
manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

A new brittle rheology and numerical framework for
large-scale sea-ice models
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Williams 1Madlen Kimmritz 3Véronique Dansereau 4Abdoulaye Samaké 5
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Corresponding author: Einar Ólason, einar.olason@nersc.no

–1–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Abstract
We present a new brittle rheology and an accompanying numerical framework for large-
scale sea-ice modelling. This rheology is based on a Bingham-Maxwell constitutive model
and the Maxwell-Elasto-Brittle (MEB) rheology, the latter of which has previously been
used to model sea ice. The key strength of the MEB rheology is its ability to represent
the scaling properties of simulated sea-ice deformation in space and time. The new rhe-
ology we propose here, which we refer to as the brittle Bingham-Maxwell rheology (BBM),
represents a further evolution of the MEB rheology. It is developed to address two main
shortcomings of the MEB rheology and numerical implementation we were unable to ad-
dress previously: excessive thickening of the ice in model runs longer than about one win-
ter and a relatively high computational cost. In the BBM rheology and numerical frame-
work these shortcomings are addressed by demanding that the ice deforms under con-
vergence in a purely elastic manner when internal stresses lie below a given compressive
threshold. Numerical performance is improved by introducing an explicit scheme to solve
the ice momentum equation. In this paper we introduce the new rheology and numer-
ical framework. Using an implementation of BBM in version two of the neXtSIM sea-
ice model (neXtSIMv2), we show that it gives reasonable long term evolution of the Arc-
tic sea-ice cover and very good deformation fields and statistics compared to satellite ob-
servations.

Plain Language Summary

Sea ice movement is determined by the wind and ocean currents acting on it, and
how the ice itself reacts to these forces. In a sea-ice model this reaction is simulated with
equations collectively referred to as a rheology. In this paper we introduce a new rhe-
ology, called the brittle Bingham-Maxwell (BBM) rheology, and a method for solving the
equations on a computer. This new rheology extends the Maxwell-Elasto-Brittle (MEB)
rheology we used in previous versions of our sea-ice model, neXtSIM. We used MEB in
neXtSIM because this rheology gives a very good description of how the ice reacts to winds
and currents, but we found two main faults with it we couldn’t fix: the ice in the model
would pile up to become unrealistically thick after several model years, and the model
required too much computer time to run. In the BBM rheology we add an extra term
to the MEB equations to prevent the excessive piling up of ice, and we also propose a
more efficient way to solve the equations. Like its predecessor, the new rheology also al-
lows our model to simulate very well the way the ice moves on daily basis, when com-
pared to satellite observations.

1 Introduction

The drift and deformation of sea ice is a key aspect of the over-all state of the ice
cover. Large-scale drift redistributes ice, affecting where it forms, melts, and is collected,
while small scale deformation opens up leads and builds ridges, which influence virtu-
ally all interactions between the atmosphere, ocean, and ice in ice-covered areas. The
pan-Arctic drift and thickness distribution are relatively well observed (e.g. Colony &
Thorndike, 1984; Kwok et al., 2013; D. Rothrock et al., 2008; Kwok & Rothrock, 2009;
Ricker et al., 2017), while lead and ridge formation can be both directly observed at high
resolution and linked to the Linear Kinematic Features (LKFs) observed from satellite
(Kwok et al., 1998).

The drift and deformation of ice in a sea-ice model is determined by the solution
of the momentum equation. This equation has several terms, with one of the most im-
portant ones being the internal stress term (e.g. Steele et al., 1997). The relationship
between the internal stress and resulting deformation is referred to as a rheology and vir-
tually all continuum, geophysical-scale sea-ice models used currently employ the viscous-
plastic rheology (VP Hibler, 1979) or the elastic-viscous-plastic rheology (EVP Hunke

–2–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

& Dukowicz, 1997), which only addresses numerical issues with the VP. The VP rheol-
ogy treats the ice as a continuum and assumes it deforms in a viscous manner with a high
viscosity until the internal stress reaches a plastic threshold, determined by a yield curve
which usually has an elliptic shape. Several important improvements have been made
to the original VP rheology (such as Hunke & Dukowicz, 1997; Lemieux et al., 2010; Bouil-
lon et al., 2013; Kimmritz et al., 2016), but the physical principles remain the same.

The VP rheology has enjoyed tremendous success and is used for time scales from
days to centuries and spatial scales from tens of kilometres to basin scales. It is, how-
ever, not without its faults, both when it comes to the underlying assumptions (see in
particular Coon et al., 2007) and the results produced by models that use it. There is
generally a very large spread in key prognostic variables such as thickness, concentra-
tion, and drift in model inter-comparison studies—well beyond observed variability (Chevallier
et al., 2017; Tandon et al., 2018). The sharp gradients in velocities, which are known as
Linear Kinematic Features (LKFs) and are related to ridge and lead formation, are also
poorly reproduced in any VP-based model running at a coarser resolution than about
2 km, a resolution that is an order of magnitude higher than the observational data (Spreen
et al., 2017; Hutter & Losch, 2019). While it is not clear whether these shortcomings are
due to the VP physics, numerics, or other factors (e.g. Bouchat et al., submitted; Hut-
ter et al., submitted), modifying the model physics is a plausible avenue of investigation.
Several authors have, therefore, suggested alternate approaches to the VP rheology, such
as Tremblay and Mysak (1997); Wilchinsky and Feltham (2004); Schreyer et al. (2006);
Girard et al. (2011); Dansereau et al. (2016).

The rheology presented here is the latest realisation of a branch of rheologies that
traces its origin back to investigations of satellite observations obtained with the Radarsat
Geophysical Processing System (RGPS, Kwok et al., 1998) and buoys trajectories from
the International Arctic Buoy Program (IABP1). Both data sets have proven to be a par-
ticularly rich source of information on sea-ice dynamics. For the sake of the current dis-
cussion, the most important result of the investigations of the RGPS data set is the dis-
covery of the existence of a spatial scale invariance in the way sea ice deforms and of its
associated fractal properties (e.g. Marsan et al., 2004; Weiss & Marsan, 2004; Rampal
et al., 2008; Hutchings et al., 2011; Oikkonen et al., 2017). These observations indicate
a possible way forward for the development of sea-ice rheological models: to be consis-
tent with the observations the models must represent the propagation of fracturing and
the associated spatial and temporal correlations in the sea-ice deformation field, and they
must include a sub-grid-scale parameterisation of the fracturing.

Sea-ice models using the VP rheology have been shown to capture the grid-scale
propagation of fracturing for scales that are about an order of magnitude lager than the
model resolution (Girard et al., 2011; Spreen et al., 2017; Hutter & Losch, 2019; Bouchat
et al., submitted). This is witnessed by the fact that the models exhibit spatial scaling
at these larger scales, albeit sometimes with the wrong power law exponent. The fact
that they don’t exhibit scaling at, or near the model resolution strongly indicates that
they lack a good sub-grid-scale parameterisation of fracturing.

It is important to consider the sub-grid-scale behaviour because the triggering of
fracture formation will always occur at scales much smaller than the model scale (pos-
sibly as small as the meter scale). This unresolved process must, therefore, be properly
parameterised in order for the model to be physically consistent at the grid scale and,
as much as possible, not resolution dependant. Given the observed scale invariance of
sea-ice deformation and related quantities (e.g. Marsan et al., 2004; Rampal et al., 2008,
2009; Ólason et al., 2021) we can also assume that correctly capturing the small scale
behaviour will affect what happens at a larger scale.

1 https://iabp.apl.uw.edu/index.html
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Following these ideas and the work of Marsan et al. (2004), Weiss and Marsan (2004),
Schulson (2004), Schulson and Hibler (2004), and Weiss et al. (2007), Girard et al. (2011)
suggested the elasto-brittle (EB) rheology. This is a damage propagation model where
the fracture density or damage at the sub-grid scale is parameterised using a single scalar
variable which value is altered whenever the local stress exceeds the Mohr-Coulomb fail-
ure criterion. Girard et al. (2011) showed that the EB model could reproduce not only
the observed spatial scaling, but also the localisation and other qualitative properties
of the deformation field. Following this, Dansereau et al. (2016) then proposed a further
development of the EB rheology in the form of the Maxwell-elasto-brittle (MEB) rhe-
ology. The MEB is a viscous-elastic rheology which allows the model to simulate also
the large—and permanent—deformations occurring once the ice is fractured and frag-
mented. In parallel, Bouillon and Rampal (2015), Rampal et al. (2016), and Rampal et
al. (2019) implemented and used the EB and MEB rheologies in the neXtSIM large-scale
sea-ice model to evaluate these rheologies against observations over spatial and tempo-
ral scales spanning several orders of magnitudes.

Despite the very encouraging results of Dansereau et al. (2016), Dansereau et al.
(2017), Rampal et al. (2019), and Ólason et al. (2021), the MEB rheology as proposed
by Dansereau et al. (2016) and implemented in Rampal et al. (2019), leads to excessive
convergence of highly damaged ice, causing it to pile up and become unrealistically thick.
A problem not experienced by models using the VP rheology. Further, in order to achieve
acceptable numerical performance for longer simulations, Rampal et al. (2019) used a
much longer time step than Dansereau et al. (2016) and did not use a fixed-point iter-
ation scheme like Dansereau et al. (2016). This causes the model not to converge to the
correct solution, impacts the damage propagation, and ultimately leads to a substantial
dependence of model behaviour on the time step. In this paper we present a new phys-
ical and numerical framework designed to address those issues, while retaining the main
characteristics and results already obtained using MEB.

In the following we will first present the revised rheology and proposed numerical
framework, discussing both the use of the Bingham-Maxwell constitutive model in a damage-
propagation framework and the use of an explicit solver to improve the code’s efficiency.
We then evaluate this rheology and framework as implemented in the neXtSIM sea-ice
model. We consider this a sufficiently substantial improvement of the model for it to now
warrant the neXtSIMv2 moniker, which we will use hereafter to refer to neXtSIM with
the BBM rheology. In section 3 we first evaluate model results against the RGPS ob-
servations, demonstrating the model’s abilities in reproducing certain observed large-scale
properties of sea-ice deformation. Thereafter, in section 4, we demonstrate that this new
framework gives very reasonable results in terms of large-scale drift and thickness dis-
tribution in a decade-long simulation of the Arctic ice cover. In section 5 we then dis-
cuss the model’s sensitivity to key parameters.

2 Model description

2.1 Motivation

Before describing in detail the modelling framework we discuss the rationale be-
hind the change suggested to the MEB rheology and the new numerical implementation.
These are the addition of a threshold for permanent deformation in compression and the
use of an explicit solver, respectively.

Our motivation behind amending the MEB rheology is that neither the EB nor the
MEB rheologies provide sufficient resistance to ice compression. This is because once dam-
aged, the ice compresses readily allowing prevailing winds and currents to pile up very
thick ice without any substantial resistance. For simulations lasting more than about a
year this results in the formation of unrealistic, thick ice patches (thicker than 5 m, see
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Figure 1. Snapshot of simulated sea ice thickness distribution on 1st January 1999, after 4

years of simulation using the MEB rheology in neXtSIM.

figure 1) of which the number and thickness increase over time. Our approach in address-
ing this is to replace the Maxwell constitutive model used in MEB with a Bingham-Maxwell
constitutive model (e.g. Bingham, 1922; Saramito, 2007; Cheddadi et al., 2008; Irgens,
2008). Using this constitutive model in the context of sea ice was originally suggested
by Dansereau (2016), although their suggestion was meant to better control shear rather
than compressive deformation. Schematically speaking, the Bingham-Maxwell consti-
tutive model consists of a dashpot and a friction element in parallel, connected to a spring
in series (figure 2), with the friction element being the key distinguishing feature between
MEB and BBM. The dashpot and spring still follow the same viscous-elastic rheology
coupled to a progressive damage mechanism as in Dansereau et al. (2016), while the con-
dition we use for the friction element is that for −Pmax < σN < 0 we have elastic be-
haviour without permanent deformations, while otherwise we have both elastic and stress-
dissipative behaviour. Here σN is the mean normal stress in the ice and Pmax is a com-
pressive strength threshold. This setup is chosen to simulate ridging in high compres-
sion and a resistance to ridging when the compressive stress is below a threshold. Dif-
ferent formulations of the threshold are possible (including the one suggested by Dansereau,
2016, to represent friction between ice floes), but the one above is designed to treat com-
pression and give the best results in both preventing excessive convergence and produc-
ing reasonable deformation results as discussed in the following sections.

The justification for using an explicit solver lies in the necessity to capture the prop-
agation of damage while optimising simulation times. Dansereau et al. (2016) introduced
the concept of a characteristic time scale for damage evolution, td, as the time of prop-
agation of (shear) elastic waves and used a semi-implicit scheme with a fixed-point (Pi-
card) iteration scheme with a time step ∆t >= td. Such a scheme is computationally
demanding and Rampal et al. (2019) eventually used a semi-implicit solver, without a
fixed-point iteration scheme, and ∆t� td, to reduce computational cost. As a result,
their model results are dependent on the time-step length and the solution is most likely
not fully converged. In opting for an explicit solver with a time-splitting scheme we up-
date only rapidly-changing variables (velocity, stress, and damage) at a short time step,
while doing advection and thermodynamics at a longer time step. This is based on the
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Figure 2. Panel a) A schematic of the Bingham-Maxwell constitutive model showing a dash-

pot and a friction element connected in parallel, with both connected to a spring in series. Panel

b) The yield criterion in the stress invariant plane {σN , τ}, as well as the elastic limit Pmax, and

the ridging (I), elastic (II), and diverging (III) regimes.

fact that fracture formation happens at a speed similar to that of sound in the ice and
is thus much faster than the sea ice drift speed. The use of an explicit solver is also in-
spired by the work of Hunke and Dukowicz (1997), who showed that in the case of the
EVP model one can use a time step for the explicit solver determined by the elastic time
scale and not the much shorter viscous time scale. This result also holds here (see Ap-
pendix A).

Using an explicit solver requires ∆t < td to explicitly resolve the damage prop-
agation. This time-step requirement is, however, not particularly imposing, as td ∝ ∆x
(see Appendix A) and there is considerable experience within the sea-ice modelling com-
munity in solving the sea-ice momentum equation explicitly in a computationally effi-
cient manner. This was in fact the main goal of Hunke and Dukowicz (1997) in choos-
ing an explicit solver for the EVP rheology. Moreover, typical values of td are similar to,
or even larger, than values typically used for the elastic time scale of the EVP rheology.
It is, therefore, reasonable to assume that the same sub-time stepping approach can be
used here as in the EVP rheology. It is important to note that elasticity in the EVP rhe-
ology is not intended to be physical, but is introduced for numerical expediency and elas-
tic waves in EVP should, therefore, be damped (e.g. Bouillon et al., 2013). Elasticity
in BBM is, however, physical so there is no need to damp any resulting elastic waves.

2.2 The brittle Bingham-Maxwell constitutive model

The EB and MEB rheologies are centred around the idea of damaging and dam-
age propagation, and the BBM also relies on this concept, using the same damaging mech-
anism as MEB. The key difference between these rheologies lies in the constitutive model,
with the EB using a damaging spring, MEB using a damaging Maxwell model, and the
BBM being a damaging Bingham-Maxwell model. The Maxwell model consists of a dash-
pot and a spring in parallel, while the Bingham-Maxwell model consists of a dashpot and
a friction element in parallel, connected in series with a spring (figure 2). The inclusion
of a friction element is thus the key difference between MEB and BBM. Here we will de-
rive the constitutive model resulting from the use of a Bingham-Maxwell constitutive
model with damage, link this to the damage mechanism, and then present the appro-
priate temporal discretisation of the system.
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2.2.1 Constitutive model

The constitutive model used here is the Bingham-Maxwell model together with a
dependence of elasticity and viscosity on damage. The Bingham-Maxwell model is a set
up of a dashpot and friction element in parallel, connected in series with a spring (fig-
ure 2). The condition we use for the friction element is defined in terms of the normal
stress

σN =
1

2
(σ11 + σ22), (1)

as we aim to prevent excessive thickening. In divergent conditions (σN > 0), the stress
in the friction element is 0 and only the dashpot is active. In this case the total stress
is the same as the elastic stress and the viscous stress (σ = σE = σv) and the total
displacement is the sum of the elastic and viscous displacements

ε = εE + εv. (2)

In the range −Pmax < σN < 0, the friction element is able to prevent any permanent
deformation (εv = 0 and ε = εE) and we have a pure elastic behaviour, with

σE = EεE . (3)

For σN < −Pmax, the friction element is no longer able to prevent permanent conver-
gent deformation. We note that Pmax is the key quantity introduced in the BBM rhe-
ology, compared to the MEB.

In a one-dimensional Bingham-Maxwell constitutive model (as in figure 2, panel
b) the friction element stress is constant (at Pmax) and the viscous stress is related to
the total stress by

σ = σv − Pmax (4)

which may be rewritten as

σv = σ

(
1 +

Pmax

σ

)
. (5)

In the two dimensional case we use the normal stress σN as threshold to get

σv = σ

(
1 +

Pmax

σN

)
. (6)

This ensures that the simulated ice retains some resistance to compression, even in a highly
damaged state. Recalling figure 2, we generalise the relationship between σ and σv as

σv = (1 + P̃ )σ, (7a)

P̃ =


Pmax

σN
for σN < −Pmax,

−1 for −Pmax < σN < 0,

0 for σN > 0.

(7b)

The threshold Pmax thus separates the elastic and visco-elastic, or reversible and
permanent deformation phases of the Bingham-Maxwell constitutive model. We assume
that there is a relationship between the threshold Pmax and ice thickness, which is re-
lated to the process of ridging, and so we have used the form

Pmax = P

(
h

h0

)3/2

e−C(1−A), (8)

where h0 = 1 m is a constant reference thickness, P a constant to parameterise Pmax,
following the results of Hopkins (1998), and C is a constant similar to the compaction
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parameter introduced by Hibler (1979). Different formulations for Pmax may be consid-
ered, as briefly discussed in section 5.

Brittle behaviour is ensured by using a slightly modified version of the damaging
mechanism of Dansereau et al. (2016). We write the elasticity E and viscosity η as a func-
tion of damage d and ice concentration A as

E = E0(1− d)e−C(1−A) (9)

η = η0(1− d)αe−αC(1−A), (10)

where E0 and η0 are the undamaged elasticity and viscosity, and α > 1 is a constant.
Undamaged ice has d = 0, while highly damaged ice has d → 1 and d = 1 is never
reached. We use a different dependence of η on A compared to Dansereau et al. (2016),
using e−Cα(1−A), instead of e−C(1−A). This gives more realistic behaviour at low and medium
ice concentration, as discussed further in section 5.

Following Dansereau et al. (2016), we can now apply the elastic stiffness tensor K
to the time derivative of equation (2) and multiply with the elasticity to get

EK : ε̇ = EK : ε̇E + EK : ε̇v. (11)

We assume plane stress conditions, so the stiffness tensor operation K : ε̇ is(K : ε̇)11

(K : ε̇)22

(K : ε̇)12

 =
1

1− ν2

1 ν 0
ν 1 0
0 0 1− ν

ε̇11

ε̇22

ε̇12

 (12)

where ν is Poisson’s ratio. As the elastic stress is, by definition of equation (3)

σE = EK : εE , (13)

its time derivative is
σ̇E = ĖK : εE + EK : ε̇E . (14)

Calculating Ė from equation (9) we get

σ̇E = EK : ε̇E −
ḋ

1− d
σE , (15)

noting that changes in concentration, A, are much slower and can be ignored (see Ap-
pendix B for details).

The viscous stress then relates to the viscous displacement as

σv = ηK : ε̇v, (16)

and to the total stress by
σv = (1 + P̃ )σ. (17)

The elastic stress is related to the total stress as

σE = σ, (18)

since the stress in each serially connected element must be equal to the total stress. By
using equations (7), (15), (16), (17), and (18) we can now rewrite equation (11) as

EK : ε̇ = σ̇ +
ḋ

1− d
σ + (1 + P̃ )

E

η
σ, (19)
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or

σ̇ = EK : ε̇− σ

λ

(
1 + P̃ +

λḋ

1− d

)
, (20)

where λ = η/E is the viscous relaxation time.

For the time rate of change of damage, ḋ we have ḋ > 0 only when damaging oc-
curs, otherwise ḋ = 0. We will, therefore, link the −σḋ/(1 − d) term of equation (20)
to the damaging process below, noting that this term of the equation is zero when the
stress is inside the failure envelope. Note also, that for ḋ = 0 and P̃ = 0 the MEB con-
stitutive law is recovered (equation 4 of Dansereau et al., 2016).

2.2.2 Damaging and healing

Damaging occurs in the BBM rheology whenever the simulated stress in a grid cell
or element is outside the failure envelope, or yield curve. The failure envelope of the BBM
rheology is the Mohr-Coulomb criterion:

τ = µσN + c, (21)

where τ and σN are the stress invariants (shear and mean normal stress, respectively),
µ is the internal friction coefficient and c is the cohesion (see figure 2). Following Bouillon
and Rampal (2015), we let the cohesion scale with model resolution, as

c ∼ cref

√
lref

∆x
, (22)

where c is the model cohesion, ∆x is the distance between model node points, and cref

is the cohesion at the reference length scale, lref. We here use the lab scale, lref = 10 cm
as the reference length scale, where we know the cohesion to be of the order of 1 MPa
(e.g. Schulson et al., 2006). In addition to the Mohr-Coulomb criterion we cap the yield
curve at high compressive normal stress, as discussed below.

Stress states outside the failure envelope are not physical and so whenever the mod-
elled stress states fall outside the criterion, the damage, d, is modified in order to bring
the stresses back inside the yield curve. We note that equation (20) can be written as

dσ

dt
=
∂σ

∂t
+
∂σ

∂ε

∂ε

∂t
+
∂σ

∂d

∂d

∂t
, (23)

with the last term being
∂σ

∂d

∂d

∂t
=
−σ

1− d
ḋ. (24)

We now consider the case of damaging changing the stress from a stress state outside
the yield curve, σ′, to a stress state on the failure envelope, σ, over a time td. We then
have

σ

σ′
= dcrit (25)

and
σ − σ′

td
= −σ′ 1− dcrit

td
. (26)

Assuming that the damaging process is uniform over time td, we can write this as

∂σ

∂d

∂d

∂t
= −σ 1− dcrit

td
. (27)

Combining equations (24) and (27) we get

ḋ =
1− dcrit

td
(1− d). (28)
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We can assume that for stresses inside the yield curve dcrit = 0 at all times. Follow-
ing Dansereau et al. (2016), we set the characteristic time scale of the propagation of dam-
age to be

td =
∆x

cE
= ∆x

√
2(1 + ν)ρ

E
, (29)

with cE being the propagation speed of an elastic shear wave, ν being Poisson’s ratio,
ρ the ice density, and E the elasticity as before. We note that equation (27) gives an equa-
tion for the change in stress due to damaging which allows us to simplify the time step-
ping described below.

The variable dcrit is the distance between the simulated stress and the yield curve.
Here we use the formulation of Plante et al. (2020)2, but limiting on the compressive stress
following (Bouillon & Rampal, 2015). This upper limit is there to counteract instabil-
ities that set in at very high σN (as pointed out by Plante et al., 2020). This limit is a
numerical construct and is chosen high enough so that it does not influence the results.
We scale the limit using the same scaling relationship as for the cohesion, as the onset
of instability at high compression is related to the value of cohesion. The resulting equa-
tion for the limit is

N = Nref

√
lref/∆x, (30)

where Nref is the limit at the reference length scale lref. The resulting equation for dcrit

then reads

dcrit =

{
−N/σN , if σN < −N
c/(τ + µσN )

. (31)

Since the elasticity and viscosity of the rheology depends on the damage, the damaging
process as described above ensures that the stresses are always relaxed to within the yield
curve over the time scale td.

Damaged ice must heal with time and this is done via a simple restoring term as
originally introduced by Bouillon and Rampal (2015) and used in Rampal et al. (2016)

ḋ = − 1

th
= −∆T

kth
. (32)

Here th is the characteristic time scale of healing, which we chose to depend on the tem-
perature difference between the base of the ice and of the snow-ice interface, i.e. th =
kth/∆T , where kth is a constant and ∆T is the temperature difference. This formula-
tion is somewhat ad hoc, but it prevents melting ice from healing which improves thick-
ness and concentration distribution in summer and has very limited effect in winter. The
time scale of healing is much larger than that of damaging (th � td), and so equations
(28) and (32) can be solved separately.

2.2.3 Temporal discretisation

The temporal discretisation of equation (20), using an implicit scheme, is relatively
straightforward and very similar to that of Dansereau et al. (2016). Assuming no dam-
age occurs, ḋ = 0 and we write σ̇ in terms of the previous time step and the current
estimate, σn and σ′ respectively, giving

σ′ − σn

∆t
= EK : ε̇− σ′

λ

(
1 + P̃

)
(33)

2 Their equation (13). Note that they use Ψ instead of dcrit
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where all variables are from the previous time step (n), and ∆t is the time-step length.
Rearranging gives

σ′ =
λ(∆tEK : ε̇+ σn)

λ+ ∆t(1 + P̃ )
. (34)

If the stress σ′ is inside the failure envelope we set σn+1 = σ′ and continue. If the
stress is outside the envelope, however, damaging occurs. In this case, damage is updated
using the damage evolution in equation (28), which should be discretised explicitly as

dn+1 − dn

∆t
=

1− dcrit

td
(1− dn). (35)

This can be rearranged as

dn+1 = dn + (1− dcrit)(1− dn)
∆t

td
. (36)

The super-critical stress resulting from (34) is then relaxed assuming a discretisation of
equation (27) of the form

σn+1 − σ′

∆t
=
∂σ

∂d

∂d

∂t
= −σ 1− dcrit

td
, (37)

which can be rewritten as

σn+1 = σ′ − (1− dcrit)σ
′∆t

td
. (38)

This relaxation may also be replaced by a recalculation of the stress using the full equa-
tion (20) and dn+1, but using equation (38) is substantially more cost-efficient and the
results are virtually identical.

2.3 An explicit solver for the momentum equation

The use of an explicit solver for the sea-ice momentum equation is well known within
the sea-ice modelling community, and the current implementation follows very closely
that of Hunke and Dukowicz (1997) and Danilov et al. (2015). There have been various
improvements made to the EVP rheology of Hunke and Dukowicz (1997) in the last years
(Lemieux et al., 2012; Bouillon et al., 2013; Kimmritz et al., 2016), attempting to find
the best way of using a sub-time stepping scheme to converge the EVP solution to the
implicit VP solution. In our case it is more appropriate to think not of sub-time step-
ping, but rather time-splitting, where the dynamic processes changing velocity and in-
ternal stress are resolved at a much shorter time step than advection and thermodynamic
processes. Such time-splitting is well known in ocean models (e.g. Killworth et al., 1991;
Hallberg, 1997) and the original EVP of Hunke and Dukowicz (1997) can also be con-
sidered as a time-splitting approach. We base our solver very closely on that of Hunke
and Dukowicz (1997), it being a good fit for our purpose, and a widely-adopted and well-
understood method.

The momentum equation of sea ice is (e.g. Connolley et al., 2004; Bouillon & Ram-
pal, 2015; Danilov et al., 2015)

m
∂~u

∂t
= ∇ · (σh) +A(~τa + ~τw) + ~τb +mf~k × ~u−mg~∇η, (39)

where m = Aρh is the ice mass per unit area, ~u is the ice velocity, σ is the internal stress
tensor, h is the ice slab thickness (not volume per unit area), ρ the ice density, ~τa and
~τw are the atmosphere and ocean stress terms, respectively, ~τb = −Cb~u is the basal stress
term introduced in Lemieux et al. (2015), mf~k × ~u is the Coriolis term, with vertical
unit vector ~k, and mg~∇η is the ocean-tilt term. We write explicitly the integrated in-
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ternal stress as σh following Sulsky et al. (2007) and Bouillon and Rampal (2015). On
staggered grids, the tracers m, A, and h are generally collocated and not collocated with
the velocities, so we prefer to divide equation (39) with A to get

ρh
∂~u

∂t
= ∇ · (σh) + ~τa + ~τw + ~τb + ρhf~k × ~u− ρhg~∇η, (40)

ignoring a factor of 1/A in front of the internal and basal stress terms. Those terms dis-
appear very quickly with decreasing concentration, so the error incurred is very small
(of the order of 0.1%). The correct dependence of these terms on A is also very uncer-
tain.

The atmosphere and ocean stress terms are assumed to be quadratic, having the
forms

~τa = ρaCa|~ua|(~ua cos θa + ~k × ~ua sin θa) (41)

and
~τw = ρwCw|~uw − ~u|[(~uw − ~u) cos θw + ~k × (~uw − ~u) sin θw], (42)

respectively, where ρa and ρw are the atmosphere and ocean densities, Ca and Cw at-
mosphere and ocean drag coefficients, θa and θw the atmosphere and ocean turning an-
gles, and ~uw is the ocean velocity.

The momentum equation, together with the drag terms, is then discretised in time
(using Cartesian coordinates with i, j = 1, 2 implying x and y direction) as (Hunke &
Dukowicz, 1997)

ρh

∆t
(uk+1
i − uki ) =∑

j

∂σk+1
ij h

∂xj
+ τai + c′[(uwi − uk+1

i ) cos θw − εij3(uwj − uk+1
j ) sin θw]

− Cbuk+1
j + εij3ρhfu

k+1
j − ρhg ∂η

∂xi
, (43)

where εijk is here the Levi-Civita symbol and c′ = ρwCw|~uw − ~uk|. This then gives a
set of equations that can be solved for the velocity components to give

(α2 + β2)uk+1
1 = αuk1 + βuk2

+
∆t

ρh

α
∑

j

∂σk+1
1j h

∂xj
+ τ1

+ β

∑
j

∂σk+1
2j h

∂xj
+ τ2

 (44)

(α2 + β2)uk+1
2 = αuk2 − βuk1

+
∆t

ρh

α
∑

j

∂σk+1
2j h

∂xj
+ τ2

+ β

∑
j

∂σk+1
1j h

∂xj
+ τ1

 , (45)

–12–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

with

α = 1 +
∆t

ρh
(c′ cos θw + Cb) (46)

β = ∆t

(
f +

c′ sin θw
ρh

)
(47)

τ1 = τai + c′(u1,w cos θw − u2,w sin θw)− ρhg ∂η
∂x1

(48)

τ2 = τaj + c′(u2,w cos θw + u1,w sin θw)− ρhg∂η
∂y

(49)

c′ = ρwCw|~uw − ~uk|. (50)

Given a form for σk+1 and a spatial discretisation, equations (44) and (45) are easily solved
to give the velocity components at each grid point or mesh node.

The spatial discretisation of equations (44) and (45) using finite differences was dis-
cussed by Hunke and Dukowicz (1997) for an Arakawa B-grid and by Bouillon et al. (2009)
for both the Arakawa B and C-grids. As we have chosen to implement the new rheol-
ogy in the finite element model neXtSIMv2, we have followed Danilov et al. (2015) for
a discretisation using the finite elements method, but there are no apparent impediments
for a finite difference implementation of the new rheology.

In their implementation of the Finite Element sea-ice model, FESIM (version 2),
Danilov et al. (2015) use nodal quadratures in all terms that do not involve spatial deriva-
tives, in order to save computational time by not computing (unnecessary) mass matri-
ces. The authors derive a weak formulation of the momentum equation (40) by multi-
plying it with test functions, integrating over the domain, and integrating the internal
stress term by parts to get a weak formulation. As the resulting lumped mass matrix
(ML

lm) is diagonal, its diagonal entries are simply one third of the sums of areas of tri-
angles containing the vertex considered, Ac/3. Equations (44) and (45) can then be used
directly, but with∑

m

∂σ1jh

∂xm
= − 1

1
3

∑
c(l)Ac

∑
c(l)

Ach

(
(σ11)c

∂Nl
∂x1

+ (σ12)c
∂Nl
∂x2

)
(51)

∑
m

∂σ2jh

∂xm
= − 1

1
3

∑
c(l)Ac

∑
c(l)

Ach

(
(σ12)c

∂Nl
∂x1

+ (σ11)c
∂Nl
∂x2

)
(52)

and

∂η

∂x1
=

1
1
3

∑
c(l)Ac

∑
c(l)

∑
j(c)

ηm
∂Nm
∂x1

(53)

∂η

∂x2
=

1
1
3

∑
c(l)Ac

∑
c(l)

∑
j(c)

ηm
∂Nm
∂x2

, (54)

where
∑
c(l) denotes the sum over all the elements adjacent to node l and

∑
m(c) denotes

the sum over all the nodes belonging to element c. Note that in neXtSIMv2 the momen-
tum equation is solved on the polar-stereographic plane and we do not include the met-
ric factors as present in Danilov et al. (2015).

2.4 Implementation

The implementation of BBM into neXtSIMv2 that is used hereafter uses a time-
splitting method wherein all equations except those related to the velocity, stress, and
damage updates are solved using a long, main time step, ∆tm. This includes damage heal-
ing, according to equation (32), thermodynamics, and advection. The velocity, stress,

–13–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

and damage fields (except for healing) are then updated at a higher frequency. The higher
frequency time stepping simply consists of splitting the long time step into Nsub short
dynamical time steps, ∆t. The long time step is limited by the stability of the advec-
tion scheme, while the dynamical time step is limited by the stability of the BBM rhe-
ology. In neXtSIMv2, a single dynamical time step consists of the following:

Algorithm 1 A single dynamical time step in the implementation of BBM into
neXtSIMv2

1. Calculate σN and Pmax according to equations (1) and (8), respectively

2. Calculate σ′ according to equation (34)

3. Calculate dcrit according to equation (31)

4. if dcrit < 1 then

5. Update damage according to equation (36)

6. Update σn+1 according to equation (38)

7. else

8. Set σn+1 = σ′

9. end if

10. Calculate u1 and u2 using equations (44) and (45)

11. Update u1 and u2 on ghost-nodes of the parallelisation sub-domains

In addition to the dynamical solver described here, thermodynamic growth is cal-
culated using the approach of Winton (2000) and advection is done using the Lagrangian
scheme of Samaké et al. (2017). We also use the two-class approach of Hibler (1979) for
calculating ice growth in open water.

3 Evaluation of simulated deformation

Here we present a simplified evaluation of the simulated deformation. This eval-
uation was performed by qualitative visual analysis of deformation maps (see Figures
3 and 4), probability density functions, quantitative metrics including bias and root mean
square error of deformation time series, and spatial scaling analysis. The goal of apply-
ing these metrics on the two model runs is to illustrate the sensitivity of the metrics to
obviously different spatial patterns of deformation, rather than a comprehensive eval-
uation of the different rheologies.

As explained in subsections below the metrics were computed for sea ice deforma-
tion from three sources of ice drift:

• SAR-based observations of ice drift from the RADARSAT Geophysical Proces-
sor System (RGPS, Kwok et al., 1998);

• neXtSIMv2 with the new BBM rheology (BBM);
• neXtSIMv2 with the mEVP rheology (Bouillon et al., 2009);

The main goal here is to compare BBM against observations. We include the mEVP sim-
ulations as a reference for the commonly used (E)VP models and we choose not to com-
pare to results obtained with MEB, since we have already established that it is not suit-
able for longer simulations.
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Table 1. Key model parameters and the values used in the experiments presented here.

Parameter symbol value

Ice–atmosphere drag coefficient Ca 2.0× 10−3

Ice–ocean drag coefficient Cw 5.5× 10−3

Undamaged elasticity E0 5.96× 108 Pa
Undamaged viscous relaxation time λ0 1× 107 s
Scaling parameter for the riding threshold P 10 kPa
Cohesion at the reference scale cref 2 MPa
Poisson ratio ν 1/3
Ice density ρ 917 kg/m3

Maximum compressive stress at the reference scale Nref 10 GPa
Temperature dependent healing time scale kth 15 days/20 K
Main model time step ∆tm 900 s
Dynamical time step ∆t 7.5 s
Mean resolution ∆x 10 km
mEVP convergence parameters α, β 500

The model setup is similar to that in Rampal et al. (2019), except that here we use
the BBM where they used MEB. In the two runs (BBM, mEVP) neXtSIMv2 is initial-
ized on 15 November 2006 and runs until 30 April 2007. Atmospheric forcing is derived
from the ERA5 reanalysis (Hersbach et al., 2020) and oceanic forcing from the TOPAZ4
reanalysis (Sakov et al., 2012). Initial sea ice thickness and concentration are set from
a combination of data from OSISAF (Tonboe et al., 2016), TOPAZ4, and ICESAT3, as
described in Rampal et al. (2019). Initial sea ice damage is set to zero. In all three runs
the explicit solver is used and the time step and spatial resolution are the same. The dif-
ference is in the rheological part of the model: BBM uses equations from Section 2.2 as
they are, in mEVP we follow the implementation of Danilov et al. (2015) with minor changes
discussed in Appendix C. We use model time steps of ∆tm = 900 s and ∆t = 7.5 s,
which is equivalent to 120 sub-iterations, for both BBM and mEVP. For the mEVP we
set the α and β parameters to 500 following Koldunov et al. (2019). We also tested run-
ning the mEVP with 500 and 1000 sub-iterations, but the differences in results are mi-
nor if the results not worse depending on the metric (see Appendix D). Table 1 lists the
main model parameters and the values used here.

3.1 Details on computation of sea ice deformation rates

Sea-ice drift is computed from the RGPS data the same way as in Stern and Lind-
say (2009), with “snapshots” of the sea-ice drift created from the Lagrangian displace-
ment data. For a given target time the snapshot contains all observations of drift that
start before this time, end after it and are separated by 3 days. Sea-ice drift from the
model is computed similar to Rampal et al. (2019), with drifters in the model seeded at
the location of the RGPS snapshot points, and these drifters then advected together with
the model elements for the same duration as in the RGPS snapshot. Unlike in Rampal
et al. (2019), the simulated trajectories are re-initialised every 3 days to exactly match
the RGPS snapshots. The sea ice deformation components divergence (εdiv) and shear

3 available at: https://icdc.cen.uni-hamburg.de/seaicethickness-satobs-arc.html, last access: August

2020
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Figure 3. Maps of sea ice divergence (day−1) for 2 February 2007 as observed by RGPS and

simulated by neXtSIMv2 with BBM, and mEVP rheologies.

(εshear) formulation are exactly the same as in Rampal et al. (2019):

εdiv = ux + vy (55)

εshear =
√

(ux − vy)2 + (uy + vx)2, (56)

where ux, uy, vx and vy are components of the ice drift velocity gradient.

Maps of divergence and shear rate computed from an example snapshot of RGPS-
data based sea-ice drift for 2nd February 2007 are compared against modelled results in
figures 3 and 4. Similar to maps in Rampal et al. (2019) and Marsan et al. (2004) the
RGPS maps clearly show presence of narrow and long fractures in sea ice in the central
Arctic, while the deformation field closer to the coast is more homogeneous. Visually the
BBM maps appear quite realistic—length, width and orientation of fractures, as well as
magnitude of deformation rates is similar to the RGPS observations. The mEVP maps,
on the other hand, show very smooth fields of deformation with few obvious cracks within
the ice cover.

3.2 Sea ice deformation probability distribution

Probability density functions (PDFs) were computed from all snapshots of sea ice
deformation components for RGPS, BBM and mEVP and plotted in figure 5. Compar-
ison of PDFs shows that for both divergence and shear BBM fits very well with obser-
vations, yet slightly underestimating the highest shear values. High values of convergence
(above 0.1 day−1) (defined as negative values of divergence with opposite sign) are un-
derestimated. mEVP, on the other hand overestimates very small deformations and sig-
nificantly underestimates the main portion of the spectrum.

3.3 Sea-ice deformation time series

We have seen that both the spatial field and the PDFs are characterised by a small
number of high deformation values. This is exemplified by the LKFs (figures 3 and 4)
and the long tail of the PDFs (figure 5). To better analyse this, a metric sensitive to these
high values should be used. The 90th percentile (denoted as P90) was selected as such
a metric. P90 is the value of deformation below which 90% of deformation values in the
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Figure 4. Maps of sea ice shear (day−1) for 2 February 2007 as observed by RGPS and simu-

lated by neXtSIMv2 with BBM and mEVP rheologies.

Figure 5. Probability density functions of three sea ice deformation components computed

from all snapshots in 2007. Colors denote RGPS observations (blue) and nextSIM runs: BBM

(orange) mEVP (green).
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Figure 6. Time series sea ice shear P90 for 2007 as observed by RGPS (blue) and simulated

by neXtSIMv2 with BBM (orange) and mEVP (green) rheologies.

frequency distribution fall. For evaluation of the temporal evolution of the deformation,
P90 was computed from each snapshot of deformation in 2007. Values of P90 from RGPS
and neXtSIMv2 were plotted and inter-compared using bias (b) and root mean square
error (RMSE, e):

b = 〈εN − εR〉, (57)

e = 〈(εN − εR − b)2〉0.5 (58)

where εN and εR are ice shear P90 values from neXtSIMv2 and RGPS and 〈〉 denotes
averaging. The P90 time series (see Figure 6) show that while neither rheology can cap-
ture the highest peaks in deformation rates, the BBM results are clearly closer to RGPS,
with a lower bias (bBBM = 0.014, bmEVP = 0.028) and RMSE (eBBM = 0.012, emEVP =
0.016).

It is noteworthy that the BBM rheology is able to instantaneously react to stronger
forcing with rapidly increased deformation, and the timing of these periods of high de-
formation matches well with peaks in the observations. However, in the mEVP rheol-
ogy deformation is lower, increases slower, and lags behind the observed rates. We ex-
pect both the P90 time series and the tail of the PDF presented in the following sub-
section to be influenced by the rheology used, but also how well the atmospheric model
represents extreme storms. This later aspect is not investigated here.

3.4 Spatial scaling analysis

The spatial scaling analysis of the RGPS, BBM, and mEVP deformation distribu-
tions was performed similar to (Marsan et al., 2004). To form a distribution of the to-
tal deformation rate (εtot) at the the nominal spatial scale of 10 km the triangular el-
ements from RGPS and corresponding elements from BBM or mEVP runes were selected
with the area between 40 and 60 km2 (corresponding to initial RGPS triangles with sides
10 × 10 km × 14 km). The shear and divergence components were computed on these
triangles as described above and total deformation was computed as their geometric mean.
On larger spatial scales (namely at 20, 40, 80, 160, 320, 640 and 1000 km) the follow-
ing procedure was used: the Arctic ocean was split by a grid with size equal to the anal-
ysed spatial scale; area-weighted average of velocity gradients (ux, uy, vx, vy) from el-
ements falling in each grid cell was computed; shear, divergence and total deformation
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Figure 7. Spatial scaling analysis of RGPS (blue), BBM (orange) and mEVP (green) total

deformation fields. A: Moments of the distributions of the total deformation rate εtot calculated

at a temporal scale of 3 d and space scales varying from 10 to 1000 km. B: Structure functions,

where β indicates the exponent of the power-law fits and q is the moment order.

rates were computed from the averaged velocity gradients. This procedure was repeated
for 3-day fields of deformations acquired between 10 December 2006 and 10 May 2007.

The moments of distributions at each spatial scale were computed as 〈εqtot〉 with
order q = 1,2 and 3. A power-law scaling function 〈εqtot〉 = L−β(q) was fitted for each
moment using the least squares method. Moments, power-law functions and structure
functions β(q) are plotted on Figure 7, where β indicates the exponent of the power-law
fits and q is the moment order. The filled area indicate standard deviation from aver-
aging moments through December 2006 - May 20.07

4 Evaluation of simulated thickness

One of the main motivation of the development of the BBM rheology was to be able
to run long-term simulation without encountering the problem of excessive thickening
that occurs with the MEB rheology as implemented by Rampal et al. (2019). In this sec-
tion, we evaluate sea ice thickness in long-term simulations to ensure that BBM leads
to reasonable values of the sea ice thickness, just like models using viscous-plastic based
rheologies do (e.g. Zampieri et al., 2021, using mEVP).

4.1 Model setup

We use a neXtSIMv2 setup very similar as the one used in section 3, but with dif-
ferent initialisation and simulation length. The model domain has been extended to en-
compass a larger part of the Eastern Greenland coast as well as the Barents and Kara
seas (see Figure 8). Two simulations are run, one with the BBM rheology and one with
the mEVP rheology. In the following, we refer to these two simulations as BBM and mEVP,
respectively. The sea-ice rheology is the only difference between these two simulations.
They are initialised on 1st January 1995 with ice conditions provided by PIOMAS (Schweiger
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et al., 2011) and are run over 20 years. Atmospheric forcings are provided by the hourly
dataset from the ERA5 reanalysis (Hersbach et al., 2020).

We also run 4 additional experiments using the BBM rehology to investigate the
impact of the parameters P and the exponent of the thickness dependency of Pmax in
equation 8. These experiments are initialised from the reference BBM simulation on 1st
January 2000 and run for 5 years. The first two of them are similar to the BBM refer-
ence simulation with the exception of the value of P , set to 6 kPa and 14 kPa. The third
and fourth experiment use an exponent for the dependency of Pmax on h equal to 1 and
2 respectively, instead of 3/2 in the reference simulation. The values of P in these two
simulation have been adjusted to obtain the same value of Pmax for h=2m.

4.2 Sea ice thickness evaluation

For our evaluation, we compare the sea-ice thickness from the BBM and mEVP
simulations to version 2.2 of the merged CS2-SMOS estimated sea thickness product (Ricker
et al., 2017)4. This product provides a 7-day averaged estimate of the pan-Arctic sea-
ice thickness distribution. It is available daily during the freezing season, from mid-October
to early April, starting from November 2010.

The evolution of the domain-averaged sea-ice thickness over the whole run for the
two simulations is presented in Figure 8a. We used a 7-day running mean to be consis-
tent with the CS2-SMOS estimated thickness when it is available. Here we can see that
there is no spurious thickening of the sea ice in the BBM simulation, hence confirming
it can be used for more than year-long simulations. The two simulations furthermore show
very similar trend and inter-annual variability. The only difference is that ice is gener-
ally thicker in the BBM simulation, resulting in a positive offset of its associated curve
compared to the mEVP one. The comparison with CS2-SMOS estimated thickness af-
ter 15 years of simulations show a reasonable agreement for the BBM simulation, despite
a small negative bias. This negative bias is slightly larger for the mEVP simulation but
can be reduced for either of these two simulations with an appropriate tuning of ther-
modynamical parameters.

We also check the sea ice thickness spatial distribution (Figure 8b,c,d) for the over-
lapping period covered by the CS2-SMOS product and our simulations. In general, both
simulations show distribution patterns similar to the observations, even though they un-
derestimate the ice thickness. The extent of thick ice (represented by the 1.5m contour
in Figure 8b,c,d) in the BBM simulation is however larger than in the mEVP simula-
tion, showing a better agreement with the thick ice distribution in the CS2SMOS dataset.
This underestimation is particularly visible in places where ice is thicker than 2 m in the
CS2-SMOS product. The underestimation of the sea ice thickness for thick ice and the
overestimation of sea ice thickness for thin ice are a known problem of sea ice models
(Schweiger et al., 2011). Note however that the BBM simulation seems to better repro-
duce the decreasing gradient of ice thickness from the northern coast of Greenland to-
wards the North Pole than the mEVP one, in which thick ice is only found in a narrow
band along the Greenland coast.

Our results show that the BBM rheology yields a reasonable sea-ice thickness mag-
nitude and distribution when compared to observations in a way that is very similar to
the results obtained with mEVP. Further studies should focus on the sea ice mass bal-
ance of a model using the BBM rheology to better understand how sea ice dynamics in-
teract with thermodynamics.

4 Available at ftp://ftp.awi.de/sea ice/product/cryosat2 smos/v202/nh/, last visit March 2021
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Figure 8. (a) Evolution of the 7-day running mean sea ice thickness over the domain for the

mEVP and BBM simulations. Available data from the CS2-SMOS v2.2 product are also shown

for comparison with their associated uncertainty in the shaded area. The corresponding spatial

distribution for all the period covered by the CS2-SMOS v2.2 product between 2010 and 2016

is also presented for the mEVP (b) and BBM (c) simulations, as well as for the CS2-SMOS v2.2

product (d). The black solid line in (b,c,d) represents the 1.5m sea ice thickness contour in each

dataset and the dashed contour line represents the borders of the model domain.
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5 Discussion

Given the role of spatial scaling analysis in the development of the EB and MEB
models we have done a spatial scaling analysis of the BBM results as well. This shows
that BBM closely follows the RGPS observations, both in terms of scaling and structure
function. For P = 0 kPa we recover the MEB equations, as stated previously, and us-
ing this to emulate MEB shows only minor differences between the two in terms of scal-
ing (not shown). This is consistent with previously published MEB results (e.g., figure
3 in (Rampal et al., 2019)). The mEVP significantly underestimates all three moments
indicating that the density distribution of deformations remain almost normal up to very
small spatial scales, even if the model is run on a Lagrangian mesh. We note also that
mEVP scaling results diverge significantly from the fit at the smallest scales. These re-
sults are consistent with the scaling analysis of approximately 10 km resolution (Eule-
rian) models performed by Bouchat et al. (submitted). This shows that the source of the
heterogeneity we see in the BBM runs is the model physics and not the Lagrangian ad-
vection scheme—although the advection scheme may help preserving this heterogene-
ity once formed.

The BBM adds to the MEB by introducing a new parameterisation, which is that
of the maximum pressure, Pmax (see equation 8). Here Pmax is a threshold between the
regimes of reversible and permanent deformations, which we interpret as the maximum
pressure the ice can withstand before ridging. In equation (8) we have chosen to use P ∝
h3/2, leaving the constant of proportionality, P as a tunable parameter and the main new
parameter of the rheology. The model results are reasonably sensitive to the value of this
parameter. This is true for both the deformation patterns and the large-scale thickness
distribution, both of which show a qualitatively continuous and monotonous response
to changes in P for P > 0 kPa.

We explored manually the parameter space for P , and figure 9 shows maps of shear
rate for a given day and a range of values for P ∈ [0, 18] kPa, demonstrating the effect
of P on the deformation patterns. Using P = 0 kPa to emulate MEB we see that us-
ing BBM gives a qualitative improvement of the deformation patterns, compared to MEB.
For 0 < P . 6 kPa the features are not as straight as expected, while for P & 14 kPa
they start to become too localised and intense with not enough deformation occurring
between them. Modifying the cohesion (cref) also affects the deformation patterns; us-
ing a small value giving a large number of small, less intense features, while larger val-
ues give a smaller number of large, more intense features (not shown). A reasonable range
for cref appears to be within 1 and 3 MPa. These comparisons are at the moment very
qualitative, but we find that using the current tools we have at our disposal (such as scal-
ing analysis and LKF detection) give either inconclusive results or require further de-
velopment to be used to tune this new rheology against observed deformation.

Using different values of P also affects the large-scale thickness distribution in the
Arctic. Figure 10 shows how using P = 6 kPa and P = 14 kPa modifies the long term
averaged thickness field, compared to P = 10 kPa. In it, we see a clear thickening by
about 20 cm and thinning by about 10 cm for P = 6 kPa and P = 14 kPa, respec-
tively. This is to be expected, as a lower P value allows the ice to ridge more readily and
so the observed difference in thickness is due to an increase or decrease in ridging. We
also don’t expect the response to be symmetric around an optimal P value because Pmax ∝
h3/2 and not Pmax ∝ h.

In addition to the sensitivity to the value of P we note that the formulation of Pmax

is not immediately obvious. Here we have chosen to relate the maximum pressure to ice
thickness following Hopkins (1998). Other possible choices we explored were to use a con-
stant, to use Pmax ∝ h (similar to Hibler, 1979) and Pmax ∝ h2 (as per D. A. Rothrock,
1975). A dependence on the ice thickness is likely to be more complicated in reality, and
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Figure 9. Maps of sea ice shear for 2 February 2007 as simulated by neXtSIMv2 with the

BBM rheology and P = 0, 2, 6, 10, 14, 18 kPa, in panels a, b, c, d, e, and f, respectively.

a)

0 2 4
Sea ice thickness [m]

b)

0.2 0.0 0.2
Sea ice thickness difference [m]

c)

0.2 0.0 0.2
Sea ice thickness difference [m]

Figure 10. (a) January to March sea ice thickness climatology from 2000 to 2004 for the ref-

erence BBM simulation (P=10 kPa and Pmax ∝ h3/2). Panels (b) and (c) show the difference

for this same quantity between simulations using with P=6 kPa (b) and P=14 kPa (c) and the

reference BBM simulation.
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a)

0 2 4
Sea ice thickness [m]

b)

0.2 0.0 0.2
Sea ice thickness difference [m]

c)

0.2 0.0 0.2
Sea ice thickness difference [m]

Figure 11. (a) Similar to Figure 10a. Panels (b) and (c) are also similar to Figure 10b,c but

this time for two simulations with different dependencies of Pmax on h: (b) Pmax ∝ h and (c)

Pmax ∝ h2. Values of P in each simulation have been adjusted to obtain the same value of Pmax

for h=2m as in the reference BBM simulation. The solid black line in each panel delimits the

2-metre sea ice thickness contour in the BBM reference simulation.

other ice state parameters may have to be taken into account. Different formulations,
such as relating Pmax to the level of damage, are also possible, but were not explored here.

Using the different formulations of Pmax listed above does not have a notable ef-
fect on the deformation patterns, but it does affect the large-scale thickness distribution.
Figure 11 shows how using Pmax ∝ h and Pmax ∝ h2 compares to the reference im-
plementation with Pmax ∝ h3/2. In these experiments we chose the constant of propor-
tionality such that Pmax is the same in all three cases for 2 m thick ice. The figure shows
a clear pattern of pivoting in the thickness anomalies between the different cases. For
Pmax ∝ h the ice that is thicker than 2 m in the reference experiment becomes even
thicker, while for Pmax ∝ h2 it is thinner. The change in thickness is of the order of 20 cm.
This behaviour is expected, based on the model response to simply changing P in the
reference implementation. Even though the difference between the different formulations
is clear we still cannot conclusively determine which one gives the best results because
uncertainties in observed ice thickness and unrelated model parameters are most likely
larger than the signal we see here.

Using the chosen set of parameters for the BBM, we see only minor differences be-
tween the thickness distribution and evolution of BBM and mEVP (figure 8). This in-
dicates a very strong influence of the atmospheric and oceanic forcing on the ice state—
as is to be expected. We note, however, that the mean ice thickness using the BBM is
slightly higher, and that this behaviour can be reproduced with the mEVP by increas-
ing the h0 parameter of the Hibler (1979) two-category ice formation scheme. This shows
that more ice is produced in leads using the BBM—which is also to be expected as that
model clearly produces more openings (figure 3). A plausible mechanism for this is that
more ice is produced in a lead that opens, refreezes, and then closes mechanically, than
would have been produced under level ice. A lead can only open if ice is either being ridged
or exported down-stream, so this will also act to increase the mean ice thickness, except
in the vicinity of export gates, such as the Fram Strait.

The difference between BBM and mEVP is much greater if we use the ice thick-
ness scheme of Rampal et al. (2019), who added a dynamically inert thin, or young ice
class (not shown). The role of ice formation in leads is, therefore, most likely underes-
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timated using only the two categories of Hibler (1979) in this context, but further in-
vestigation of this is outside the scope of this paper.

In addition to proposing a new constitutive model, we here also propose a new re-
lationship between the viscosity and sea-ice concentration in equation (10). We intro-
duced this change because with the original formulation of Dansereau et al. (2016) low-
concentration ice behaved in a more rigid-like manner than what is readily observed. This
was particularly evident in the Fram Strait and along the East Greenland coast where
we saw arching during summer in the Fram Strait and the ice in the East Greenland Cur-
rent was too loose and did not flow as close to the coast as can be seen in observations.

The original viscosity formulation of Dansereau et al. (2016) (who use e−C(1−A),
instead of e−Cα(1−A)) is only an educated first guess when it comes to the relationship
between viscosity and concentration (as they themselves point out). Our reformulation
is motivated by the fact that the original formulation gives too viscous ice at low con-
centration, as well as the idea that there should be a relationship between damage and
concentration, as for instance waves are more likely to break the ice into small floes where
ice concentration is low (Williams et al., 2017; Boutin et al., 2021). Our equation for η
can be re-written as η = η0[(1− d)e−C(1−A)]α to underline this connection.

Although our formulation gives reasonably good results, the connection between
damage, floe-size distribution, and concentration should be investigated in substantially
more detail still. One reason for further investigation is that the theoretical basis for the
current formulation is probably weak and an in-depth study of the transition between
the collisional and continuum regimes should yield a much better justified formulation.
Another reason is that we have seen that the formulation of the relationship between vis-
cosity and concentration affects the PDF of convergence (figure 5), and the convergence
PDF is still not as well reproduced by our model as the shear and divergence PDFs. There
is, therefore, clearly room for improvement here, from both a theoretical and practical
point of view. A possible way forwards here is to build on the work of Hibler (1977); Shen
et al. (1986); Feltham (2005) who derive equations for the flow of ice in the marginal ice
zone that resemble those of a viscous fluid. This could lead to a more realistic formu-
lation of equation (10) for the limits d→ 0 and A→ 0.

A final point to make is that of the numerical performance of the proposed system.
In practical terms then the neXtSIMv2 implementation of mEVP and BBM differs only
in the calculation of σ. The BBM routine to calculate σ is longer and more complex than
the mEVP routine (about 65 lines vs. about 45 lines, with more loops) and takes about
4 times the time to execute. In the neXtSIMv2 implementation this means that solv-
ing the momentum equation using BBM takes about 25% longer than it takes using mEVP,
when both use 120 sub-cycling steps in our 10 km resolution setup with a model time
step of 900 s.

One way to speed up the BBM execution is to reduce the undamaged elasticity,
E0, which allows for a longer time step, or fewer sub-cycling steps (as per equation A8).
Reducing E0 to quarter of the value used so far allows us to double the dynamical time
step, or halve the number of sub-cycling steps. This makes the BBM 20% faster than
mEVP. Reducing E0 even further reduces the stability of the system, but we did not at-
tempt to pinpoint the numerically optimum value for E0 further. Reducing E0 this way
does not reduce the quality of the results presented in here, but we have yet to fully ex-
plore the effect of reducing E0.

6 Summary and conclusions

In this paper we present a new rheology and an accompanying numerical frame-
work for large-scale sea-ice modelling. We refer to this rheology and framework as the
brittle Bingham-Maxwell rheology (BBM). The BBM is a further development of the elasto-
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brittle (EB) and Maxwell-elasto-brittle (MEB) rheologies that have been used to sim-
ulate sea ice previously in large-scale models. The main motivation behind this new de-
velopment is twofold: First, to address the missing physics in the MEB rheology related
to the convergence mode of deformation, and that was responsible for allowing both un-
realistic local (ridges) and basin-scale thickening of the sea ice cover over time. Second,
to reduce the high numerical cost associated with the semi-implicit solver used for MEB
in the neXtSIM model so far.

Following the work presented in this paper we can conclude the following:

• The BBM rheology provides a good distribution of deformation magnitude and
temporal variability of the highest deformation rates. The maps of deformation
rates are very realistic with sharp, well localised (down to the model grid scale)
features.

• Using the BBM rheology we can simulate a realistic spatial ice thickness distri-
bution and temporal evolution.

• Using an explicit solver to solve the underlying equations delivers numerical per-
formance similar to that of the (m)EVP rheology.

Appendix A Stability analysis

We perform a von-Neumann stability analysis for the 1D case. We presume the mo-
tion and spatial variation only to happen in the x-direction, the coefficients to be con-
stants and all forcing to be represented by τ . In 1D, the contribution of the elastic-stiffness
tensor reduces to K : ε̇n = ∂xu

n−1. Abbreviating σ = σ11 and D−1 = ḋ/(1 − d), and
assuming h to be constant, the discretised equations (equation 33 including the damage
term as in 20, and the sea-ice momentum equations 44 and 45) in 1D read

un+1 = un +
∆t

ρ

∂σn+1

∂x
+

∆tτ

ρh
, (A1)

1

χ∆t
σn+1 =

1

∆t
σn + E

∂un

∂x
(A2)

with χ :=
(

1 + ∆t
λ (1 + P̃ ) + ∆t

D

)−1

. Given that −1 ≤ P̃ ≤ 0 (see equation 7b), we

always have χ ∈ (0, 1].

Assuming χ to be constant in x-direction, we eliminate σ from (A1)-(A2). There-
fore, we first take the spatial derivative of (A2) to get an explicit representation of ∂σn+1/∂x:

∂σn+1

∂x
= χ

(
∆tE

∂2un

∂x2
+
∂σn

∂x

)
, (A3)

replace this expression in equation (A1) and use equation (A1) at the previous time step
to derive at

un+1 − un
(
1 + χ− χψ2

)
+ un−1χ = (1− χ)

∆t

hρ
τ, (A4)

with ψ := k∆t
√
E/ρ ∈ (0, π] and −k2 being the eigenvalue of ∂2

xx with k2 ≤ π2/∆x2.
With the elastic wave speed cE :=

√
E/ρ and the elastic timescale, which is equal to

the damage propagation time td := ∆x/cE , we have ψ = (∆xk)∆t/td.

To derive a formal stability condition, we study the amplification factor ξ = un+1/un.
The homogeneous equation (A4), where the forcing τ∆t

hρ (1 − χ) is ignored, can be re-
formulated as:

ξ2 − ξ(1 + χ− χψ2) + χ = 0 (A5)
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Figure A1. Stability regions of the simplified 1D case in the {χ, ψ}-plane. Contour lines show

the maximum angle ω of ξ1,2 between 0 and π/2 and for π. The colouring depicts max |ξ1,2|,
with max |ξ1,2| > 1 shaded grey. The dotted cyan lines are the functions ψ =

√
χ−1 − 1 (where

max(ω1,2) = 0) and ψ =
√
χ−1 + 1 (where max(ω1,2) = π/2).

which has the solutions

ξ1,2 =
1

2
(1 + χ− χψ2)±

√
(1 + χ− χψ2)2/4− χ. (A6)

The formal stability constraint reads |ξ| ≤ 1, but bearing in mind that the underlying
set of equations is highly nonlinear and in order to have a stable algorithm, the stronger
constraint |ξ| < 1 should hold. The angle, ω, of ξ = |ξ| exp(iω) should also be suffi-
ciently small to resolve oscillations that may occur during the time-stepping process (see
also Kimmritz et al., 2015). For instance, ω = π/2 would provoke a change in sign in
every second time step. Thus ω should ideally satisfy ω � π/2. Figure A1 shows both,
the maximum magnitude, max |ξ1,2|, and the maximum angle, max(ω1,2), in the χ, ψ space
for the limits k = ∆x−1.

The values for max |ξ1,2| and max(ω1,2) fall into three main regions (see Fig. A1):

The first region (grey area) collects unstable solutions where max |ξ1,2| > 1. So-
lutions in this area occur, when a too large time step ∆t fails to properly resolve the stress
redistribution of undamaged or slightly damaged ice, or ice in or very near the elastic
regime (P̃ ≈ −1).

The second region (yellow lower left area) contains stable solutions with |ξ1,2| close
to 1 and no phase ω1,2 = 0. It is characterised by ψ <

√
χ−1 − 1 (lower dotted cyan

curve in Fig. A1). In this case, the time step is small enough to resolve the stress redis-
tribution without any phase changes in ξ, but error damping remains very small.

Solutions in the third region, lying between these two other regions in the {χ, ψ}
plane, are stable and show faster damping of the error compared to solutions located in
the lower left corner. They are, however, oscillatory as ω1,2 > 0. Here the angles ω1,2

are arranged in conjugate pairs (As in the EVP case, see Kimmritz et al., 2015), and so
solutions in this third region have the real component Re(ξ1,2) = 1

2 (1 + χ− χψ2) and
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the imaginary components Im(ξ1,2) = ±
√
χ− (1 + χ− χψ2)2/4, resulting in max |ξ1,2|

being of the order of
√

1/2(1 + χ− χψ2) as a conservative estimate. To ensure a sta-

ble solution we need ω < π/2, which means that ψ should be smaller than
√
χ−1 + 1

(upper dotted cyan curve in Fig. A1). This condition is the most constraining when χ =
1, resulting in

ψ =
k∆x∆t

td
≤ π∆t

td
<
√

2. (A7)

This gives a global constraint on the time step ∆t

∆t <

√
2

π
td =

√
2

π

∆x

cE
. (A8)

From equation (A8) we can immediately see that the stability of the BBM frame-
work is determined by the horizontal resolution of the model and the propagation speed
of damage. For practical purposes it is important to note that the the time step scales
with the horizontal resolution, i.e. ∆t ∝ ∆x, and not the resolution squared, as one would
expect from a purely viscous fluid. Secondly, the time step scales with the propagation
time of damage, which in turn scales with the undamaged elasticity as td ∝ 1/

√
E. This

means that one can increase the time step of the model if the elasticity is reduced, as
noted in the discussion (section 5).

Appendix B Relevance of changes in concentration to the constitu-
tive equation

In section 2.2.1 we derive the constitutive equations for the BBM rheology assum-
ing that changes in concentration, A, are slow and can be ignored. This assumption can
be justified by considering the full temporal derivative of E, derived from equation (9):

Ė = ECȦ− E ḋ

1− d
, (B1)

to derive the time derivative of σE as

σ̇E = EK : ε̇E +

(
CȦ− ḋ

1− d

)
σE . (B2)

Now using equation (B2), together with equations (7), (16), (17), and (18), we can de-
rive the analogue of equation (20) as

σ̇ = EK : ε̇− σ

λ

(
1 + P̃ − λCȦ+

ḋ

1− d

)
. (B3)

If we assume the ice is not damaging, i.e. ḋ = 0, we see that for Ȧ to be negligi-
ble we must have

λCȦ� 1. (B4)

The largest values for divergence observed in the Arctic at 10 km resolution are about
10%/day, so for the inequality to hold for highly deforming ice (and with C = 20) we
have

λ� 1

CȦ
≈ 4× 104 s. (B5)

With λ = η/E and following equations (9) and (10), the condition above holds for d &
0.7 when A = 1 and A . 0.7 when d = 0.

Comparing model fields of λ and divergence shows that the condition above also
holds in general, in particular because damage must become quite high (& 0.7) before
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any deformation will occur. We have also implemented equation (B2), using Ȧ = −∇·
(~vA) in neXtSIMv2 and this gives results that are not significantly different from the ones
we present in the paper’s main text.

Appendix C The mEVP implementation

We choose to re-arrange slightly the mEVP equations in the neXtSIMv2 implemen-
tation, in order to have a more general code which requires only small changes to switch
between mEVP, EVP, and MEB. In mEVP the momentum equation is generally writ-
ten as (e.g. Danilov et al., 2015)

β(~un+1 − ~un) = ~u0 − ~un+1 −∆tf~k × ~un+1

+
∆t

m
[~Fn+1 +A~τ +ACdρw(~uw − ~un+1)|~uw − ~un+1| − ρhg~∇η] (C1)

or

ρh

∆t
(β[~un+1 − ~u] + ~un+1 − ~u0) =

~Fn+1 +A~τ +ACdρw(~uw − ~un+1)|~uw − ~un+1| − ρhf~k × ~un+1 − ρhg~∇η. (C2)

Here β is the mEVP damping parameter, n denotes the sub-time step number, u0 is the
velocity before entering the sub-cycling, Fj = ∂σij/∂xi is the internal stress terms, and
other terms are as before.

The right hand side of equation (C2) can be written as

ρh

∆t
(~un+1[β + 1]− β~un − ~u0) =

m

∆t
([β + 1][~un+1 − ~un]− [~u0 − ~un]). (C3)

With b := β + 1, we now have

ρhb

∆t
(~un+1 − ~un) =

m

∆t
(~u0 − ~un)+

~Fn+1 +A~τ − ρhf~k × ~un + 1 + CdAρw(~uw − ~un + 1)|~uw − ~un+1| − ρhg~∇η. (C4)

This is equivalent to using a modified time step

(∆t)′ = ∆t/b (C5)

and an extra term in the equation of

m

(∆t)′
~u0 − ~un

b
. (C6)

With this, equations (44) and (45) become (now using β from Hunke & Dukowicz, 1997)

(α2 + β2)uk+1
1 = αuk1 + βuk2 +

u0
1 − un1
b

+
(∆t)′

ρh

α
∑

j

∂σk+1
1j h

∂xj
+ τx

+ β

∑
j

∂σk+1
2j h

∂xj
+ τy

 (C7)
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Figure D1. Maps of sea ice shear (day−1) for 2 February 2007 as simulated by neXtSIMv2

with the mEVP rheology and 120, 500 and 1000 sub-iteration steps (panels a, b, and c, respec-

tively).

(α2 + β2)uk+1
2 = αuk2 − βuk1 +

u0
2 − un2
b

+
(∆t)′

ρh

α
∑

j

∂σk+1
2j h

∂xj
+ τy

+ β

∑
j

∂σk+1
1j h

∂xj
+ τx

 , (C8)

with α, β, τx, τy, and c′ as before. In the code it is trivial to switch between the nor-
mal and modified time steps and to include or not the additional term to efficiently switch
between the mEVP and EVP time stepping.

Appendix D The effect of using a large number of sub-iterations with
mEVP

In addition to using 120 sub-iterations we also tested running the mEVP with 500
and 1000 sub-iterations. The main impact is that with higher number of sub-iterations
the deformation field becomes more localised (figure D1), but since the number of fea-
tures is very small, then the P90 value is lowered (figure D2 and section 3.3) and the mag-
nitude of the three moments of the spatial scaling analysis is reduced (figure D3 and sec-
tion 3.4). The effect of using a large number of sub-iterations on the PDFs is barely no-
ticeable (not shown).
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Figure D2. Time series sea ice shear P90 for 2007 as simulated by neXtSIMv2 with the

mEVP rheology and 120, 500 and 1000 sub-iteration steps (N).

Figure D3. Spatial scaling analysis of total deformation fields as simulated by neXtSIMv2

with the mEVP rheology and 120, 500 and 1000 sub-iteration steps (N). A: Moments of the

distributions of the total deformation rate εtot calculated at a temporal scale of 3 d and space

scales varying from 10 to 1000 km. B: Structure functions,where β indicates the exponent of the

power-law fits and q is the moment order.
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