].

e Aim: to illustrate how the vortex drift 1s modified according to z
(i.e. the effect of the vertical structure).
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Figure 1: (a) Topography contours of a Gaussian mountain in a fluid with maximum
depth H. (b) Equivalent depth profiles F'(xz,0)/H calculated for different z.
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Figure 2: Vertical velocity profile for z;/H = 0.8. Left: Flow with vertical structure
P(z) and depth h(x,y). Right: Uniform flow with depth F(x,y). The surface flow in
both cases 1s exactly the same.

The homogeneous vortex (panel a) drifts around the mountain in a
clockwise direction, and negative vorticity 1s formed over the summit
due to squeezing effects of fluid columns. As zy decreases the turns are
reduced (b-c). For the lowest z( the flow 1s nearly 2D (panel d).
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Figure 3: Relative vorticity wy(x,y) at /T = 31.5 in simulations with different 2.

3 Vortex generation in the Gulf of Mexico

The Campeche cyclone 1s a semi-permanent mesoscale circulation 1n
the southern Gulf of Mexico (Fig. 4). According to averaged current-
meter measurements along the water column, it 1s one of the few
oceanic systems that presents a barotropic vertical structure [6]. The
generation of the cyclone under the equivalent-barotropic dynamics 1s
examined.
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Figure 4: (a) Velocity field in the western Gulf of Mexico calculated from 441 sur-
face drifters during a 7-year period [7]. Maximum value: 0.4 m/s. (b) Kinetic energy
per geographical bin (0.25°)

3.1 Simulations using realistic topography

e Western jet-like wind-stress applied over regions with A > 200 m
(flow over the shelves 1s minimized).
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e Flow starts from rest on a 3 plane. A smoothed realistic topography
is used. Geostrophic contours: f(y)/F(x,y).

e Aim: to investigate whether the formation of a cyclone at the Bay of
Campeche 1s compatible with the equivalent-barotropic dynamics.

The homogeneous and quasi-homogeneous cases (Figs. 5a-c) develop
a basin-scale anticyclonic circulation, with no signs of a southern cy-
clone. For zj = 1000 m, a cyclonic vortex 1s formed (d).
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Figure 5: Transport function at day 90 for different z;. Gray arrows at the eastern
side represent the westward wind-stress. Black lines indicate the coast and the 200

m isobath. White curves are (fy + Sy)/F(x,y) contours
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3.2 Case with zg = 650 m

According to mooring observations [6], the average vertical structure
in some regions of the Campeche bay i1s exponential with reference
depth zp = 650 m. The simulation 1n Fig. 6 displays a cyclonic vortex
at the Campeche bay confined by the f/F' contours. The maximum
speed 1s 0.14 m/s (in the observations by [6] 1s 0.36 m/s).
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Figure 6: (a) Transport function at day 90 for z; = 650 m. Black curves are to-
pography contours. (b) Velocity field over the Bay of Campeche. The rms speed is
U = 0.021 m/s. White contours as in previous figure.

Conclusions 1: the model

e A time-dependent, non-linear equivalent-barotropic model 1s dis-
cussed for studying the effects of variable bottom topography in
oceanic flows. The model simulates the vertical structure of strat-
ified flow while maintaining a barotropic character.

e We used an exponential vertical structure P(z), but the formulation
admits more general cases as long as

P(0) = 1
P(z) >0 —-h<z<0 (8)

e The error (6) grows for very abrupt P(z).

e Topographic effects are decoupled from the upper region for z5 <<
h (equivalent depth is smoothed and bottom friction reduced).

Conclusions 2,3: the simulations

e The simulations reproduce experimental results of strongly nonlin-
ear vortices in the extreme cases zy >> h (Fig. 3a) and z5 << h,
i.e. nearly 2D (Fig. 3d). Thus, the intermediate cases (b-c) are
“validated”.

e The model is a useful tool to better understand the formation of an
oceanic structure (Fig. 6) under the barotropic dynamics with a ver-
tical structure.

Forthcoming research concerns the use of time-dependent, random
forcing together with a large-scale wind in the Campeche cyclone prob-
lem. The aim 1s to 1dentify the prevalence or absence of the cyclonic
pattern under different physical conditions.
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