
Shear-driven formation of olivine veins by dehydration of ductile ser-
pentinite: a numerical study with implications for transient weaken-
ing

Stefan M. Schmalholz1, Evangelos Moulas2, Ludovic Räss3,4 and Oth-
mar Müntener1

1Institute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzer-
land
2Institut of Geosciences and Mainz Institute of Multiscale Modeling (M3ODEL),
Johannes Gutenberg University of Mainz, Germany
3 Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich,
Zurich, Switzerland
4Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Bir-
mensdorf, Switzerland

Email, corresponding author: Stefan Schmalholz (stefan.schmalholz@unil.ch)

Evangelos Moulas: evmoulas@uni-mainz.de; Ludovic Räss: luraess@ethz.ch;

Othmar Müntener: Othmar.Muntener@unil.ch

Key points:

• During viscous simple-shearing of serpentinite, en-échelon olivine veins
form by dehydration and grow in direction parallel to compression

• Vein formation is a self-limiting process and kinetic reaction rate must be
faster than fluid-pressure diffusion rate to form olivine

• Porosity evolution is controlled by three mechanisms: volume change, tem-
poral solid density variation and reactive mass transfer

Abstract

Serpentinite subduction and the associated formation of dehydration veins is
important for subduction zone dynamics and water cycling. Field observations
suggest that en-échelon olivine veins in serpentinite mylonites formed by dehy-
dration during simultaneous shearing of ductile serpentinite. Here, we test a hy-
pothesis of shear-driven formation of dehydration veins with a two-dimensional
hydro-mechanical-chemical numerical model. We consider the reaction antig-
orite + brucite = forsterite + water. Shearing is viscous and the shear viscosity
decreases exponentially with porosity. The total and fluid pressures are ini-
tially homogeneous and in the antigorite stability field. Initial perturbations in
porosity, and hence viscosity, cause fluid pressure perturbations. Dehydration
nucleates where the fluid pressure decreases locally below the thermodynamic
pressure defining the reaction boundary. Dehydration veins grow during pro-
gressive simple-shearing in a direction parallel to the maximum principal stress,
without involving fracturing. The porosity evolution associated with dehydra-
tion reactions is controlled to approximately equal parts by three mechanisms:
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volumetric deformation, solid density variation and reactive mass transfer. The
temporal evolution of dehydration veins is controlled by three characteristic
time scales for shearing, mineral-reaction kinetics and fluid-pressure diffusion.
The modelled vein formation is self-limiting and slows down due to fluid flow de-
creasing fluid pressure gradients. Mineral-reaction kinetics must be significantly
faster than fluid-pressure diffusion to generate forsterite during vein formation.
The self-limiting feature can explain the natural observation of many, small
olivine veins and the absence of few, large veins. We further discuss implica-
tions for transient weakening during metamorphism and episodic tremor and
slow-slip in subduction zones.

Plain language summary

Serpentinite is a rock that contains water which is bound within the crystal lat-
tice. When serpentinite is plunging together with tectonic plates into the Earth
mantle, the changing pressure and temperature conditions cause chemical re-
actions which releases the water bound in the crystal lattice; a process called
dehydration. A typical mineral that forms by dehydration is olivine. Dehydra-
tion is important for the global water cycle, since much water is transferred with
tectonic plates into the mantle and is migrating back to the Earth surface after
dehydration. However, many aspects of the water cycle remain still unclear,
since dehydration during plunging of tectonic plates involves the incompletely
understood interaction of three fundamental mechanical and chemical processes:
mechanical deformation of the rock, porous flow of released fluid and chemical
reactions involving changes in rock density. Here, we present a new mathemat-
ical model to investigate the coupled processes of rock deformation, fluid flow
and dehydration reactions. We present computer simulations which can explain
why the dehydration occurs in narrow and elongated regions which are termed
veins. We propose that our simulations could explain the observation of many
small olivine veins in strongly sheared serpentinite.

1. Introduction

The dehydration of serpentinite at subduction zones is an important process for
the global water cycle (e.g., Peacock, 1990; Pettke and Bretscher, 2022; Ulmer
and Trommsdorff, 1995; Rupke et al., 2004), for the dynamics and seismicity
at subduction zones (e.g., Bloch et al., 2018; Hacker et al., 2003) or for arc
magmatism due to hydration of the mantle wedge (e.g., Hebert et al., 2009; John
et al., 2012). More generally, the interaction of mineral reactions, fluid flow and
rock deformation is important for a variety of geodynamic processes, such as
chemical and volatile cycling (e.g., Bebout, 2014) or reaction-induced weakening
of faults and shear zones (e.g., Labrousse et al., 2010; Sulem and Famin, 2009),
as well as for practical applications such as natural carbon storage (e.g., Matter
and Kelemen, 2009) or geothermal energy exploitation (e.g., Pandey et al., 2018).
However, many aspects of the coupling of mineral reactions, fluid flow and rock
deformation are still unclear.

Indirect observations that have been attributed to serpentinite dehydration at
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subduction zones are aseismic episodic tremor and slow-slip (ETS) phenomena
(e.g., Burlini et al., 2009; Tarling et al. 2019). These phenomena are commonly
thought to result from episodic fault slip, likely facilitated or promoted by pulses
of fluid release associated with fluid pressure variations (e.g., Audet et al., 2009;
Connolly, 1997; Frank et al., 2015; Gomberg et al., 2010; Shelly et al., 2006;
Taetz et al., 2018). For example, such slow-slip occurs on the plate interface in
Cascadia at 30 to 40 km depth (e.g., Gomberg et al., 2010) and for temperatures
probably between 400 and 500 °C (e.g., Tarling et al., 2019 and references
therein). However, how the dehydration reaction, the associated fluid release
and the volumetric and shear deformation of the involved rocks are coupled and
actually cause the episodic slow-slip phenomena remains elusive.

Direct observation of the dehydration of serpentinite at subduction zones is not
possible in nature. However, field observations in areas with abundant exposed
serpentinites at variable pressure and temperature may provide insight into in-
cipient dehydration stages. In the European Alps, exposed serpentinites, which
experienced variable peak pressures and temperatures, are abundant in many
regions. Examples are the serpentinites of Saas Zermatt (Western Alps) or of
the Erro-Tobbio unit (Voltri massif, Ligurian Alps, Italy; e.g., Hermann et al.,
2000; Peters et al., 2020; Plümper et al., 2017; Scambelluri et al. 1991, Scam-
belluri et al., 1995; Kempf et al., 2020). These serpentinite bearing regions
are key areas that preserve ductile and brittle structures that are related to
fluid release. The serpentinites of the Erro-Tobbio unit exhibit olivine-bearing
veins and the metamorphic olivine most likely results from the breakdown of
antigorite and brucite (Fig. 1; e.g., Hermann et al., 2000; Plümper et al., 2017;
Scambelluri et al., 2004). The olivine veins occur in two settings: as minimally
deformed veins within little deformed, variably serpentinized peridotite and as
deformed veins within strongly deformed antigorite serpentinite, described as a
serpentinite mylonite (Fig. 1; e.g., Hermann et al., 2000; Plümper et al., 2017).
These serpentinite mylonites are cut by en-échelon olivine veins, which in turn
are dissected by multiple sets of olivine-bearing shear bands (Hermann et al.,
2000). Plümper et al. (2017) suggest that the association of undeformed and
sheared veins attests that dehydration-induced vein formation was synchronous
with ductile deformation in the enclosing serpentinite mylonites. Furthermore,
Hermann et al. (2000) hypothesize that (i) multiple sets of olivine shear bands
provide evidence for continuous deformation, (ii) sheared olivine-rich veins are
probably very weak due to continuous solution and precipitation in the presence
of a fluid phase, (iii) fluid produced by the dehydration reaction was (partially)
trapped in the serpentinite mylonite and (iv) serpentinite mylonites are not
only zones with highly localized deformation but also zones of focused fluid flow.
However, these coupled physical-chemical hypotheses for olivine vein formation
have not been tested with theoretical models based on the concepts of contin-
uum mechanics and thermodynamics. Recently, Huber et al. (2022) presented a
hydro-chemical (HC) model to study the formation of olivine veins in dehydrat-
ing serpentinite. However, they do not consider any solid-mechanical aspects
of olivine vein formation and do, hence, not consider volumetric or shear defor-
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mation of the serpentinite and associated fluid pressure changes. Therefore, we
cannot apply their model to test the coupled physical-chemical hypothesis of
shear-driven olivine vein formation.

Here, we test the hydrological, mechanical and chemical feasibility of a hypoth-
esis for the formation of observed olivine veins in serpentinite mylonites with a
new two-dimensional (2D) hydro-mechanical-chemical (HMC) model. The hy-
pothesis is (Fig. 2): During viscous shearing of serpentinite, the magnitudes
of ambient pressure and temperature were close to the magnitudes required for
triggering the dehydration reaction from serpentinite to olivine (Fig. 3A). The
effective viscosity of serpentinite was spatially variable, for example due to vari-
able porosity or heterogeneities in mineralogy (Fig. 2A). Weak domains, with
lower viscosity, cause pressure variations in the sheared serpentinite so that the
dehydration reactions are triggered in domains with locally decreased pressure.
The dehydration forms olivine and increases the porosity locally, which in turn
increases the size of weak domains, consisting of an olivine-fluid mixture. The
dehydration region forms vein-like structures that grow in a direction parallel to
the maximal compressive stress without any fracturing (Fig. 2A and B). After
fluid has escaped the olivine-rich region, the olivine-rich veins, observable in the
field, have formed (Fig. 2C). We test this hypothesis with a 2D HMC model
because such models are suitable to theoretically study the coupling between
chemical reactions, fluid flow and deformation (e.g., Kolditz et al., 2015; Poulet
et al., 2012). Such coupled models have been applied to study a variety of geody-
namic processes, for example, reaction-driven cracking during serpentinization
(e.g., Evans et al., 2020), porosity evolution and clogging during serpentinization
(e.g. Malvoisin et al., 2021), the impact of dehydration on earthquake nucleation
(e.g., Brantut et al., 2011), the impact of shear heating and associated chemi-
cal rock decomposition on thrusting (e.g., Poulet et al., 2014) or reactive melt
migration (e.g., Aharonov et al., 1997; Baltzell et al., 2015; Bessat et al., 2022;
Schiemenz et al., 2011). We apply here an extension of a HMC model that was
previously used to model the dehydration reaction: brucite = periclase + water
(Schmalholz et al., 2020). Here, we elaborate this HMC model and consider a
simple MgO-SiO2-H2O (MSH) system for the reaction: antigorite + brucite =
forsterite + water (Fig. 3). For simplicity, we consider an isothermal system
and a fixed chemical composition so that the reaction antigorite + brucite =
forsterite + water is balanced everywhere in the model domain.

The main aim of our study is to better understand the fundamental coupling of
dehydration reactions, fluid flow and rock deformation, for which a simplified
model is useful. Particular aims of our study are (1) to test the hypothesis for
the shear-driven formation of olivine veins, (2) to quantify the mechanisms that
control the porosity evolution and fluid pressure during dehydration of rocks
and (3) to quantify the impact of shearing rate and kinetic reaction rate on the
growth of dehydration veins.

2. Mathematical model

2.1. Porous medium densities
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We consider a simple MSH system and the reaction antigorite (Mg48Si34O85(OH)62)
+ 20 brucite (Mg(OH)2) = 34 forsterite (Mg2SiO4) + 51 water (H2O). We
assume that antigorite and brucite together represent one solid rock phase with
a homogeneous solid density, (in kg/m3), and homogeneous material properties.
All model parameters and variables are presented in Table 1. The total density
of the porous rock, either consisting of antigorite + brucite or forsterite +
water, is

with porosity (volume ratio) and pore-fluid density . For simplicity, we assume
that the solid phase consists of two components, (1) the non-volatile components,
MgO and SiO2, that remain always in the solid and (2) the volatile component,
H2O, that is liberated during dehydration. We quantify the amount of the non-
volatile component as a function of MgO inside the solid with its solid mass
(in kg) fraction, , which is (68 times the molar mass of MgO / (68 times the
molar mass of MgO + 51 times the molar mass of H2O) ) for the solid made
of antigorite + brucite in a molar ratio of 1/20. Equivalently, for forsterite.
We neglect the SiO2 in the calculations, because the SiO2 for the considered
reaction cannot vary independently from MgO. The relative density of the solid
MgO component in the solid phase is

2.2. Hydro-chemical model

The conservation of mass (per unit volume) of the solid and the fluid is given
by respectively (e.g., McKenzie, 1984)

where is time, is the divergence operator, and are vectors of the fluid and solid
barycentric velocities, respectively, and is a dehydration rate that quantifies the
rate at which mass is transferred from the solid to the fluid phase. Concerning
the symbols for vector and tensor quantities, we use indices and as superscripts,
because vector and tensor components will have additional subscripts indicating
the spatial direction, and scalar quantities can be easier distinguished from
vector and tensor quantities. Here, we do not use two separate mass conservation
equations for solid and fluid, but use the conservation equation of total mass
which results from the sum of equations and (e.g., Fowler, 1985; Beinlich et al.,
2020; Malvoisin et al., 2021; Plümper et al., 2016; Schmalholz et al., 2020):

The relative velocity of the fluid to the solid, , in equation is expressed by
Darcy’s law in the absence of gravity

where is the permeability coefficient in a Kozeny–Carman-type permeability
expression, is the fluid viscosity and is the fluid pressure. We need two mass
conservation equations because we consider two phases, solid and fluid. In
addition to the conservation of total mass, we use the conservation of the total
non-volatile component (MgO) which is described by

.

There is no fluid velocity in this conservation equation because we assume that
the dissolution of MgO in the fluid is negligible.
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We consider a constant temperature and a closed system with constant system
composition for the whole model domain, however, H2O can migrate within
our model domain. It has been experimentally demonstrated that dehydration
reactions are controlled by fluid pressure (e.g., Llana-Fúnez et al., 2012) and,
therefore, we approximate , and as a function of , which is expressed as (Schmal-
holz et al., 2020):

,

whereby the values of , and for a range of values of are calculated by equilibrium
Gibbs free-energy minimization (e.g., Connolly, 2005, 2009; Fig. 3), using the
thermodynamic dataset of Holland and Powell (1998). We assume that always
corresponds to , as a result of its equation of state (Fig. 3C). Due to the
sharp, step-like variation of and with varying across the dehydration reaction
(Fig. 3C and D) we assume that the reaction is controlled by a kinetic reaction
timescale, so that values of do not change instantaneously if crosses the value
of the reaction pressure at 12.65 kbar (Fig. 3). The kinetic reaction timescales
relevant to thermodynamic equilibrium are (e.g., Omlin et al., 2017)

where tkin is the characteristic kinetic timescale. Employing an effective kinetic
timescale for the considered reaction allows us to quantify the impact of reac-
tion kinetics on the model results. Furthermore, the simulations are numerically
more stable because the kinetic formulation resolves better the temporal tran-
sition of the reaction and prohibits potentially strong density oscillations for
numerical grid points where values of are very close to the reaction pressure.

2.3. Mechanical model

The solid part of the 2D porous medium is behaving in a visco-plastic manner
under shear deformation. We assume that the shear viscosity is an exponential
function of the porosity (e.g., Schmeling et al., 2012). There are other pos-
sible porosity-viscosity relations, but for simplicity we apply here only one of
these relations. The relations between the deviatoric stress tensor components,
(where are the components of the total stress tensor, is total pressure and is the
Kronecker delta) and solid velocity gradients, or deviatoric strain rate tensor
components , are then

where subscripts and are either 1 (representing the horizontal x-direction) or
2 (representing the vertical y-direction), is the reference solid shear viscosity
for the initial porosity, , and . The represents the effective, porosity-dependent
shear viscosity of the porous rock. The factor 30 was determined by experiments
with olivine-melt mixtures (e.g., Schmeling et al., 2012). We further apply for
one simulation a von Mises yield stress, , to limit the maximal value of the
deviatoric stresses. The square root of the second invariant of the deviatoric
stress tensor, controls a plastic multiplier, . If , then deviatoric stresses are
modified using

.

This von Mises plasticity prohibits that stresses locally increase to unrealistically
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high values. Furthermore, we consider a poro-visco-elastic volumetric deforma-
tion for which the divergence of the solid velocity field is a function of total
pressure, , and fluid pressure, (e.g., Yarushina and Podladchikov, 2015):

where is the bulk viscosity, is the drained bulk modulus, and with being the solid
bulk modulus. The applied equations for conservation of total linear momentum
(or force balance equations) without inertial forces and gravity are

2.4. Governing system of equations

The above equations represent a system of 11 equations for 11 unknowns, which
are , , , , , , , , , and , assuming that the deviatoric stress tensor is symmetric, .
The deviatoric stress tensor components, , and , are calculated using equations .
The solid and fluid densities and the mass fraction are calculated from the fluid
pressure using equation (see also equation below and Fig. 3C and D). Equation
is used to determine the fluid pressure, , equation to determine total pressure,
, equation to determine the porosity, , and the two force balance equations to
determine the two solid velocities, and . To determine , , , and we employ the
iterative pseudo-transient (PT) finite difference method described in detail in
Schmalholz et al. (2020). The PT equations are

.

When the discrete PT time derivatives of the left-hand sides of the equations
converge towards zero during iterations, then the corresponding steady-state
equations on the right-hand sides are solved. The closed system of governing
equations is given by equations , , and .

2.5. Model configuration

We assume that and are initially identical. The porosity is 2%, except in an
elliptical region in the model center where the porosity exhibits a Gaussian
distribution with a maximal value of 16% (Fig. 4). The initial Gaussian distri-
bution of the porosity is: . The distance controls the width, or variance, of the
porosity distribution which has an elliptical form with an axis ratio of 2 and
with the long axis parallel to the vertical y-direction (Fig. 4). The origin of the
coordinate system is at the center of the elliptical region with positive coordi-
nates indicating towards the right side and upwards (Fig. 4). The shear and
bulk viscosities are smaller in the central region due to the higher porosity. We
assume a constant temperature of 500 °C for which the thermodynamic reaction
pressure in our model is at 12.65 kbar (Fig. 3). The exact temperature value
is not essential for our isothermal study, because the variation of the solid and
fluid densities with varying fluid pressure is similar for temperatures between
450 and 550 °C (Fig. 3A and B). The initial values of and are everywhere equal
to 12.75 kbar, which is a pressure value slightly above the thermodynamic reac-
tion pressure (Fig. 3A and B). We apply far-field simple shear for the boundary
velocities (Fig. 4) so that the divergence, or volume change, of the entire model
domain is zero. Shearing is parallel to the horizontal x-direction and, hence,
orthogonal to the long axis of the elliptical region with elevated porosity (Fig.
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4). Boundary conditions for and are of Dirichlet type, with boundary values
fixed to the initial ambient values.

2.6. Numerical algorithm and dimensionless parameters

All partial derivatives are approximated with discrete difference ratios following
the standard procedure of staggered finite difference (FD) methods (e.g., Gerya,
2019). The numerical algorithm consists of an outer time loop containing an
internal PT iteration loop (Schmalholz et al., 2020). The PT iteration procedure
aims at minimizing the PT time derivatives, i.e. the left-hand sides in the
discretized equations . The iteration procedure is stopped when the PT time
derivatives reach a predefined tolerance, here 10-8. The iterative implicit PT
solution of the discretised system of equations requires the definition of four
numerical pseudo time steps, , namely, , , , and to solve for , , , and and ,
respectively. The physical time step, , controls the evolution of the system in
physical time for which we implicitly solve. The applied numerical time steps
are specified in appendix A1.

There are many possibilities to scale and non-dimensionalize the model parame-
ters inside the numerical algorithm. We programmed the numerical algorithm in
such a way that the specific magnitudes of individual parameters, such as shear
viscosity, are not significant and that the characteristic physical behaviour of the
system is controlled by dimensionless parameters. This scaling provided also the
most stable convergence during the PT iterations. The applied dimensionless
parameters and numerical examples applied in the simulations are:

where is the model width and is the applied far-field simple shear rate (Fig. 4).
The values of the applied parameters are discussed in section 4.

For reasons of numerical efficiency, we approximate the thermodynamic relations
of the densities and mass fractions with the fluid pressure, obtained with Gibbs
free-energy minimization, with analytical functions (Fig. 3C and D):

where is the reaction pressure, here 12.65 kbar. We use the functions above
in the numerical algorithm to calculate densities and mass fraction from the
current fluid pressure.

3. Results

3.1. Scaling and presentation of results

We present most quantities in dimensionless form to emphasize their general
validity. For example, all distances are made dimensionsless by dividing them
by and all times are made dimensionless by dividing them with the character-
istic time . Consequently, all velocities are made dimensionless by dividing
them by the characteristic velocity . In contrast, since we consider a particular
metamorphic reaction, we display the densities and pressures in dimensional
units.

3.2. Dehydration vein formation under simple shear
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For the first simulation presented here, we use the dimensionless parameters
and specific parameter values given in equation . The numerical resolution is
900×900 grid points in the x- and y-direction, respectively. A numerical reso-
lution test is given in appendix A2. The coupling of the dehydration reaction,
fluid flow and solid deformation is controlled by four characteristic time scales:
a time scale related to fluid pressure diffusion, , a time scale related to the
applied far-field deformation, , a time scale related to the mineral-reaction ki-
netics, (equation ), and a time scale related to viscoelastic stress relaxation, .
We assume here = 1011 Pa which, for the parameter values in equation , yields
~ 10-3 and indicates that the deformation is effectively viscous since is signif-
icantly shorter than . The ratio is commonly referred to as Deborah number
(e.g. Reiner, 1964; Moulas et al., 2019). For the first simulation, = 0.071 and =
0.0025 so that both the characteristic times for shearing and reaction kinetics are
shorter than the characteristic time of diffusive fluid flow. The ratio is similar to
a Damköhler number since it relates the characteristic time of mineral reactions
to the characteristic time of transport by diffusive fluid flow. The central region
with initially higher porosity (Fig. 5E) represents a mechanically weak inclusion
because the shear and bulk viscosity decrease with increasing porosity. The ap-
plied far-field simple shear causes variations in around the weak region and the
numerical results for the first time step show two regions in which is smaller
than the reaction pressure of 12.65 kbar (black contours in Fig. 5A). Therefore,
dehydration is triggered in these two regions of decreased . The dehydration
causes the release of water, consequently an increase in porosity and, hence, a
decrease of viscosity. With progressive simple shearing these dehydrating re-
gions grow in the direction parallel to the maximal principal stress, , which is
oriented 45 degrees with respect to the shearing direction (Fig. 5E). The maxi-
mal and minimal, , principal stresses have been calculated using the algorithm
of Spitz et al. (2020), which was originally developed to calculate principal
strain directions. During progressive shearing, two dehydrating regions evolve
and form vein-like regions with increased values of and (Fig. 5). The total solid
velocity field (grey arrows in Fig. 5A to D) indicates the applied far-field simple
shear and local deviations from the horizontal shear direction. For the specific
parameters given in equation the maximal shear stresses are ca. 125 MPa. We
also calculate the distance between the highest (in vertical y-direction) and the
lowest point on the contours for = 12.65 kbar (red straight lines in Fig 5A to D).
We will use this distance as a proxy for the change in length of the dehydrat-
ing region representing the length of the dehydration vein. During progressive
shearing, the value of in the dehydration region increases from initially ca. 2550
kg m-3 to ca. 3100 kg m-3 which represents the transformation from antigorite
+ brucite to forsterite (Figs. 3C and 5A to D). In the region of the two forsterite
veins, the associated values of increase from initially 2% to ca. 60% (Fig. 5E to
H). Two representative contours of , for 5 and 15%, highlight two features of the
evolution of : the growth of high-porosity dehydration veins and the clock-wise
rotation of the initial porosity field due to the applied simple shear (Fig. 5E to
H).
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3.3. Dehydration vein formation for faster deformation rate and plastic yield
stress

We perform a second simulation with the same parameters as the first simulation,
except that we apply now a different value of which provides = 0.038 (Fig. 6A
to D) generating a faster shearing since the characteristic time of deformation is
shorter. The main difference to the simulation with = 0.071 (Fig. 5) is that the
two dehydration regions connect during progressive shearing to form a single
dehydration vein (Fig. 6D). For the specific parameters given in equation the
maximal shear stresses are ca. 220 MPa. We perform a third simulation with
the same parameters as in the second simulation and apply a von Mises yield
stress of 150 MPa (Fig. 6E to H). With such yield stress, a single dehydration
vein also forms but the vein is shorter and thicker for the same simulated times
(Fig. 6). The performed three simulations result in a similar development of
dehydration veins with forsterite, but show that different deformation rates and
the application of a yield stress impact the geometry and length of the veins.

3.4. Coupling of dehydration reaction, fluid flow and solid deformation

To better understand and visualize the coupling between the dehydration reac-
tion, fluid flow and solid deformation we show the distribution and evolution
of various quantities on a single figure (Fig. 7). We use the results of the first
simulation (Fig. 5) and we focus on one dehydration region in the area to the
top-left of the model center (Fig. 7). The divergence of the solid velocity, ,
indicates a volumetric change associated with dehydration vein formation (Fig.
7). A positive value of indicates volume increase, or dilation (blue colors in
Fig. 7). Overall, the solid velocities indicate the applied far-field simple shear
deformation (blue arrows in Fig. 7), with some deviations around the dehydrat-
ing region. The fluid velocities (red arrows in Fig. 7) are completely different
compared to the solid velocities. For the first time step, fluid flow only occurs
in the central region where the porosity, and hence permeability, is high (Fig.
7A). During dehydration vein formation, fluid flow mainly occurs in the region
of the veins where significant dilation takes places (Fig. 7B to D). The fluid
velocities indicate fluid flow from the boundary of the dehydrating region to-
wards the centre of the vein (Fig. 7C). In other words, fluid is released during
dehydration from the surrounding serpentinite and the released fluid flows into
the vein. For the first time step, the porosity distribution indicates the initial,
Gaussian-type, porosity distribution (blue contours in Fig. 7). With progressive
deformation and vein formation, the high-porosity region grows in the direction
of the dehydration vein, indicated by significant dilation and fluid flow. At the
beginning of shearing, a larger region with fluid pressure (red contours in Fig.
7) <12.65 kbar corresponds more or less to the region of significant dilation
(Fig. 7A). The solid densities (dashed grey contours in Fig. 7) increase during
the progressive dehydration reaction and the transformation from antigorite +
brucite to forsterite (Fig. 7B to D). The values of solid density increase with
time due to the applied mineral-reaction kinetics which avoids that the density
changes instantaneously once the fluid pressure decreases locally below 12.65
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kbar. With progressive vein formation, fluid pressures below 12.65 kbar only
exist in the region of significant dilation, fluid flow and increased values of solid
density (Fig. 7).

3.5. Mechanisms controlling porosity variation and fluid pressure

In our coupled HMC model, the temporal variation of porosity is controlled by
several mechanisms, such as volumetric deformation of the solid or mass transfer
due to the dehydration reaction. To quantify the relative contribution of the
mechanisms controlling the temporal variation of porosity, we post-process our
numerical results (i.e. calculate values from saved numerical results). We quan-
tify the mass transfer rate, , associated with the dehydration reaction, which
can be expressed by (using equation ):

.

Note that in equation the material time derivative (, including the advection
term, ) is used and, hence, the divergence term is different compared to equation
. Therefore, equation represents an approximation of since the advective term
is not taken into account, here for simplicity of the post-processing. Equation
can be rearranged to provide an expression for the temporal variation of the
porosity:

Equation shows that the temporal variation of the porosity is controlled by three
mechanisms: (1) volumetric deformation of the solid (i.e. divergence of velocity
field; first term on right-hand side of equation ), (2) temporal variation of solid
density (second term) and (3) mass transfer of H2O from the solid to the fluid
phase associated with the dehydration reaction (third term). We display the
spatial distribution of the four terms in equation for the first simulation at a
dimensionless time of 0.7 (Fig. 8). The temporal variation of porosity, quan-
tified by the term on the left-hand side of equation , is positive and largest in
the region of increased porosity, indicating an increase in porosity with time
(Fig. 8A). Each of the three terms on the right-hand side of equation can be
calculated from the saved numerical results (Fig. 8C to E) and their sum (Fig.
8B) provides essentially the same result as the term on the left-hand side of
equation (Fig. 8A). The results show that the magnitudes of the relative contri-
butions of volume change (Fig. 8C), solid density variation (Fig. 8D) and mass
transfer (Fig. 8E) to the temporal variation of porosity are similar. Therefore,
volume change, solid density variation and mass transfer equally contribute to
the porosity variation and, hence, for the evolution of the dehydration veins.

We also investigate the porosity variation for a simulation which has the same
value of = 0.071 as the first simulation, but with a slower kinetic-reaction rate
(or longer reaction time) of = 0.022 for a dimensionless time of 1.0 (Fig. 9). The
magnitude of the temporal porosity variation is now slower (compare Fig. 8A
and 9A) but the relative contribution of volume change, solid density variation
and mass transfer to the porosity variation is again similar. Therefore, different
kinetic reaction rates change the magnitude of the temporal porosity variation,
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but do not change the relative importance of volume change, density variation
and mass transfer controlling the porosity evolution.

Similar to the temporal variation of , the distribution of is also controlled by
several mechanisms and variables. To quantify the mechanisms controlling , we
post-process again our numerical results. Substituting equation , which defines
, into equation and solving for yields

.

Equation shows that is controlled by five mechanisms and quantities: (1) the
magnitude of (first term on the right-hand side of equation ), (2) elastic de-
formation involving the temporal variation of and (second term), (3) tempo-
ral variations in porosity (third term), (4) temporal variations of solid density
(fourth term) and (5) mass transfer by dehydration (fifth term). We display
the spatial distribution of all terms in equation for the first simulation at a
dimensionless time of 0.7 (Fig. 10). The distribution of is mainly controlled
by the distribution of (Fig. 10A and C). The distribution of can be accurately
post-processed by summing up the five terms on the right-hand side of equation
(Fig. 10B). The mass transfer (Fig. 10E), the porosity variation (Fig. 10F) and
the solid density variation (Fig. 10G) have an approximately equal impact on
the distribution of , but their contributions are significantly smaller compared
to the contribution of . The contribution of elastic volumetric deformation (Fig.
10H) is essentially negligible, since it is three orders of magnitude smaller than
the magnitude of . For the presented simulation, the maximal value of the de-
viatoric stress invariant, (equation ), in the model domain is ca. 140 MPa (Fig.
10D).

3.6. Impact of kinetic reaction rate and shearing rate on vein evolution

We performed in total ten simulations to investigate the impact of the far-field
shearing rate and of the kinetic reaction rate on the evolution of dehydration
veins and forsterite generation (Fig. 11). Six simulations had the same value of
= 0.0025 but different values of (legend in Fig. 11A). The increase in length of
the red line shown in figure 5A to D is used as a proxy for the temporal evolution
of the vein length (Fig. 5A). The initial value of vein length is determined by the
initial distribution of (Fig. 5A). In regions with <12.65 kbar the dehydration
reaction is triggered, which causes a local increase of H2O and an increase of
(Fig. 11B). For the six simulations, this initial increase of generated values of
>12.65 kbar everywhere in the model domain, so that the vein length is zero
(Fig. 11A and B). With progressive deformation, values of decrease again below
12.65 kbar initiating the growth of a dehydration vein. The time until values
of decrease below 12.65 kbar is longest for the simulation with the slowest far-
field deformation rate (Fig. 11A). Consequently, the increase of starts latest
for the simulation with slowest far-field deformation rate (Fig. 11C). However,
during significant increase of the rate of increase (indicated by the slope of
the density versus time lines) of is similar for all simulations, because they
considered the same mineral-kinetic rate ( = 0.0025). The simulation with the
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fastest deformation rate (Fig. 6A to D; blue line in Fig. 11A to C) was run
a second time, but then with a von Mises yield stress (Fig. 6E to F; dashed
blue line in Fig. 11A to C). The application of the yield stress slows down
the vein growth, but has no significant impact on the evolution of (Fig. 11C).
The temporal evolution of the vein length shows that the veins grow fast at
the onset of vein formation and then vein growth slows down progressively (Fig.
11A) because the minimum values of in the model increase progressively (Fig.
11B) due to ongoing fluid flow which reduces gradients of .

We performed four simulations for the same value of = 0.071 but for four dif-
ferent values of (legend in Fig. 11D). The vein growth is similar for the four
simulations (Fig. 11D), however, the increase of is significantly different due to
the different mineral-reaction rates (Fig. 11F). The values of increase fastest
for the fastest reaction rate (Fig. 11F), but values of vary less during defor-
mation for faster reaction rates (Fig. 11E). For slow reaction kinetics, = 0.022
(Fig. 11F), maximal values of did not reach 2800 kg m-3 hindering the complete
formation of forsterite when the vein growth has essentially stopped (correspond-
ing blue line in Fig. 11D). The results for different kinetic rates suggest that
the kinetic reaction rate must be significantly faster than the pressure diffusion
rate to allow the complete transformation from antigorite + brucite to forsterite
during dehydration and vein growth, while fluid pressures are in the forsterite
stability field.

4. Discussion

The performed simulations show that it is hydrologically, mechanically and
chemically feasible to form olivine veins by dehydration reactions during ductile
shearing of serpentinite. In the scenario studied here, dehydration is shear-
driven and triggered by fluid pressure perturbations caused by heterogeneities
in porosity-dependent effective viscosity. The resulting veins grow in a direction
parallel to the maximal principal stress and no fracturing is required for vein
formation and growth. The simulations show that the two dimensionless ratios
and control the temporal evolution of the dehydration vein length, the fluid
pressure and the solid density (Fig. 11). In our simulations both the values of
and need to be significantly shorter than (Fig. 11). To test the applicability
of our simulations to sheared serpentinite at subduction zones, we estimate the
value of using the parameter values specified in equation and the initial porosity
of 2%. The least constrained parameter in is likely the effective permeability, ,
which in our simulations would be = . Experimental studies suggest that ser-
pentinite permeability decreases exponentially with depth and is in the order
of 10-23 and 10-21 m2 at a depth of 7 km below seafloor (e.g. Hatakeyama et
al., 2017). Using the extrapolation of Hatakeyama et al. (2017) (their equation
1) for their sepertinite termed Sengen-03 provides a permeability of 10-30 m2

for a confining pressure of 9 kbar and 10-35 m2 for a confining pressure of 12.75
kbar, as applied here. Therefore, an effective permeability in the order of 10-27

m2, as used here, seems not unrealistic for serpentinite under a confining pres-
sure of 12.75 kbar and the assumed temperature of 500 °C. For simplicity, we
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assume here an isotropic permeability, but in natural serpentinite the perme-
ability might be anisotropic. For the considered parameter values we obtain =
4 kyr. A representative value of in our simulations is (Fig. 11A). The inverse
of corresponds to the applied far-field shearing rate, , which is then . A shear
strain rate in the order of is feasible for serpentinite shearing at a subduction
plate interface (e.g. Chernak and Hirth, 2010). A representative value of in
our simulations forming forsterite is (Fig. 11D) which corresponds to 4 years.
Here, we assume a viscosity of serpentinite of 1018 Pas. Despite the importance
of serpentinite, its rheology at lithospheric-scale pressure and temperature con-
ditions remains not well constrained (David et al., 2018; Hirauchi et al., 2020,
and references therein). However, for the ambient pressure and temperature
conditions considered here, viscosities of serpentinite between 1017 and 1018

Pas seem feasible based on experimental studies (e.g., Chernak and Hirth, 2010;
Hilairet et al., 2007). For the applied parameter values, the characteristic time,
, is ca. 12 days. The dimensionless simulation times for the ten simulations are
between 600 and 1500 (Fig. 11) which then corresponds to a real time between
approximately 20 and 50 years, respectively.

We consider here, for simplicity, a fixed chemical composition for which forsterite
+ water results from dehydration of antigorite + brucite + a negligible amount
of free water. We consider this negligle amount of free water simply to be able to
calculate thermodynamically the fluid density in the stability field of antigorite
+ brucite (Fig. 3C). Natural chemical compositions, in for example the Erro-
Tobbio unit, are more complex and feature a higher chemical variability as
considered in our model. However, the main aim of our study is to investigate
the fundamental coupling between dehydration reactions, fluid flow and rock
deformation, justifying the use of a simplified MSH system. Our model suggests
that natural areas of serpentinite dehydration, consisting of olivine and water,
are mechanically weak due to their high, up to 60%, porosity and water content.
After the formation of the dehydration veins, the water eventually escapes the
dehydration region, so that finally only olivine is left in the veins.

Field data show that in the Erro Tobbio region the olivine in the veins is meta-
morphic olivine which resulted from the dehydration of serpentinite. A dehy-
dration origin of the olivine is supported by geochemical studies (e.g., Kempf
et al., 2020; Peters et al., 2020). Furthermore, the particular en-échelon ori-
entation of the olivine veins suggest that the vein orientation is controlled by
the stress field associated with the serpentinite shearing (Hermann et al. 2000).
Therefore, based on published geochemical studies and structural observations
we propose that the formation of observed olivine veins was the result of a
coupled deformation-reaction process that accelerated the mineral dehydration
along particular orientations, controlled by the local stress field in the sheared
serpentinite. Similar veins made of metamorphic olivine have been described
from subducted serpentinite, such as in the Zermatt-Saas unit in the Central
Alps (e.g., Kempf et al., 2020).

The initial distribution of porosity in the presented simulations is simple and
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defined by a Gaussian distribution. Such a simple initial porosity distribution
is again useful to study the fundamental coupling of dehydration reactions and
rock deformation. More realistic would likely be an initial random distribu-
tion of porosity. To test whether the studied formation of dehydration veins
also occurs for a more realistic initial porosity distribution, we performed one
simulation with an initial random porosity distribution. The initial values of
porosity vary randomly between 2 and 16% in the model domain. We generated
the initial porosity distribution with the random field generator presented in
Räss et al. (2019). For this simulation, we applied = 0.012 and = 8.2×10-4.
Furthermore, the initial values for and are 12.73 kbar. All other parameters are
identical to the values of the first simulation (Fig. 5). The simulation shows
that during shearing many dehydration veins with increasing solid density and
porosity are formed, similar to the simulations with an initial Gaussian poros-
ity distribution (Fig. 12). Particularly, despite the variability in shape of the
dehydrating regions, the longest axis of the dehydrating regions always grows
in the direction of the maximum principal stress. Hence, the results with an ini-
tial random porosity distribution suggest that the investigated simulations with
an initial Gaussian porosity distribution capture the first-order mechanisms of
shear-driven dehydration vein formation for more complex and natural model
configurations. Furthermore, the simulation shows the formation of many veins
with similar length which is similar to observations from natural olivine veins
(Fig. 1A to C). The generation of many similar veins results from the self-
limiting nature of vein growth (Fig. 11A and D) which prohibits the generation
of few large veins.

The presented model could potentially be applied to investigate fluid-related pro-
cesses causing episodic tremor and slow-slip events (ETS; e.g., Peng & Gomberg
2010). Despite the lack of consensus on the inter-relationships between mineral
dehydration, fluid flow, critical stress and ETS, the coincidence of the location
of low-frequency earthquakes to regions with high Vp/Vs ratios requires the con-
sideration of fluid flow and mineral dehydration in these settings (e.g., Burlini
et al. 2009; Kato et al. 2010; Shelly et al. 2006; Van Avendonk et al., 2010).
For example, Van Avendonk et al. (2010) infer a zone of very high Vp/Vs ra-
tio of 6 at the top of the subducting Cocos slab between 35 and 55 km depth,
lying downdip of the seismogenic zone. They propose that these high Vp/Vs
ratios are due to several-meter thick shear zones under high pore pressure and
that the hydrous pore fluids were generated by prograde dehydration reactions.
The 35 to 55 km depth range with inferred high Vp/Vs ratios corresponds to
the depth range and ambient pressure considered in our model. In addition,
the correlation of rapid-tremor migration to pore-pressure waves suggests that
this coincidence can be explained by the coupled processes of dehydration, fault
weakening and tremor migration (Cruz-Atienz et al. 2018). Thus, the forma-
tion of fluid-filled veins, as modelled here, can be correlated to the transient
weakening that is inferred in regions of mineral dehydration. Furthermore, the
dehydration reaction, generating olivine-fluid bearing veins, and the subsequent
fluid escape, leaving behind olivine-only veins, will cause a viscosity inversion:
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when significant fluid is present in the olivine bearing veins, then the effective
viscosity of the olivine-fluid veins is smaller than the viscosity of the serpen-
tinite; but once the fluid has escaped the veins the effective viscosity of the
olivine-only veins is larger than the viscosity of the serpentinte. We expect that,
under the presence of a general anisotropic stress field, the vein formation will
lead to an increase of the anisotropic effective viscosity of the subducted mantle
rocks as a result of the different effective viscosities of serpentinite and olivine
+ fluid assemblages. When the fluid is completely drained from these veins, the
viscosity contrast between olivine and serpentinite is such that the associated
anisotropy will be permanent.

5. Conclusions

We present a hydro-mechanical-chemical model to investigate the reaction antig-
orite + brucite = forsterite + water. The model can explain shear-driven for-
mation of dehydration veins in ductile serpentinite and, hence, supports the
hypothesis of shear-driven formation of metamorphic olivine veins in the ser-
pentinites of the Erro Tobbio unit (Fig. 1). Vein formation is triggered by fluid
pressure perturbations caused by local perturbations of a porosity-dependent ef-
fective viscosity. The veins consist of a weak forsterite-water mixture and grow
in a direction parallel to the maximal principal stress which is controlled by the
applied far-field simple shearing. The modelled growth of the dehydration veins
is not a stable or runaway process but a self-limiting process because the fluid
pressure perturbations that drive the vein growth decrease during progressive
shearing due to fluid flow.

In our model, three characteristic time scales control the formation of dehydra-
tion veins: (1) The time scale of fluid pressure diffusion, tdif, which controls
porous fluid flow via Darcy’s law, (2) the time scale of the far-field shearing,
tdef, which is the inverse of the far-field shearing rate and (3) the time scale of
the mineral-reaction kinetics, tkin, which controls the time to achieve thermody-
namic equilibrium. To form an olivine (here forsterite) vein, the kinetic reaction
rate for the transformation from serpentinite to olivine must be fast enough so
that olivine can form during vein growth, while significant fluid pressure pertur-
bations exist. The numerical simulations suggest that the kinetic reaction rate
should be at least two orders of magnitude faster than the characteristic rate of
fluid pressure diffusion.

In our models, the temporal evolution of porosity during dehydration is con-
trolled by three mechanisms: solid volume change, solid density variation and
reactive mass transfer. All three mechanisms have a similar impact on the poros-
ity evolution. Hence, our model shows that deformation of the solid rock should
be considered when quantifying dehydration vein formation. The fluid pres-
sure distribution is mainly controlled by the total pressure distribution. Mass
transfer, porosity variation and solid density variation impact the fluid pressure
distribution to a minor extend and only in the dehydrating region.

The presented model can help to understand the formation of olivine veins in
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serpentinite mylonites in subduction zones. Such veins are observed in several
high pressure serpentinites in the Western Alps and Liguria. The modelled veins
have a similar orientation as natural en-échelon olivine veins in serpentinite
mylonite. The self-limiting feature of the modelled vein growth might also
explain the natural observation of many smaller olivine veins and the absence of
few large olivine veins. Furthermore, the presented model can explain transient
weakening during dehydration in deforming rock which may be an important
process during episodic tremor and slow-slip observed in subduction zones.
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Appendix

A1. Pseudo-transient time steps

To solve the system of equations iteratively, we apply the following physical, ,
pseudo-transient (PT), , time steps:

(A1)

where and are horizontal and vertical numerical grid spacing, respectively. More
information concerning the choice of such PT time steps can be found in Wang
et al. (2022).

A2. Numerical resolution test

We present here the results of a numerical resolution test. Such test is essential
to determine whether the evolution of the dehydrating region is independent of
the employed numerical resolution. We performed the first simulation (Fig. 5)
with the following different numerical resolutions: 150×150, 300×300, 500×500,
700×700 and 900×900 grid points (Fig. A1). For a dimensionless model time
of 950, the ratio of the mean porosity in the model domain divided by the mean
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porosity for a simulation with 900 × 900 grid points is plotted versus the corre-
sponding resolution for simulations with different resolution (Fig. A1A). Similar
ratios are plotted for the minimum fluid pressure in the model domain and the
vein length. The higher the resolution, the less the three ratios vary, indicating
the convergence of the numerical results upon increasing numerical resolution.
The evolution of the minimum fluid pressure in the model domain with time
is shown for different numerical resolutions (Fig. A1B). With larger numerical
resolution, the temporal evolution of the minimum fluid pressure varies less,
indicating again the convergence of the numerical results for increasing numer-
ical resolution. Finally, the spatial distribution of at a dimensionless time of
785 is displayed for three different resolutions (Fig. A1C to E). For a resolu-
tion of 150×150 the contours of are jagged, confirming an insufficient numerical
resolution (Fig. A1C). For numerical resolutions of 500×500 and 900×900 the
contours of are smooth and the colormaps of cannot be distinguished by eye
(Fig. A1D and E).The numerical resolution test shows that the applied numer-
ical model provides results which converge for increasing numerical resolution
and are, hence, not dependent on the numerical resolution.
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Figure 1. Natural examples of metamorphic olivine veins in antigorite serpenti-
nite from the Erro Tobbio ultramafic rocks, Ligurian Alps, Italy. A) Overview
on the limited spatial extent of olivine bearing veins (with darker color) in
weakly deformed serpentinized peridotite. Coin diameter is 2.4 cm. B) Olivine
veins with characteristic spacing and aspect ratios in serpentinised peridotite.
Detail of picture in A). C) olivine-bearing veins in a serpentinised peridotite,
foliation is sub vertical, extent of veins is ca. 20 cm. D) Serpentinite mylonite
with different generations of olivine veins. An earlier set is subparallel to the
foliation, younger shear bands dissect serpentinite mylonite and olivine veins.
Top-to-the-left shear sense. Note the late stage serpentine veins perpendicular
to the foliation.
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Figure 2. Simple sketches illustrating the geodynamic setting (A) and the hy-
pothesis for shear-driven dehydration and olivine vein formation in viscous ser-
pentinite (B to D; see text for details).
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Figure 3. Thermodynamic results obtained from Gibbs’ free energy minimiza-
tion for the system antigorite + brucite = forsterite + water (see text for exact
chemical formulas). Density fields of solid (A) and fluid (B) in thermodynamic
pressure, , and temperature, , space. Corresponding profiles of solid and fluid
densities (C) and mass fraction of MgO (D) as a function of fluid pressure at
500 °C. The circles in the three profiles in panels C) and D) are the results
from Gibbs energy minimization and the corresponding solid lines are analyti-
cal approximations of these profiles (equation ), which are used in the numerical
algorithm.
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Figure 4. Sketch of the model configuration and the applied far-field simple
shear (bottom right sketch; see text for details). The intitial distribution of the
porosity is described by a 2D Gaussian distribution, having an initial horizontal
bandwidth of 2 (graph in left middle of the sketch) and a vertical bandwidth of
4. The width and height of the model is 40 and the applied far-field shearing
rate is .
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Figure 5. Representative evolution of a dehydration vein under simple shear for
a simulation with = 0.071 and = 0.0025. Panels A) to D) show snapshots of
solid density for four stages of the simulation, indicated by a dimensionless time
(see text). The black contour lines in panels A) to D) indicated the contour
for = 12.65 kbar ( is smaller inside the contour), which is the thermodynamic
pressure at the dehydration reaction (see Fig. 3). Grey arrows indicate the
solid velocities which are dominated by the applied simple shear. The red line
connects the highest with the lowest point of the fluid pressure contours and
the length of the red line is used as proxy to monitor the vein growth with time.
Panels E) to H) show the porosity corresponding to the model times of panels A)
to D). In panel E), the black line indicates the direction of the maximal principal
stress, , and the blue line indicates the direction of the minimal principal stress,
, at the location of the intersection of the two lines. The red contours indicate
a porosity of 5% (outer contour) and 15% (inner contour).
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Figure 6. Representative evolution of dehydration veins under simple shear
for two simulations with = 0.038 and = 0.0025. Colomaps indicate the solid
density. The simulation shown in panels A) to D) is purely viscous whereas
for the simulation shown in E) to F) a von Mises yield stress of 150 MPa was
applied and deformation is visco-plastic. In all panels, the black contour lines
indicate the contour for = 12.65 kbar ( is smaller inside the contour), the grey
arrows indicate the solid velocities and the red contours indicate a porosity of
5% (outer contour) and 15% (inner contour).
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Figure 7. Evolution of a dehydration vein under simple shear for a simulation
(shown in Fig. 5) with = 0.071 and = 0.0025 at four dimensionless times (see
text). The colormaps show the dimensionless divergence of the solid velocity,
the red arrows show the fluid velocity field and the blue arrows show the solid
velocity field. The two red contours indicate = 12.65 (always the inner contour)
and 12.7 kbar. The two blue contours indicate a porosity of 5% (outer contour)
and 10% (inner contour). The two dashed grey contours indicate a solid density
of 2565 kg/m3 (outer contour) and 2600 kg/m3 (inner contour). There are no
solid density contours in panel A) because all densities are < 2565 kg/m3.
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Figure 8. The three mechanisms (solid volumetric deformation, C, solid-density
variation, D, and mass transfer, E) that control the temporal porosity variation
(see equation ) for a simulation (shown in Fig. 5) with = 0.071 and = 0.0025
at a dimensionless time of 550. A) shows the colormap of the term displayed
in the legend for A, B) shows the colormap of the term displayed in the legend
for B, C) shows the colormap of the term displayed in the legend for C, D)
shows the colormap of the term displayed in the legend for D and E) shows the
colormap of the term displayed in the legend for E. All displayed terms represent
dimensionless rates which can be made dimensionless by multiplying with the
characteristic time, (see text).
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Figure 9. The three mechanisms (solid volumetric deformation, C, solid-density
variation, D, and mass transfer, E) that control temporal porosity variation (see
equation ) for a simulation with = 0.071 and = 0.022 at a dimensionless time of
800. A) shows the colormap of the term displayed in the legend for A, B) shows
the colormap of the term displayed in the legend for B, C) shows the colormap
of the term displayed in the legend for C, D) shows the colormap of the term
displayed in the legend for D and E) shows the colormap of the term displayed
in the legend for E. All displayed terms represent dimensionless rates which can
be made dimensionless by multiplying with the characteristic time, (see text).
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Figure 10. The five mechanisms and quantities that control the distribution
of fluid pressure (equation ) for a simulation (shown in Fig. 5) with = 0.071
and = 0.0025 at a dimensionless time of 550. A) Colormap of fluid pressure
which was calculated by the numerical simulation and B) fluid pressure which
was post-processed from numerical results using equation . C) shows the total
pressure and D) the deviatoric stress, , which was calculated by the numerical
simulation. E) shows the contribution to the fluid pressure due to mass transfer
(last term on right-hand side of equation ), F) due to porosity variation (third
term on right-hand side of equation ), G) due to solid density variation (fourth
term on right-hand side of equation ) and H) due to elastic deformation (second
term on right-hand side of equation ). All quantities displayed in E) to H) have
been post-processed from numerical results.
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Figure 11. Impact of far-field shearing rate (A to C) and kinetic reaction rate (B
to F) on the evolution of vein length (A and D), on the minimal value of the fluid
pressure in the model domain (B and E) and on the evolution of the maximal
solid density in the model domain (C and F). For the results displayed in panels
A) to C) the ratio = 0.0025 for all simulations. For the results displayed in
panels D) to F) the ratio = 0.071 for all simulations. Results indicated with
the dashed blue line are obtained by the same simulation which provided results
indicated by the solid blue line, but with a von Mises yield stress of 150 MPa
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(results of the two simulations are also displayed in Fig. 6).

Figure 12. Evolution of solid density (A to D) and corresponding porosity
(E to H) for a simulation with an initial random distribution of porosity (see
Discussion).
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Figure A1. Numerical resolution test for the simulation with = 0.071 and =
0.0025 (see Fig. 5). A) For a dimensionless model time of 1.21, the ratio
of the mean porosity in the model domain divided by the mean porosity for
a simulation with a resolution of 900 × 900 grid points is plotted versus the
corresponding resolution for simulations with different resolution. Similar ratios
are plotted for the minimum fluid pressure in the model domain and the vein
length. The larger the resolution, the less the three ratios vary. B) Evolution of
minimum fluid pressure in the model domain with time for different numerical
resolutions (see legend). With larger resolution, the evolution of fluid pressure
varies less. C) to D) At a dimensionless model time of 1.0, the colormap of the
fluid pressure is displayed for three different resolutions (see numbers in panel
titles). Two contour lines of fluid pressure are displayed for better comparability.

Table 1. Model variables and parameters.

Symbol Name / Definition Units
Kinetic time scale
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Symbol Name / Definition Units

Fluid pressure
Porosity
Initial porosity
Solid density
Fluid density
Mass fraction MgO
Total pressure

, Solid velocities
, Fluid velocities

„ Deviatoric stresses

Permeability
Fluid viscosity
Shear viscosity solid
Bulk viscosity solid
Bulk modulus solid
Bulk modulus drained
Initial ambient pressure
Far-field deformation rate
Bandwidth of Gaussian
Model width
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