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Abstract 

Environmental hot spots and hot moments (HSHMs) represent rare locations and events that exert 

disproportionate influence over the environment. While several mechanistic models have been 

used to characterize HSHMs behavior at specific sites, a critical missing component of research 

on HSHMs has been the development of clear, conventional statistical models. In this paper, we 

introduced a novel stochastic framework for analyzing HSHMs and the uncertainties. This 

framework can easily incorporate heterogeneous features in the spatiotemporal domain and can 

offer inexpensive solutions for testing future scenarios. The proposed approach utilizes indicator 

random variables (RVs) to construct a statistical model for HSHMs. The HSHMs indicator RVs 

are comprised of spatial and temporal components, which can be used to represent the unique 

characteristics of HSHMs. We identified three categories of HSHMs and demonstrated how our 

statistical framework are adjusted for each category. The three categories are (1) HSHMs defined 

only by spatial (static) components, (2) HSHMs defined by both spatial and temporal (dynamic) 

components, and (3) HSHMs defined by multiple dynamic components. The representation of an 

HSHM through its spatial and temporal components allows researchers to relate the HSHM’s 

uncertainty to the uncertainty of its components. We illustrated the proposed statistical framework 

through several HSHM case studies covering a variety of surface, subsurface, and coupled 

systems.  

1 Introduction 

Environmental hot spots and hot moments (HSHMs) were originally defined as rare 

locations or events that support or induce disproportionately high activity levels (e.g., chemical 

reaction rates) compared to surrounding areas or preceding times (McClain et al., 2003). Vidon et 

al. (2010) further classified HSHMs into either transport-driven or biogeochemically-driven 

HSHMs, based on the mechanisms causing the HSHMs. Bernhardt et al. (2017) derived the 

concept of ecological control points (CPs) related to HSHMs, defining CPs as areas of the 

landscape that exert a disproportionate influence on the biogeochemical behavior of an ecosystem 

under study. These definitions have mainly focused on HSHMs related to elevated biogeochemical 

activities triggered by hydrological or biogeochemical processes, or a confluence of both 

processes. The concept of HSHMs is also used in climate science, where it is related to elevated 

greenhouse gas emissions or specific locations that are subject to extreme natural hazards (e.g., 

sea-level rise, floods, hurricanes, or earthquakes) caused by climate change (Arora et al., 2019; 

Shrestha & Wang, 2018). Further, Henri et al. (2015) related HSHMs to locations experiencing 

elevated environmental risks and developed the incremental lifetime cancer risk (ILCR) model to 

quantify the effects of hot spots on human health. Overall, these studies have focused on 

quantifying the consequences of HSHMs by way of environmental risks and costs while also 

emphasizing the importance of characterizing the occurrences of environmental HSHMs. In the 

present study, we combined these definitions such that, henceforth, HSHMs are referred to as rare 

locations or events that could exert a disproportionate influence on an ecosystem and which are 

associated with heightened health or environmental risks.  

Characterizing HSHMs dynamics is useful for understanding hydrological and ecological 

dynamics related to nutrient cycling, contaminant transport, and accurate assessment of ecosystem 

and hydrological perturbations under climate change. For example, Duncan et al. (2013) 

demonstrated that riparian hollows, which represent less than 1.0% of the landscape but contribute 

to more than 99% of total denitrification of a whole catchment area, function as hot spots. 

Additionally, wetlands have been considered biogeochemical hot spots for mercury mobilization 



and methylation production since the early 1990s (Vidon et al., 2010). The spatial patterns of 

methylmercury (MeHg) hot spots in wetlands can vary significantly across space. Indeed, the 

MeHg concentration at the interface between upland and peatland can be 100 times greater than a 

different patch within the same wetland (Mitchell et al., 2008). In managed temperate peatlands, 

drainage ditches that account for less than 5% of a land area can act as hot spots and can contribute 

to over 84% of total greenhouse gas emissions (Teh et al., 2011). The disproportionate 

contributions from HSHMs to the overall hydrological and ecological dynamics strongly indicate 

the necessities of characterizing HSHMs.    

Quantifying HSHMs has also been recognized as important for assessing the consequences 

after catastrophes and the environmental risks, such as water crises (Baum et al., 2016) or nuclear 

disasters  (Kamidaira et al., 2018; Morino et al., 2011; Showstack, 2014). The migration of 

contaminants after a catastrophe creates zones of different toxicity levels and poses 

disproportionate threats to the surrounding natural and urban environment. In contrast, existing 

HSHMs caused by the leakage of nuclear waste or heavy metals largely influence site 

characterization needs and the remediation efforts needed to minimize environmental and 

economic losses (Bao et al., 2014; Harken et al., 2019). Thus far, studies in this area have focused 

on the environmental implications and usefulness of characterizing HSHMs. However, special 

tools for characterizing and modeling HSHMs are still needed, such as physically-based and 

statistical models, which can provide additional benefits to capture the disproportionate effects of 

an HSHM on a whole ecosystem.  

Reactive transport models have been used to understand and predict HSHMs. Dwivedi et 

al. (2017), for instance, developed a 3-D high-resolution numerical model to investigate whether 

organic-carbon-rich and chemically-reduced sediments located within the riparian zone act as 

denitrification hot spots. Their study demonstrated a significantly higher potential (~70%) of the 

naturally reduced zones (NRZs) to remove nitrate than the non-NRZ locations. Arora et al. (2016) 

used a 2-D transect model and showed that temperature fluctuations constituted carbon hot 

moments in a contaminated floodplain aquifer that resulted in a 170% increase in annual 

groundwater carbon fluxes. Gu et al. (2012) developed a Monte Carlo reactive transport approach 

and discovered how denitrification HSHMs are triggered by river stage fluctuations. Despite these 

studies, clear statistical conventions of HSHMs are missing, which significantly limits the 

transferability of these approaches. In fact, distinguishing HSHMs based on statistical formulations 

has been identified as a major gap in the current HSHM literature (Bernhardt et al., 2017; Arora et 

al., 2020). 

Statistical approaches offer multiple advantages for furthering the HSHM concept. First, 

statistical approaches can develop common formulations that integrate biogeochemical and 

hydrogeological knowledge from multiple HSHMs studies. Once developed, these formulations 

can be readily applied to identify HSHMs at similar sites. Second, statistical approaches can easily 

incorporate categorical indicators that represent spatial heterogeneity and quantify the uncertainty 

of HSHM occurrences tied to these features. Such approaches can be used as predictive tools to 

estimate future occurrences of HSHMs, and provide an alternative to computationally-expensive 

high-resolution mechanistic models. This would greatly aid decision-makers in identifying 

scenarios (e.g., changes in the climate or in environmental conditions) that increase risks 

associated with the occurrence of HSHMs phenomena.  

Statistical concepts and models have been widely applied in hydrology and hydrogeology, 

including but not limited to modeling flow and contaminant transport, quantifying subsurface 

heterogeneity and the associated uncertainties, developing strategies for site characterization, and 



providing informative priors for ungauged watersheds. For example, Rubin (1991) described a 

Lagrangian approach to obtain the spatial and temporal moments of contaminant concentrations 

in the subsurface. These statistical moments were deemed both necessary and sufficient to define 

the probability distribution of contaminant concentrations over space and time, and thus, quite 

useful for quantifying HSHMs. In a similar manner, statistical moments can be used to characterize 

the occurrences of HSHMs. Statistical terms, such as concentration mean and variance, 

concentration cumulative density function (CDF), exceedance probabilities, and exposure time 

CDF also provide significant guidance to assess the environmental risks associated with HSHMs 

(Rubin et al., 1994). Although there is a lack of conventional statistical approaches in current 

HSHM studies, we believe it is feasible and valuable to develop statistical formulations to 

characterize HSHMs dynamics.  

Successful characterization of HSHMs through physically-based models or statistical 

approaches relies on experts’ knowledge of a site, intensive field characterization, and possibly 

continuous field sampling to provide the data to develop and validate these approaches. 

Understandably, intensive site characterization and long-term sampling can be quite challenging 

due to the associated costs and efforts. Thus, it is necessary to develop approaches that could 

simplify but still effectively and efficiently represent the underlying structure of HSHMs. In this 

regard, indicator statistics, defined by the  Bernoulli distribution, can be useful, on two counts. 

First, it is suitable for modeling bimodal situations. For example, a situation where an event might 

or might not take place. Indicators are also appealing in applications because of the sparsity of the 

Bernoulli probability model.  Indicator statistics have previously been applied to model flow and 

transport phenomena in groundwater (Rubin & Journel, 1991), where indicators were used to 

model the spatial distribution in a sand-shale formation.  Rubin (1995) applied an indicator spatial 

random function to model contaminant flow and transport in bimodal heterogeneous formations. 

Ritzi et al. (2004) developed a hierarchical architecture to represent the spatial correlation of 

permeability in cross-stratified sediment using indicator statistics. Wilson and Rubin (2002) and 

Bellin and Rubin (2004) used indicator statistics that describe whether particles were captured by 

sampling points to characterize the level of aquifer heterogeneity. These studies suggest that the 

simplification of the system’s structure through indicator formulation significantly lower the 

number of measurements needed, and thus reduce the costs associated with site characterization, 

while maintain sufficient information for modeling flow and contaminant transport. In addition, 

indicator formulation is useful in that it allows to aggregate multiple variables (e.g., all HSHM 

relevant variables) into a single random variable. Instead of characterizing the full distributions of 

each parameter, indicator formulation only requires knowledge of the critical condition for relevant 

parameters. Such indicator RV will take a value of 1 if the critical conditions are met, regardless 

of the original distribution for the parameters. These advantages are further explored in section 2 

and 3.  With indicator formulations for HSHMs, researchers can focus on identifying the most 

relevant parameters for HSHMs quantification, which can significantly reduce the efforts and costs 

required for intensive site characterization.   

In this study, we developed a statistical framework to quantify HSHMs occurrences and 

uncertainties. The developed statistical framework can help determine HSHM-occurrence 

probabilities under user-defined scenarios. It can also be used for estimating future occurrences of 

HSHMs. Based on the mechanisms that drive HSHM occurrences, we determined three categories 

of HSHMs: (1) those triggered only by spatial (static) contributors, (2) those triggered by both 

spatial (static) and temporal (dynamic) contributors, and (3) those triggered by multiple dynamic 

contributors. Within each category, cases from existing studies were used to illustrate the 



procedures for constructing the statistical formulations. We focused specifically on HSHMs 

applications in groundwater, where we derived analytical solutions for the statistical formulation 

of HSHMs and analyzed the probabilities of HSHM occurrences and their corresponding levels of 

uncertainty using synthetic case studies.  

2 Statistical formulation of hot spots and hot moments 

HSHMs represent rare places or events with increased hydrobiogeochemical rates or fluxes 

that are significantly elevated above the background condition, thus exerting disproportionate 

influences over an ecosystem’s dynamics. We define (𝜴∗, 𝑡∗) as the jointly distributed RVs for 

HSHMs, and 𝜴∗ and 𝑡∗ represent the spatial components of hot spots and temporal components of 

hot moments, respectively. An indicator random variable, 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗), is used to represent 

whether the pair (𝜴∗, 𝑡∗) is an HSHM or not. If there exists a pair of (𝜴∗, 𝑡∗) that satisfies the 

critical conditions of an HSHM, 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) = 1, and the pair (𝜴∗, 𝑡∗) represents the location 

and time of the HSHM. 

Following the original definition by McClain et al. (2003), in our method,  𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) 

can take the value of 0 or 1, depending on the concentration or reaction rate measure at (𝜴∗, 𝑡∗), 

respectively: 

𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) = {
1, 𝑖𝑓 𝐶(𝒙, 𝑡∗) > 𝐶𝑡ℎ;  𝒙 ⊆ 𝜴∗

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              
, or  

    𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) = {
1, 𝑖𝑓 𝑅(𝒙, 𝑡∗) > 𝑅𝑡ℎ;  𝒙 ⊆ 𝜴∗

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               
.                                         (1) 

where 𝐶(𝒙, 𝑡∗) 𝑎𝑛𝑑 𝑅(𝒙, 𝑡∗) are the concentration and reaction rate at the position 𝒙 and time 𝑡∗, 

respectively. 𝐶𝑡ℎ 𝑎𝑛𝑑 𝑅𝑡ℎ represent the concentration and reaction rate thresholds, respectively. 

Defining indicators with concentration, or reaction rate depends on the target of HSHM. Similar 

definitions can be introduced based on the regulatory limits or the interest of the investigator, using 

the mean concentration or the solute mass within the volume 𝜴∗.  

The critical values, 𝐶𝑡ℎ and 𝑅𝑡ℎ, are key to an effective application of the above framework 

and should be determined based on the specific scenario. For example, for contaminants that are 

associated with significant environmental or health risks (e.g., nuclear waste or a cancerous 

substance), 𝐶𝑡ℎ = 0 can be used so that the HSHM will be triggered as soon as there is the presence 

of such contaminants. As an alternative, a limit in the total accumulated mass within hot spots may 

be set, such as suggested by EPA (USEPA, 2001), but in this case the definition (1) of the 

indicators should be modified. For water quality parameters, 𝐶𝑡ℎ = 𝑀𝐶𝐿 can be assigned, where 

𝑀𝐶𝐿 represents the maximum concentration limit for a specific solute. Alternatively, 𝐶𝑡ℎ = 𝐶∗ 

can be used in cases where 𝐶∗ is chosen based on the experts’ domain knowledge. This approach 

requires that such decisions be made before deriving any solutions to determine HSHM 

occurrences.  

Given the definition of 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗), we observe that 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) follows a Bernoulli 

distribution, such as  𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗)~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(< 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) >), where < . > is the operator 

indicating the ensemble mean of the indicator represented as a random variable. An important 

characteristic of the Bernoulli distribution is that all the statistical moments of the RV 

𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) can be expressed as a function of the ensemble mean < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) >. For 

example, the variance is given by 𝑣𝑎𝑟(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗)) =< 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) > ∗ (1− <

𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) >).  



Characterization of the spatiotemporal distribution of 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) requires the 

incorporation of the mechanisms that govern the development and occurrence of HSHMs. 

However, the direct quantification of < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) > can be difficult in both time and space 

domain. Thus, to facilitate this undertaking, we propose to decompose 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) into a Type-

A (static) indicator random variable—𝐼𝑠(𝜴∗)—and a Type-B (dynamic) indicator random 

variable—𝐼𝑑(𝜴∗, 𝑡∗). Definitions of the Type-A and Type-B contributors are as follows: 

 Type-A (Static) Contributors. This category covers discrete spatial elements (and their 

associated critical states) that could trigger an HSHM once they come into contact with 

Type-B contributors (see discussion below). Critical states are the range of values needed 

to trigger an HSHM (either in standalone mode or when coupled with Type-B 

contributors).  

 Type-B (Dynamic) Contributors. This category covers dynamic variables (and their 

associated critical states) that could trigger an HSHM once they come into contact with 

Type-A contributors. This category includes, for example, mass transport variables. It also 

includes changes in local hydrological and environmental conditions (e.g., water table 

fluctuations). The displacement of solutes in the subsurface (trajectories and travel times) 

from below- and above-ground processes are prime examples of Type-B contributors.  

As an example, naturally reduced sediments (Type-A contributor)  occurring next to the 

river corridor at the Rifle site were identified as carbon export hot spots (Arora et al., 2016; 

Wainwright et al., 2015). Studies showed that these hot spots were triggered when temperature 

conditions (Type-B contributor) varied in the subsurface, resulting in a 170% increase in 

groundwater carbon export from the floodplain site to the river (Arora et al., 2016). In another 

example, topographic features, such as the backslope of the lower montane hillslope (Type-A 

contributor) within the East River Watershed (Hubbard et al., 2018), were considered 

denitrification hot spots, which can have a significant impact on the watershed-scale nitrogen loss 

pathway. These hot spots were often triggered by spring snowmelt and storm events (Type-B 

contributor).  

Both indicators of the Type-A and Type-B contributors assume a value of either 0 or 1. If 

one of these indicators takes a value of 1, it can be viewed as an HSHM contributor. However, for 

an HSHM to occur, both indicators must have a value of 1 at the same location and time. This idea 

can be expressed as follows: 

𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) = 1) = 𝑃(𝐼𝑠(𝜴∗) = 1, 𝐼𝑑(𝜴∗, 𝑡∗) = 1)                                         

= 𝑃(𝐼𝑠(𝜴∗) = 1) ∗ 𝑃(𝐼𝑑(𝜴∗, 𝑡∗) = 1|𝐼𝑠(𝜴∗) = 1)                                              

= 𝑃(𝐼𝑑(𝜴∗, 𝑡∗) = 1) ∗ 𝑃(𝐼𝑠(𝜴∗) = 1|𝐼𝑑(𝜴∗, 𝑡∗) = 1).                                        (2)      

In equation (2),  𝑃(𝐼𝑑(𝜴∗, 𝑡∗) = 1|𝐼𝑠(𝜴∗) = 1) is the probability of observing a dynamic 

HSHM within  𝜴∗,   at time 𝑡∗ conditional to the fact that 𝜴∗ is a static hotspot and 

𝑃(𝐼𝑠(𝜴∗) = 1|𝐼𝑑(𝜴∗, 𝑡∗) = 1) is defined similarly.  Based on the mechanisms of HSHMs, we can 

classify HSHMs into three different categories as discussed below. These categories can be used 

to guide the application of the above statistical framework in a variety of complex HSHM 

scenarios, and they can also be used to develop analytical or numerical solutions for both static 

and dynamic indicators. Furthermore, the three categories provide guidance on using indicator 

approaches for both transport-driven and biogeochemically-driven HSHMs, as discussed by Vidon 

et al. (2010).  



 
Figure 1. Identified categories of HSHMs. Panel (a) presents HSHMs resulting from only Type-A (static) indicator; 

panel (b) presents HSHMs resulting from coupled action (static + dynamic) and panel (c) presents HSHMs resulting 

from multiple (two) dynamic indicators 

2.1 HSHMs induced by type-A (static) indicators 

In this section, we consider HSHMs that are defined by static indicators only (Figure 1a). 

This list can include zones of high, persistent concentration and reactivity that are due to the 

subsurface or the ecosystem’s unique hydrological and biogeochemical properties. For example, 

the accumulation of contaminants in the subsurface (e.g., the high nuclide concentration in the 

subsurface at the Hanford site) could lead to the evolution of persistent, high reactivity zones. An 

aquifer’s reactivity is another example that could distinguish certain regions with high reactivity 

compared to surrounding areas (Loschko et al., 2016). Such high reactivity spots (hereafter 

denoted as 𝜴∗) can be characterized by static indicator RVs due to the persistence of high 

concentration or reactivity. The static indicators are defined as follows: 

𝐼𝐻𝑆𝐻𝑀(𝜴∗) = 𝐼𝑠(𝜴∗) = {
1,      𝑖𝑓 𝑍(𝜴∗) ⊆ 𝑍𝑠

∗

0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
,                                         (3) 

where 𝑍𝑠
∗ represents the conditions needed to trigger a hot spot at 𝜴∗, and 𝑍(𝜴∗) represents the 

corresponding local conditions at 𝜴∗.  

2.2 HSHMs induced by type-A (static) and type-B (dynamic) indicators 

HSHMs can also result from dynamic processes encountering specific conditions at 𝜴∗ 

(Figure 1b). This is the situation described by equation (2), where the static indicators are 

determined first, and then used jointly with the dynamic indicators for complete HSHM 

characterization. For example, Bundt et al. (2001) concluded that preferential flow paths are 

biological hot spots for soil microbial activities. Preferential flow paths in such cases are candidate 

hot spot locations (𝜴∗). Meanwhile, dynamic factors, such as snowmelt, control contaminant 

transport via the preferential flow paths, and thus, they determined the hot moment component. 

The duration of these events presents the temporal component of the HSHM.  

For an HSHM induced by both static and dynamic indicators, the static locations are selected first, 

based on their HSHM-related properties. After this, we can focus on characterizing the HSHM 

dynamics as they relate to the relevant locations. A selected location, 𝜴∗, could become an HSHM 

site based on characteristics defined through the following static and dynamic indicators, 

respectively: 

𝐼𝑠(𝜴∗) = {
1,      𝑖𝑓 𝑍𝑠(𝜴∗) ⊆ 𝑍𝑠

∗

0,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
,                                                  (4) 

𝐼𝑑(𝜴∗, 𝑡∗) = {
1,      𝑖𝑓 𝑍𝑑(𝜴∗, 𝑡∗) ⊆ 𝑍𝑑

∗

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      
,                                           (5) 

𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) = {
1,      𝑖𝑓 𝑍𝑠(𝜴∗) ⊆ 𝑍𝑠

∗, 𝑎𝑛𝑑 𝑍𝑑(𝜴∗, 𝑡∗) ⊆ 𝑍𝑑
∗  

0,                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      
,                  (6) 



where 𝑍𝑑
∗  represents the critical conditions needed to characterize a hot moment, and 𝑍𝑑(𝜴∗, 𝑡∗) 

represents the local condition at 𝑡∗ and 𝜴∗. The statistical model of 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) can be expressed 

using the statistical models of 𝐼𝑠  and 𝐼𝑑, as shown in equation (2).  

2.3 HSHMs induced by multiple type-B (dynamic )indicators 

Various dynamic processes could jointly evolve into an HSHM (Figure 1c). Unlike the 

previous scenarios where static locations can be determined through known characteristics 

provided by geophysical or other types of data, HSHMs can also emerge due to the confluence of 

dynamic processes. This situation is described in equation (7). For example, Gu et al. (2012) 

analyzed how streamflow fluctuations could trigger a nitrogen HSHM. In their example, the 

dynamics of the streamflow and groundwater controlled the transport and mixing of the chemical 

reactants, thus triggering the occurrences of HSHMs. For this case, the static locations of 𝜴∗ are 

determined by the confluence of multiple dynamic processes. 

We can consider the case where an HSHM is predicated on 𝑚 dynamic processes, 𝑑𝑗, where 

𝐼𝑑,𝑗(𝜴∗, 𝑡∗) is the dynamic indicator representing the action (or inaction) of 𝑑𝑗 at 𝜴∗ and time 𝑡∗. 

The hot spot location 𝜴∗ is determined by the confluence of all dynamic processes at time 𝑡∗.  
These dynamic processes are not necessarily independent. Therefore, generally, the statistical 

model for the comprehensive dynamic indicator (which covers all dynamic contributors) assumes 

the following form: 

𝑃[𝐼𝑑(𝜴∗, 𝑡∗) = 1] = 𝑃[𝐼𝑑,1(𝜴∗, 𝑡∗) = 1, … , 𝐼𝑑,𝑚(𝜴∗, 𝑡∗) = 1].                               (7) 

In situations where the various dynamic contributors can be viewed as independent (e.g., 

Destouni & Cvetkovic, 1991)—where the reactants travel via different paths—then, assuming 

independence, we can state that   

𝑃(𝐼𝑑(𝜴∗, 𝑡∗) = 1] = ∏ 𝑃[𝐼𝑑,𝑗(𝜴∗, 𝑡∗) = 1]

𝑚

𝑗=1

.                                             (8) 

Here, the mean of the dynamic indicator becomes  

< 𝐼𝑑(𝜴∗, 𝑡∗) > =  ∏ < 𝐼𝑑,𝑗(𝜴∗, 𝑡∗) > .                                                   (9)

𝑚

𝑗=1

 

If 𝜴∗ is a hot spot, then equation (9) also defines < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) >. However, if 𝜴∗ is not 

a hot spot, then we need to resort to coupled statistical modeling, as suggested by equation (2). 

3 Examples of the statistical formulation of HSHMs with case studies 

In this section, we selected numerous examples from published research to present how 

our approach can be used to derive statistical representations for the HSHMs investigated in these 

studies. We grouped these studies into three categories based on the similarities of their underlying 

HSHM mechanisms, as described in section 2. We also characterized the environmental risk levels 

and impacts based on their target HSHMs. Table 1 presents a summary of these cases. The 

indicator formulation is constructed in sections 3.1–3.3.  



Reference HS Location Category Seasonality Environmental 

Risk 

Causes Impact Static Mechanism Dynamic 

Mechanism 

HSHM Action Metrics for 

threshold 

Equation(s) 

Examples of static only mechanisms   

Wainwright 

et al. (2015) 

Naturally reducing 

zone 

Subsurface -- Short-term low 

risk; long-term 

high risk 

Anthropogenic 

+ Natural 

Negative Mineralological  

and lithological 

differences 

-- Vanadium, 

uranium, 

metallic 

minerals 

Concentration (3) 

Sassen et al. 

(2012) 

Reactive facies Subsurface -- Short-term low 

risk; long-term 

high risk 

Anthropogenic 

+ Natural 

Negative Lithological 

differences  

-- Uranium and 

other isotopes 

Concentration (3) 

Examples of static + dynamic mechanism   

Andrews et 

al. (2011) 

Shale hill Subsurface 

+ Surface 

Snowmelt and 

fall flushing 

periods 

Low risk Natural Neutral South-facing 

concave hillslopes 

Snowmelt and 

fall flushing 

periods 

Organic carbon Concentration (4) – (6) 

Henri et al. 

(2015) 

Preferential flow 

path 

Subsurface -- High risk Anthropogenic Negative Subsurface 

heterogeneity 

Contaminant 

transport and 

travel time 

distribution 

Chlorinated 

compounds 

Concentration (4) – (6) 

Duncan et 

al. (2013) 

Microtopography Surface Unimportant High risk Natural Positive Riparian hollows Transport and 

retention of 

reactants 

Nitrogen Concentration 

or reaction 

rate  

(4) – (6) 

Arora et al. 

(2016) 

Naturally reducing 

zone-induced 

transport 

Subsurface Temperature 

and water 

table 

fluctuation 

Low risk Anthropogenic 

+ Natural 

Neutral Naturally reduced 

zones 

Temperature and 

water table 

fluctuation 

Carbon fluxes Concentration 

or reaction 

rate 

(4) – (6) 

Examples of multiple dynamic mechanisms   

Hill et al. 

(2000) 

Riparian zone Subsurface -- High risk Natural Positive Interfaces in the 

riparian zone 

Supply of 

electron donor 

and acceptor 

from flow 

transport 

Nitrogen and 

carbon 

Concentration 

or reaction 

rate 

(7) – (9) 

Mitchell et 

al. (2008) 

Peatlands Subsurface 

+ Surface 

Summer 

periods 

High risk Natural Negative Upland-peatland 

interfaces induced 

by flow 

Interactions 

between upland 

and peatland 

flow 

Methylmercury Concentration (7) – (9) 

Frei et al. 

(2012) 

Microtopography Surface -- Neutral Natural Neutral Flowpaths induced 

by 

microtopography 

Biogeochemical 

evolution along 

flow paths 

Organic matter 

and nitrogen 

Concentration 

or reaction 

rate 

(7) – (9) 

Gu et al. 

(2012) 

Mixing zones Subsurface 

+ Surface 

River 

discharge + 

Water table 

fluctuation 

High risk Natural Positive Mixing zones 

caused by river 

stages 

Interaction 

between surface 

water and 

groundwater 

Nitrogen Concentration 

or reaction 

rate 

(7) – (9) 

  

 Table 1. Example cases considered in this study for constructing the statistical formulation of HSHM. 
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3.1 HSHMs triggered by static contributors only 

In this section, we use Wainwright et al. (2015) as an example to illustrate our process to 

construct 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) following equation (3), where an HSHM is triggered by static contributors 

only (section 2.1). NRZs within floodplain environments at the Rifle site are considered 

biogeochemical hot spots because they represent elevated concentrations of uranium, organic 

matter, and geochemically reduced minerals and they have been found to contribute to significant 

carbon fluxes to the atmosphere and to local rivers (Arora et al., 2016). Due to its characteristics, 

we considered the spatial distribution of an NRZ to be a static-mechanism-based hot spot. 

Wainwright et al. (2015) used geophysical data (e.g., induced polarization) to map the distribution 

of an NRZ at the subsurface level. They found that the phase shift (𝜙) from the induced 

polarization data of the NRZ was within [4.5, 5]𝑚𝑟𝑎𝑑, compared to non-NRZ locations at 𝜙 ⊆
[1, 3.5]𝑚𝑟𝑎𝑑. Thus, 𝜙 can be used to construct the static indicator with a critical condition of 

[4.5, 5]𝑚𝑟𝑎𝑑. Therefore, 

𝐼𝑠(𝜴∗) = {
1,      𝑖𝑓 𝑍𝜙(𝜴∗) ⊆ [4.5, 5] 𝑚𝑟𝑎𝑑

0,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  
.                                                (10) 

Other static attributes, including but not limited to elevation, hydraulic conductivity, and 

resistivity, can also be used to define the critical conditions to construct the static indicator for hot 

spots through Bayesian conditioning. 

3.2 HSHMs occuring when dynamic contributors coincide at locations defined by static 

contributors 

The second case we present here utilizes equations (4)–(6), where HSHMs are triggered 

when dynamic contributors coincide at hot spots determined by static contributors. Here, we 

present the case investigated by Duncan et al. (2013), where riparian hollows representing less 

than 1% of the total catchment area contributed to more than 99% of the total denitrification within 

the watershed. In their study, the denitrification rates peaked during the base flow (midsummer) 

period, when the riparian hollows were partially oxygenated and the hydrologic fluxes were at a 

minimum. The site was considered to have low inorganic N availability, and thus, nitrate was 

supplied via nitrification. The highest rates of denitrification were therefore tied to nitrification 

and the partially aerated conditions.  

The static indicator needs to be constructed based on the microtopographical features 

within the riparian zone. Specifically, the topographic wetness index (TWI) (Beven & Kirkby, 

1979; Sørensen et al., 2006) was used in Duncan et al. (2013) to delineate the riparian hollows 

from other riparian locations. Terrain analysis indicated a TWI threshold value of 6.0 and 8.0 for 

riparian hollows under wet and dry conditions, respectively, whereas 4.8 and smaller TWI values 

corresponded to other riparian locations (e.g., hummocks). Thus, the static indicator can be 

constructed using the TWI values within the riparian zone to determine the hot spot locations—

the hollows. Hence,  

𝐼𝑠(𝜴∗) = {
1,      𝑖𝑓 𝑍𝑇𝑊𝐼(𝜴∗) > 6 (𝑤𝑒𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) or 8 (𝑑𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)
0,                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                      

.                (11) 

Multiple dynamic processes control the denitrification rate at the riparian hollows. As 

examined by Duncan et al. (2013), a partially aerated condition (𝐶𝑂2
> 5%) is needed to support 

nitrification, which supplies the nitrate for denitrification. As quiescent, non-storm periods during 

base flow favor the coupled nitrification-denitrification mechanism, this is another key process 
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that needs to be represented by a dynamic indicator. Although Duncan et al. (2013) did not mention 

specific concentration ranges for nitrogen species, the major components, such as organic N, 

should be available. Therefore, we can construct the dynamic indicators as follows: 

𝑃[𝐼𝑑(𝜴∗, 𝑡∗) = 1] = 𝑃[𝐼𝑑,𝑂2
(𝜴∗, 𝑡∗) = 1, 𝐼𝑑,𝐻𝑦𝑑𝑟𝑜(𝜴∗, 𝑡∗) = 1, 𝐼𝑑,𝑁(𝜴∗, 𝑡∗) = 1],          (12) 

where 𝐼𝑑,𝐻𝑦𝑑𝑟𝑜(𝜴∗, 𝑡∗) is the dynamic indicator representing the streamflow stages; this will be 1 

if the base flow conditions are met. Additionally, here, 𝐼𝑑,𝑁 (𝜴∗, 𝑡∗) is the dynamic indicator for 

the transport of the nitrogen species in the subsurface that support the coupled nitrification-

denitrification mechanism.  

𝐼𝑑,𝑂2
(𝜴∗, 𝑡∗) = {

1,      𝑖𝑓 𝐶𝑂2
(𝜴∗, 𝑡∗) > 5%

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          
, 

𝐼𝑑,𝐻𝑦𝑑𝑟𝑜(𝜴∗, 𝑡∗) = {
1,      𝑖𝑓 𝑡∗ ⊆ 𝑏𝑎𝑠𝑒 𝑓𝑙𝑜𝑤 𝑝𝑒𝑟𝑖𝑜𝑑𝑠
0,                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  

,                                      (13)   

𝐼𝑑,𝑁(𝜴∗, 𝑡∗) = {
1,      𝑖𝑓 𝐶𝑁(𝜴∗, 𝑡∗) > 0
0,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      

. 

It is noted that these dynamic processes are not statistically independent. Usually, when 

one condition is met (e.g., base flow conditions), other conditions may consistently be satisfied 

(e.g., the transport of nitrogen in riparian hollows). Alternatively, numerical modeling approaches 

are more feasible to construct the dynamic indicators based on the critical conditions at riparian 

hollows (𝜴∗), where we could directly target 𝑁2 fluxes using a Monte Carlo approach. The 

statistical formulation used here is constructed specifically for the mechanisms described by 

Duncan et al. (2013). Thus, the detailed threshold limits could change under other denitrification 

HSHMs cases, such as the case presented in Hill et al. (2000), who focus on desert landscapes, or 

the one by Harms and Grimm  (2008), where the monsoon season is influential for the nitrogen 

transport. Nonetheless, the general formulation of HSHMs using indicators is still applicable.  

3.3 HSHMs occuring when multiple dynamic processes converge in space 

HSHMs can also be triggered by the confluence of multiple dynamic processes that lead to 

the convergence of complementary reactants at 𝜴∗. Accumulation of complementary reactants is 

mobilized and transported via different hydrologic flowpaths. They converge at hot spot locations 

and trigger hot moments during the mixing. Following the statistical framework developed in this 

study, equations (7) to (9) are suitable for this condition. In order to illustrate how the dynamic 

indicators are constructed, we consider here the case reported by Gu et al. (2012), where high 

biogeochemical activity was observed at the interface of groundwater and surface water during the 

stream stage fluctuations, which resulted in significant in-stream denitrification and 𝑁𝑂3
− removal.  

In their study, hot spots form around the near-stream-riparian subsurface during river stage 

fluctuations, where active biogeochemical reaction (e.g., denitrification) requires both 𝑂2 

depletion and the simultaneous presence of 𝑁𝑂3
− and the dissolved organic carbon (DOC). 

Specifically, the spatiotemporal distribution of denitrification hot spots coincides with an 𝑂2 

depletion zone along the DOC infiltration flowpaths. In order to determine the mixing of 

groundwater and surface water during stage fluctuations, Gu et al. (2012) defined bank storage 

volume 𝑉(𝑡) and maximum bank storage volume 𝑉𝑚𝑎𝑥. The flood hydrograph was subdivided into 

the rising limbs, recession limbs and return flow, the latter representing the slow restitution of part 

of the water that infiltrated during the previous stages. Considering the different dynamics of these 

components, they observed that the largest infiltration rate occurred prior to the maximum stage 

rise, while 𝑉𝑚𝑎𝑥 = 5𝑚3𝑚−1 (critical condition) occurred in the recession limb of the flood event. 

Instead, maximum return flow occurred toward the end of the recession curve before stream 
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hydrograph stabilizes. Maximum 𝑁𝑂3
− rate removal occurred when return flow phase was almost 

complete and then decreased until the depletion of 𝑁𝑂3
−. Through statistical analysis, they found 

that 𝑉𝑚𝑎𝑥, viewed as an integrated index for hydrological exchange, could explain 64% of the 

variation in the  𝑁𝑂3
− removal. Thus, 𝑉𝑚𝑎𝑥 can be used as the critical state to determine whether 

or not the hyporheic dynamics is significant to enhance relevant biogeochemical processes. In 

order for the hot moments to be significant, the stream-riparian zone should also be microbially 

active. Based on these conditions, the dynamic indicators can be constructed as follows: 

𝑃[𝐼𝑑(𝜴∗, 𝑡∗) = 1] = 𝑃[ 𝐼𝑑,𝐻𝑦𝑑𝑟𝑜(𝜴∗, 𝑡∗) = 1, 𝐼𝑑,𝐶ℎ𝑒𝑚(𝜴∗, 𝑡∗) = 1],                        (14) 

where 𝐼𝑑,𝐻𝑦𝑑𝑟𝑜(𝜴∗, 𝑡∗) represents the dynamic process induced by the hydrologic conditions (e.g., 

stage fluctuation), and 𝐼𝑑,𝐶ℎ𝑒𝑚(𝜴∗, 𝑡∗) represents the dynamic process controlled by the transport 

and accumulation of chemical reactants. Based on the critical values or ranges, we formulate the 

indicators as follows:  

𝐼𝑑,𝐻𝑦𝑑𝑟𝑜(𝜴∗, 𝑡∗) = {
1, 𝑍𝑉𝑚𝑎𝑥

(𝜴∗, 𝑡∗) ≥ 5𝑚3𝑚−1

0,                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 
, 

𝐼𝑑,𝐶ℎ𝑒𝑚(𝜴∗, 𝑡∗) = 

{
1,    𝑖𝑓 𝐶𝑂2

(𝜴∗, 𝑡∗) 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙 𝑎𝑛𝑑 𝐶𝑁𝑂3
−(𝜴∗, 𝑡∗) > 0 𝑎𝑛𝑑 𝐶𝐷𝑂𝐶(𝜴∗, 𝑡∗) >  0

0,                                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                    
.   (15) 

Typically, because of the complexity of the processes, no analytical solutions are available 

for formulating the indicators. However, Monte Carlo simulations can be useful in constructing 

such indicators. For this case, an HSHM at any given location and time (𝜴∗, 𝑡∗) will only be 

triggered when all of the conditions are met and the ensemble mean of the indicator assumes the 

following form: 

< 𝐼𝑑(𝜴∗, 𝑡∗) > =
1

𝑁
∑ 𝐼𝑑,𝑖(𝜴∗, 𝑡∗)

𝑁

𝑖=1

 ,                                            (16) 

where 𝐼𝑑,𝑖(𝜴∗, 𝑡∗) is the value that the indicator assumes in the 𝑖𝑡ℎ realization and N is the total 

number of simulations. 

Overall, our choices of the three studies should not limit the generalizability of the indicator 

statistics approach for deriving statistical formulations for HSHM applications. The critical 

conditions chosen to construct the indicators are determined solely on the findings from these 

selected studies, and they will vary under different scenarios. 

4 HSHM applications in groundwater hydrology 

Processes occurring within the subsurface are important factors leading to HSHM 

occurrences. Among others, these processes include the migration of groundwater carrying 

reducing substrates, nuclear waste transport within the subsurface, the accumulation and transport 

of dense non-aqueous phase liquid (DNAPL) and other biogeochemical processes. Some current 

modeling approaches that focus on subsurface HSHMs assume simplified hydrologic structures 

(e.g., homogeneous and isotropic domains) in quantifying contaminant fate and transport in the 

subsurface. However, such an assumption neglects the effect of the heterogeneity in the 

subsurface, leading to the underestimation of the uncertainties in the HSHM occurrences. Thus, in 

this section, we focus on HSHM applications in groundwater hydrology, with a particular emphasis 

on spatial variability in the subsurface. Specifically, we consider several situations often 

encountered in groundwater contamination studies and present the indicator statistical 

formulations of HSHMs. With these results, we can determine the probability of HSHMs 
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occurrences in the subsurface at a given time and space. Further, we are able to determine how 

spatial variability influences HSHM occurrences and how this is translated into environmental 

health risks.  

4.1 Importance of spatial variability in the subsurface 

The heterogeneous structure of hydraulic conductivity leads to significant variability in the 

contaminant transport in the subsurface, which further results in the heterogeneity of 

biogeochemical cycling, such as the development of NRZs, reactive facies, and heterogeneity in 

aquifers’ reactivity (Li et al., 2010; Loschko et al., 2016; Sassen et al., 2012; Wainwright et al., 

2015).  

Figure 2 demonstrates the uncertainty associated with HSHMs by looking at the flow fields 

in two-dimensional log-hydraulic conductivity (𝑌 = 𝑙𝑛 (𝐾)) fields with streamlines resulting from 

a uniform mean head gradient, left to right. The three panels differ in terms of the variance, 𝜎𝑌
2, of 

the log-conductivity. The covariance function used for generating the fields is exponential and 

isotropic. 𝜎𝑌
2 is shown to have a profound impact upon the conductivity field. As the variance 

increases, regions of high and low log-conductivity emerge, creating preferential flow paths 

bypassing the low conductivity zones as shown by particle trajectories. At smaller variance (i.e., 

𝜎𝑌
2 = 0.1), particles mainly travel along the mean flow direction with very limited departure from 

the mean trajectory, which are the straight lines connecting the left and right boundaries. In this 

situation, the arrival times of solute particles to critical locations (i.e., 𝜴∗))are predictable. With 

large variances (i.e., 𝜎𝑌
2 = 2), the streamlines assume a very irregular, hard-to-predict geometry, 

and we can observe the emergence of flow channels, where particles can move fast, next to 

stagnant flow regions. Arrival times become more uncertain, because the exact geometry of the 

streamlines is hard to predict unless the Y field is known deterministically. However, in another 

realization of the 𝑌 field, the situation may be totally different, resulting in significant uncertainties 

in predicting the particle travel times. Thus, spatial variability of log-conductivity is a major 

uncertainty-inducing factor, and by extension, obviating the need for stochastic modeling of 

HSHMs in situations where the associated processes and attributes are subject to uncertainty. In 

the following sections, we will present illustrative examples to analyze how subsurface spatial 

variability influences < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) >, including variance and anisotropy ratio of the log-

conductivity.  
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Figure 2. Illustrative example of a heterogeneous log-hydraulic conductivity field and solute particle transport. Black 

lines represent simulated particle travel paths. A left to right hydraulic gradient of 0.1 is applied. Mean of log-

conductivity is set at -3. Note color scales for log-conductivity are consistent in all three panels.  

4.2 Case studies and expansions of indicators 

4.2.1 Single-particle 𝑰𝒅 within 𝜴∗ 

Consider the case of a point source release of non-reactive tracer originated from (𝒙𝟎, 𝑡0).  

The dynamic indicator depends on a particle being within 𝜴∗ at time 𝑡∗ or not. If local (pore scale) 

dispersion is neglected, the dynamic indicator is defined as follows:   

𝐼𝑑(𝜴∗, 𝑡∗) = {
1,                       𝑖𝑓 𝑿(𝒕∗) ⊆ 𝜴∗ 𝑎𝑡 𝑡∗

0,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
.                                      (17) 

Given that the particle does not change its volume while traveling. The expected value of 

this dynamic indicator at 𝑡∗ is therefore: 

                      < 𝐼𝑑(𝜴∗, 𝑡∗) >= ∫ 𝑓𝑿(𝒕∗)(𝒂|𝒙0, 𝑡0)𝑑𝒂
Ω∗

,                                               (18) 

where 𝑓𝑿(𝒕∗)(𝒂|𝒙0, 𝑡0) is the probability distribution function (pdf) of the particle’s trajectory at 𝑡∗ 

(Dagan & Nguyen, 1989; Rubin, 2003). Other situations may be addressed by using the same 

framework. For example, for an instantaneous injection within a source volume 𝑉0, the ensemble 

mean of the dynamic indicator assumes the following form: 

< 𝐼𝑑(𝜴∗, 𝑡∗) >=
1

𝑉0
∫ ∫ 𝑓𝑿(𝒕∗)(𝒂|𝒙0, 𝑡0)𝑑𝒂𝑑𝒙0

Ω∗𝑉0

.                                    (19) 

4.2.2 Concentration-based 𝑰𝒅 within 𝜴∗   

When considering local dispersion, or in case of a reactive tracer, the condition that the 

particle is inside the volume 𝜴∗ does not suffice to define the dynamic indicator and a 

concentration threshold 𝐶𝑡ℎ should be introduced: 

𝐼𝑑(𝜴∗, 𝑡∗) = {
1,      𝑖𝑓 𝑿(𝑡∗; 𝒙0, 𝑡0) ⊆ 𝜴∗ 𝑎𝑛𝑑 𝐶(𝑿, 𝑡∗) > 𝐶𝑡ℎ

0,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                          
.                             (20) 

In the absence of local dispersion and for a reactive solute decaying at a (spatially) constant 

rate 𝑘, the ensemble mean assumes the following expression (Cvetkovic & Shapiro, 1990): 

< 𝐼𝑑(𝜴∗, 𝑡∗) >= {1 − 𝐻 [𝑡∗ −
1

𝑘
ln (

𝐶0

𝐶𝑡ℎ
)]} ∫ 𝑓𝑿(𝒕∗)(𝒂|𝒙0, 𝑡0)𝑑𝒂

Ω∗

,                          (21) 

where 𝐶0 is the initial concentration and 𝐻[∙] is the Heaviside step function. The ensemble mean 

(21) is the product of the probability that the particle assumes a concentration larger than the 

threshold at 𝑡∗ (given that reaction rate 𝑘 is constant, this probability is either 0 or 1) and the 

probability that at the same time 𝑡∗ the particle is within the hot spot 𝜴∗. In other words, equation 

(21) expresses the fact that a particle inside 𝜴∗ contributes to the hot moment only if its 

concentration is greater than the threshold. Equation (21) can be generalized to the cases of 

instantaneous injection into a source of volume 𝑉0, as discussed before for the non-reactive case. 

For other complex situations, such as that in which 𝑘 is spatially variable and complex reaction 

networks, the ensemble mean of the indicators can be addressed by equation (16) in a Monte Carlo 

framework.  
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4.2.3 Assessing the duration of hot moment and probabilities 

The probability that the hot moment persists over the interval [𝑡1, 𝑡2] at 𝜴∗ can be formally 

computed as follows: 

< 𝐼𝑑(𝜴∗, 𝑡1, 𝑡2) >= 𝑃(𝑡1, 𝜴∗)𝑃(𝑡2|𝑡1, 𝜴∗),                                              (22) 

where 𝑃(𝑡1, 𝜴∗) is the probability that the particle is inside 𝜴∗ at time 𝑡∗ = 𝑡1 and 𝑃(𝑡2|𝑡1, 𝜴∗) is 

the probability that the particle is still inside 𝜴∗ at time 𝑡∗ = 𝑡2,  provided that at time 𝑡1, it was 

also inside 𝜴∗. If the particle exits 𝜴∗ during interval [𝑡1, 𝑡2], this time interval will not be qualified 

as hot moment; and thus the probability computation needs to ensure the particle stays within 𝜴∗ 

during the entire time interval.  

Under the First-Order Approximation (FOA) (see e.g., Dagan, 1989; Gelhar 1993; Rubin, 

2003), the pdf of the particle displacement is normal with mean < 𝑿(𝑡∗; 𝒙𝟎, 𝑡0) > and auto-

covariance tensor of the residual displacements 𝑿′(𝑡∗) = 𝑿(𝑡∗) −  〈𝑿(𝑡∗)〉  defined by 

𝑿𝑖𝑗(𝑡∗; 𝒙0, 𝑡0) =  〈𝑿𝑖
′(𝑡∗; 𝒙0, 𝑡0)𝑿𝑗

′(𝑡∗; 𝒙0, 𝑡0)〉, 𝑖, 𝑗 = 1, 2, 3. For simplicity in the following, we 

assume 𝒙0 = 0 𝑎𝑛𝑑 𝑡0 = 0. Under these assumptions, 

< 𝐼𝑑(𝜴∗, 𝑡1, 𝑡2) >= ∫ ∫ 𝑓𝑿(𝑡1)(𝒂)𝑓𝑿(𝑡2)
𝑐 ( 𝒃|𝑿(𝑡1) = 𝒂) 𝑑𝒃 𝑑𝒂

𝜴∗𝜴∗

,                 (23) 

where the conditional pdf 𝑓𝑿(𝑡2)
𝑐 (𝒃|𝑿(𝑡1) = 𝒂) is multi-normally distributed with conditional 

mean and variance tensor given by  

〈𝑿(𝑡2)| 𝑿(𝑡1) = 𝒂)〉 = < 𝑿(𝑡2) > 

+𝐶𝑜𝑣[𝑿′(𝑡2), 𝑿′(𝑡1)] ∙ 𝑉𝑎𝑟[𝑿′(𝑡1)]−1 ∙ (𝒂−< 𝑿(𝑡1) >),                         (24) 
and 

𝝈(𝑡1, 𝑡2) = 𝑉𝑎𝑟[𝑿′(𝑡2)] −  𝐶𝑜𝑣[𝑿′(𝑡2), 𝑿′(𝑡1)] ∙ 𝑉𝑎𝑟[𝑿′(𝑡1)]−1  ∙ 𝐶𝑜𝑣[𝑿′(𝑡1), 𝑿′(𝑡2)],        (25)  
respectively, which further yields the following,  

𝑓𝑿(𝑡2)
𝑐 ( 𝒃|𝑿(𝑡1) = 𝒂) 

= 𝑒𝑥𝑝 [−
1

2
 [𝒃 − 〈𝑿(𝑡2)| 𝑿(𝑡1) = 𝒂)〉]𝑇 ∙  𝝈(𝑡1, 𝑡2)−1 ∙  [𝒃 − 〈𝑿(𝑡2)| 𝑿(𝑡1) = 𝒂)〉] ] 

∗ {8 𝜋3  ∙ |𝝈(𝑡1, 𝑡2)|}−
1

2 ,                                                   (26)   

where |⋅| indicates the determinant, 𝑒𝑥𝑝 is the exponential function and the exponent T indicates 

the transpose of the vector. 

In equations (24) and (25), 𝑿′(𝑡∗) = 𝑿(𝑡∗) −  〈𝑿(𝑡∗)〉 stands for the departure of the 

particle’s displacement with respect to the ensemble mean trajectory, and 𝑉𝑎𝑟[𝑿]−1 is the auto-

covariance tensor of the residual displacement whose  elements are defined above. Similarly, 

𝐶𝑜𝑣[𝑿′(𝑡1), 𝑿′(𝑡2)] is the covariance tensor of residual displacement which elements are: 

𝑿𝑖𝑗(𝑡1, 𝑡2; 𝒙𝟎, 𝑡0) = 〈𝑋𝑖
′(𝑡1) 𝑋𝑗

′(𝑡2)〉, 𝑖, 𝑗 = 1, 2, 3. Note that in the general three-dimensional case 

〈𝑿(𝑡2)| 𝑿(𝑡1) = 𝒂)〉  is a three-dimensional vector and 𝝈(𝑡1, 𝑡2) is a 3 × 3 second-order tensor.  

For 𝑡2 → 𝑡1, 𝑓𝑋(𝑡2)[𝒃|𝑿(𝑡1) = 𝒂] →  𝛿(𝒃), where 𝛿(∙) is the Dirac Delta, such that 𝑃(𝑡2|𝑡1, 𝜴∗) →

1. On the other hand, for 𝑡2 ≫ 𝑡1, 𝐶𝑜𝑣[𝑿′(𝑡1), 𝑿′(𝑡2)] → 0 and 𝑃(𝑡2|𝑡1, 𝜴∗) → 𝑃(𝑡2, 𝜴∗) the 

marginal probability that the particle is within 𝜴∗ at time 𝑡∗ = 𝑡2. Equations (23) to (26) are 

obtained under the FOA approximation and assuming that the particle can enter 𝜴∗ only once. 

Such assumption is needed to obtain analytical solutions and is reasonable for situations with small 

to mild subsurface heterogeneity (e.g., 𝜎𝑌
2 ≤ 1.6), such as the cases presented in Bellin et al. (1992, 

1994); Cvetkovic et al. (1992). In particular, FOA assumes small heterogeneity and under this 

assumption the particle trajectory deviates slightly from its ensemble mean, which is directed along 

the regional hydraulic head gradient. For a regular volume 𝜴∗,  this reduces the probability of the 
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particle entering more than once the hot spot. This probability reduces further if in horizontal and 

vertical transverse directions  𝜴∗ is much larger than the respective integral scales, because the 

probability of observing negative longitudinal velocity components (i.e., along the mean flow 

field) is much smaller than in the transverse directions (Bellin et al., 1992) and vanishes as 

formation heterogeneity reduces.  

If the hotspot 𝜴∗ is the volume confined between two planes at 𝑥1 −
𝑙1

2
  and 𝑥1 +

𝑙1

2
 , with 

the other two dimensions much larger than the transverse horizontal and vertical integral scales: 

𝑙2 ≫ 𝐼ℎ , 𝑙3 ≫ 𝐼𝑣, equation (24) simplifies to: 

< 𝐼𝑑(𝜴∗, 𝑡1, 𝑡2) >= ∫ ∫ 𝑓𝑋1(𝑡∗)(𝑎1)𝑓𝑋𝟏(𝑡∗)
𝑐 ( 𝑏1|𝑋1(𝑡1) = 𝑎1) 𝑑𝑏1 𝑑𝑎1

𝑥1+
𝑙1
2

𝑥1−
𝑙1
2

𝑥1+
𝑙1
2

𝑥1−
𝑙1
2

,      (27) 

where 𝑋1 is the longitudinal component of the particle’s trajectory and 𝑓𝑋1(𝑡∗)
𝑐  is its conditional pdf, 

which is normal with conditional mean and variance given by 

𝜇[𝑎1] =  〈𝑋1(𝑡2)| 𝑋1(𝑡1) = 𝑎1)〉 = < 𝑋1(𝑡2) > +
𝑋11(𝑡1, 𝑡2)

𝑋11(𝑡1)
 (𝑋1(𝑡1)−< 𝑋1(𝑡1) >),     (28) 

and 

𝜎2(𝑡1, 𝑡2) =  𝑋11(𝑡2) −  
𝑋11(𝑡1, 𝑡2)2

𝑋11(𝑡1)
,                                                  (29) 

respectively. Consequently, 𝑓𝑋𝑐(𝑡∗) in equation (27) assumes the following form: 

𝑓𝑋1(𝑡∗)
𝑐 (𝑏1|𝑋1(𝑡1) = 𝑎1) =

1

√2 𝜋 𝜎(𝑡1, 𝑡2)
𝐸𝑥𝑝 [−

1

2
(𝑏1 − 𝜇[𝑎1])2 𝜎(𝑡1, 𝑡2)−1].            (30) 

Substituting equation (30) into  equation (27) allows us to compute  < 𝐼𝑑(𝜴∗, 𝑡1, 𝑡2) >. For 

situations where the FOA assumptions are not valid (e.g., large heterogeneity), Monte Carlo 

simulation framework is still applicable as alternative approach to construct the dynamics 

indicators (see equation 16).  

4.3 Illustrative example and indicator formulation 

Following sections 4.1 and 4.2, we present here synthetic case studies that demonstrate the 

statistical formulation of the indicators using methods developed in stochastic hydrogeology. The 

choice of the synthetic case studies does not limit our approaches to broader applications where 

stochastic modeling with Monte Carlo simulations are applicable. In most applications, the 

locations of hot spots (𝜴∗) are determined by static indicators, such as riparian hollows (Duncan 

et al., 2013), reactive facies (Sassen et al., 2012), and NRZs (Wainwright et al., 2015). The static 

indicator is constructed according to the corresponding critical conditions provided by ancillary 

data such as topography, remote sensing, and/or geophysical data. Hence, in this case, assuming 

the boundaries of 𝜴∗ are determined by a static indicator, we consider a hot spot (𝜴∗) to be 

confined within the following volume: 𝑤1 ≤ 𝑥1 ≤ 𝑤1
′ ; 𝑤2 ≤ 𝑥2 ≤ 𝑤2

′ ; 𝑤3 ≤ 𝑥3 ≤ 𝑤3
′ .   
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Figure 3. Configuration of the synthetic case study 

Given this case, the hot moment will be triggered only when the contaminant particle is 

found within 𝜴∗. The probability of finding the contaminant particle within 𝜴∗ is given by 

𝑝𝑟𝑜𝑏 {𝑿(𝑡∗) ⊆ 𝜴∗ } 

= ∏ 𝑝𝑟𝑜𝑏{𝑤𝑖 ≤ 𝑋𝑖(𝑡∗) ≤ 𝑤𝑖
′} = ∏ ∫ 𝑓𝑋𝑖(𝑡∗)(𝑎𝑖|𝑥0, 𝑡0)𝑑𝑎𝑖

𝑤𝑖
′

𝑤𝑖

𝑚

𝑖=1

,                

𝑚

𝑖=1

(33) 

where m denotes the space dimensionality. Equation (33) defines the dynamic indicator for this 

case. If 𝜴∗ is already identified as a hot spot location, then equation (33) provides  <
𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) >. Otherwise, the static indicator should be incorporated to determine the 

boundaries of 𝜴∗ in order to compute < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) > as shown in equation (10) where 

geophysical data is used to identify the spatial context of 𝜴∗. If we also assume steady, uniform in 

the average flow with mild heterogeneity of the log hydraulic conductivity field with Gaussian 

displacement pdf—then we can compute  < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) > analytically using the following 

equation: 

< 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) >=< 𝐼𝑠(𝜴∗) > < (𝐼𝑑(𝜴∗, 𝑡∗) > 

= 𝑝𝑟𝑜𝑏(𝐼𝑑(𝜴∗, 𝑡∗) = 1) =  𝑝𝑟𝑜𝑏 {𝑋(𝑡∗) ⊆ 𝜴∗ } 

= ∏ ∫ 𝑓𝑋𝑖(𝑡∗)(𝑎𝑖|𝑥0, 𝑡0)𝑑𝑎𝑖

𝑤𝑖
′

𝑤𝑖

𝑚

𝑖=1

= ∫ 𝑓𝑋1(𝑡∗)(𝑎1|𝑥0, 𝑡0)𝑑𝑎1

𝑤1
′

𝑤1

∫ 𝑓𝑋2(𝑡∗)(𝑎2|𝑥0, 𝑡0)𝑑𝑎2

𝑤2
′

𝑤2

∫ 𝑓𝑋3(𝑡∗)(𝑎3|𝑥0, 𝑡0)𝑑𝑎3

𝑤3
′

𝑤3
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=
1

(2𝜋)
3
2√𝑋11(𝑡∗)𝑋22(𝑡∗)𝑋33(𝑡∗)

∫ exp [−
1

2

(𝑎1 − 𝑈𝑡∗)2

𝑋11(𝑡∗)
]

𝑤1
′

𝑤1

𝑑𝑎1 

∗ ∫ exp [−
1

2

𝑎2
2

𝑋22(𝑡∗)
] 𝑑𝑎2

𝑤2
′

𝑤2

∫ exp [−
1

2

𝑎3
2

𝑋33(𝑡∗)
] 𝑑𝑎3.

𝑤3
′

𝑤3

                                  (34) 

which can be integrated to yield : 

< 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝑡∗) > =  
1

8
[𝑒𝑟𝑓𝑐 (

𝑤1 − 𝑈𝑡∗

√2𝑋11(𝑡∗)
) − 𝑒𝑟𝑓𝑐 (

𝑤1
′ − 𝑈𝑡∗

√2𝑋11(𝑡∗)
)] 

 

∗ [𝑒𝑟𝑓𝑐 (
𝑤2

√2𝑋22(𝑡∗)
) − 𝑒𝑟𝑓𝑐 (

𝑤2
′

√2𝑋22(𝑡∗)
)] [𝑒𝑟𝑓𝑐 (

𝑤3

√2𝑋33(𝑡∗)
) − 𝑒𝑟𝑓𝑐 (

𝑤3
′

√2𝑋33(𝑡∗)
)] . (35) 

The form of the displacement variances is controlled by the spatial distribution of the 

hydraulic conductivity in the subsurface. Equations (A4)-(A6) of the appendix show the 

displacement variances for an axisymmetric exponential covariance function of the log-

conductivity (A3).  

4.4 Implications for HSHMs 

In the following sections, we present the results from the case study described in section 

4.3. Specifically, in section 4.4.1 and 4.4.2, we explore how heterogeneity of log-hydraulic 

conductivity influences the probability of HSHM occurrences. To make results as general as 

possible, lengths are made dimensionless with respect to the integral scales (𝐼𝑌ℎ  in the two 

horizontal directions and 𝐼𝑌𝑣  in the vertical one) and time with respect to the following advective 

time scale: 𝐼𝑌ℎ/𝑈, where 𝑈 is the mean velocity). In the following, we explore the effect of the 

remaining parameters, i.e. the anisotropy ratio 𝑒 =
𝐼𝑌𝑉

𝐼𝑌𝐻
  and the variance of the log-conductivity 

𝜎𝑌
2, on the emergence of HSHM. We placed 𝜴∗ along the mean trajectory at (21𝐼𝑌𝐻, 0, 0) with 

dimensions as (2𝐼𝑌𝐻, 2𝐼𝑌𝐻, 2𝐼𝑌𝑉). The dimensions of the hot spot are therefore of two integral 

scales in the three coordinate directions (𝑥1, 𝑥2, 𝑥3)and is placed at a dimensionless distance of 21 

from the point source. 
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4.4.1 Dependece of < 𝑰𝑯𝑺𝑯𝑴(𝜴∗, 𝝉) > on variance in the spatial correlation structure 

of the log-conductivity  

 
Figure 4.  Dependence of < 𝐼𝐻𝑆𝐻𝑀(𝛺∗, 𝜏) > on 𝜎𝑌

2 

Isotropic heterogeneity (𝑒 = 1 and the particle moments given by Eqs. (A7) and (A8)) was 

considered to investigate the dependence of < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) > on 𝜎𝑌
2 with results presented in 

Figure 4. 𝜏 = 𝑡𝑈/𝐼𝑌ℎ  is the dimensionless time. At early time (e.g., 𝜏 < 5), larger probability <
𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) >  is observed with increase in 𝜎𝑌

2. At intermediate time, i.e., at times comparable 

with the mean travel time 𝜏 = 21, < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) >  is inversely proportional to 𝜎𝑌
2. At late time 

(e.g., 𝜏 > 40), the largest < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) >  occurs at intermediate 𝜎𝑌
2. We observe that 

𝜎𝑌
2 regulates the timing of the peak in  < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) > , which is located in the proximity of the 

mean travel time, 𝜏 = 21, for weak heterogeneity, and shifts towards earlier times as 𝜎𝑌
2 increases.  

These effects relate to the relationship between travel times (from the source to 𝜴∗) and 

𝜎𝑌
2. The key point to note is that 𝜎𝑌

2 controls the spread of the travel time around the mean travel 

time. Larger variance enhance channeling effects (Fiori & Jankovic, 2012; Moreno & Tsang, 1994, 

also in Figue 2), which in turn enable earlier arrival times. But at the same time, large 𝜎𝑌
2 also leads 

to the low-conductivity zones. Streamlines of the solute tend to bypass low hydraulic conductivity 

zones, however, the small amount of solute that actually penetrates these zones by advection and 

diffusion gets trapped for long time before being released and this results in an extended tailing 

with low concentration and therefore low < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) >. Thus, with an increase in 𝜎𝑌
2, we 

notice an increase in the probability to observe both increasingly earlier and increasingly delayed 

arrival times, which widens the probability distribution. On the contrary at small variance, particles 

deviate little from the ensemble mean trajectory, because of the small contrast in conductivity 

between high and low conductivity zones. This results in small particle spreading and travel times 
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that differ only slightly from the mean travel time (𝜏 = 21), and a probability distribution less 

spread around the mean, where the peak is observed.  

In summary, hydraulic conductivity contrast between low and high conductive lithofacies 

increases with 𝜎𝑌
2 leading to the emergence of organized high conductivity pathways sneaking 

through surrounding low conductivity zones with the latter acting as “trapping” elements. This 

causes the emergence of both early and late arrival times. Early arrival times are controlled by the 

connected high conductivity pathways and the late arrival times are influenced by the low 

conductivity zones, which act as low-release reservoirs for solutes.  

4.4.1 Dependece of < 𝑰𝑯𝑺𝑯𝑴(𝜴∗, 𝝉) > on on anisotropy in the spatial correlation 

structure of the log-hydraulic conductivity 

 
Figure 5. Dependence of < 𝐼𝐻𝑆𝐻𝑀(𝛺∗, 𝜏) > on 𝑒 

The discussion here (accompanying Figure 5) focuses on the impact of the anisotropy ratio 

in the correlation structure (𝑒, defined above) on the HSHM probabilities. The anisotropy ratio, 𝑒, 

provides an indication about the persistence of the log-conductivity (𝑌) in the various directions. 

The spatial correlation model used here for demonstration is that of axis-symmetry, which is 

common to sedimentary formations (Dagan, 1989; Rubin, 2003), with 𝑒 providing the ratio 

between the persistence of 𝑌 in the vertical (𝑥3) direction, represented by 𝐼𝑌𝑉, and the ones on the 

horizontal plane (𝑥1 − 𝑥2), represented by 𝐼𝑌𝐻. In unconsolidated sedimentary formations, 𝐼𝑌𝑉 is 

typically smaller than 𝐼𝑌𝐻 by as much as one order of magnitude, due to the different time scales 

of the depositional process taking place in the horizontal and vertical directions, which leads to 

thin and elongated lithofacies and consequently to a much smaller persistence of 𝑌 values in 

normal to the horizontal plane (Miall, 1985, 1988; Ritzi et al., 2004). 
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Figure 5 compares < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) > between formations defined by different anisotropy 

ratios and different 𝜎𝑌
2. It shows that we have two factors to consider when explaining the 

differences in < 𝐼𝐻𝑆𝐻𝑀(𝜴∗, 𝜏) >. First factor, as discussed earlier, is the expansion in the range of 

travel times due to increase in 𝜎𝑌
2. With larger variance, we observe higher probabilities for 

departure of the travel times away from the average. The anisotropy ratio 𝑒 adds a compounding 

factor. To understand its effect, we should recall the analyses of lateral displacement variances of 

solute particles moving in heterogeneous formations (cf., Dagan, 1989, and equations A4 to A6 

here), showing that smaller 𝑒 leads to smaller lateral (both vertical and horizontal) displacement 

variances, implying smaller probabilities for lateral departures from the mean flow trajectory. 

Smaller 𝑒 limits lateral spreads, and increase the probability of particle to enter 𝜴∗ , sooner or later, 

and to trigger HSHM.  The effect could also be viewed as a channeling effect of sorts: smaller 𝑒 

implies 𝑌 blocks of small aspect ratio (i.e., long but thin elements), which provide fast tracks for 

particles when defined by high 𝑌 values, while blocking lateral spreads when defined by low 𝑌 

values.  

There are a few additional things to note here for completeness. First, 𝜴∗ in the present 

analysis is located downstream from the source, along with the mean trajectory of the solute 

displacement. We expect different results in situations where 𝜴∗ is positioned at an offset with 

respect to the mean flow direction. Second, we note that the analytical models used to compute the 

displacement statistics are formally limited to smaller variance (𝜎𝑌
2 < 1), although they are shown 

to provide good approximations for large variances (Bellin et al., 1992).Third, the stochastic 

formulation provides the theoretical and computational formalism for conditioning the  

probabilities on in-situ measurements (Copty et al., 1993; Ezzedine & Rubin, 1996; Hubbard et 

al., 1997; Maxwell et al., 1999; Rubin, 1991a; Rubin et al., 1992; Rubin & Dagan, 1992) as well 

as on information  borrowed from similar sites (Li et al., 2018; Cucchi et al., 2019).  

5 Discussion and Summary 

In this study, we developed a general stochastic framework that could be used to 

characterize the spatiotemporal distribution of environmental Hot Spots Hot Moments (HSHMs), 

with groundwater applications. The stochastic formulation is built around the following principles: 

 The HSHMs are defined as random variables and the goal is to derive their stochastic 

distribution in terms of the relevant processes and attributes. 

 HSHMs processes cover the dynamic components of the HSHMs. An example could be 

the transport of solutes and reactants. HSHMs attributes refer to the static components of 

the HSHMs, e.g., in situations related to the nitrogen cycles, attributes could represent 

pyrite concentrations or naturally-reducing zones. HSHMs could be defined through the 

confluence of a variety of contributors, both static and dynamic.  

 The processes and attributes are modeled as stochastic processes and random variables, 

respectively, based on the underlying physics.  

 The static contributors are modeled stochastically using geostatistical space random 

functions. 

 The dynamic contributors are modeled stochastically using probability distribution 

functions derived from the underlying mathematical-physical models.  

 Several HSHMs categories are defined, based on the contributing factors, as follows: 

HSHMs defined by dynamic contributors only, HSHMs defined by static contributors, and 
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most commonly, HSHMs requiring the coupling of static and dynamic contributors. The 

HSHMs stochastic formulations are expressed in terms of the stochastic formulations of 

the relevant contributors.  

 We provided a detailed review of multiple HSHMs and showed how they relate to our 

definitions.  

The framework we proposed in this study is advantageous in that it allows to calculate the 

uncertainty associated with HSHMs based on the uncertainty associated with its contributors. 

Additionally, it provides a formalism, well established by Bayesian theory, for conditioning the 

HSHM probabilities on in-situ measurements as well as on information borrowed from 

geologically and otherwise similar sites.  

We demonstrated our proposed approach through applications in the area of subsurface 

transport and hydrogeology, focusing on the impacts of subsurface heterogeneity on HSHMs. We 

analyzed, quantitatively, how subsurface heterogeneity of the conductivity field control the HSHM 

statistics, for example, the time expected for the probability of the HSHM to occur to reach a-priori 

set thresholds or time to peak probability.  

Lastly, as mentioned both here and in previous studies, statistical methods for quantifying 

the occurrences of HSHMs and the associated uncertainties are needed to advance our 

understanding of the mechanisms that cause HSHMs, as well as to enhance our ability to predict 

HSHMs and manage their consequences.  
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Appendix 

A1. Equations for the displacement pdf 

Assuming steady, uniform in the average flow with mild heterogeneity of the log-

hydraulic conductivity field with Gaussian displacement, the displacement pdf in the longitudinal 

direction (𝑥1) is given by the following equation (Dagan and Nguyen, 1989; Dagan and Rubin, 

1992): 

𝑓𝑋1(𝑡∗)(𝑥1) =
1

√2𝜋𝑋11(𝑡∗)
exp [−

1

2

(𝑥1 − 𝑈𝑡∗)2

𝑋11(𝑡∗)
].                                       (A1) 
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Additionally, the displacement pdf in the transverse directions (𝑥2 and 𝑥3) is given by 

𝑓𝑋𝑖(𝑡∗)(𝑥𝑖) =
1

√2𝜋𝑋𝑖𝑖(𝑡∗)
exp [−

1

2

𝑥𝑖
2

𝑋𝑖𝑖(𝑡∗)
] , 𝑖 = 2,3.                                     (A2) 

A2. Equations for displacement variances under anisotropic conditions 

 Dagan (1984) developed a solution for the displacement variances for an exponential and 

axisymmetric covariance function:  

 𝐶𝑌(𝒓) = 〈(𝑌(𝒙) − 〈𝑌〉) (𝑌(𝒙 + 𝒓) − 〈𝑌〉)〉 = 𝑒𝑥𝑝 [−√
𝑟1 

2+𝑟2
2

𝐼𝑌ℎ
2 +

𝑟3
2

𝐼𝑌𝑣
2  ] ,                  (A3) 

𝑋11 = 𝜎𝑌
2𝐼𝑌

2 {2𝑡∗ + 2[exp(−𝑡∗) − 1]

+ 8𝑒 ∫ [𝐽0̅(𝐾𝑡∗) − 1]
∞

0

× [
1

(1 + 𝐾2 − 𝑒2𝐾2)2
−

𝑒𝐾

(1 + 𝐾2 − 𝑒2𝐾2)2(1 + 𝐾2)0.5

−
𝑒𝐾

2(1 + 𝐾2 − 𝑒2𝐾2)(1 + 𝐾2)1.5
] 𝑑𝐾 − 2𝑒 ∫ [

∞

0

𝐽0̅(𝐾𝑡∗) −
𝐽1̅(𝐾𝑡∗)

𝐾𝑡∗
−

1

2
] 

 

× [
𝑒3𝐾3(𝑒2𝐾2 − 5 − 5𝐾2)

(𝑒2𝐾2 − 1 − 𝐾2)1.5
+

1 + 𝐾2 − 5𝑒2𝐾2

(1 + 𝐾2 − 𝑒2𝐾2)3
] 𝑑𝐾,                               (A4) 

 

𝑋22 = −2𝑒𝜎𝑌
2𝐼𝑌

2 

∫ [
𝐽1̅(𝐾𝑡∗)

𝑡∗
−

𝐾

2
] [

𝑒3𝐾2(𝑒2𝐾2 − 5𝐾2 − 5)

(𝑒2𝐾2 − 1 − 𝐾2)3(1 + 𝐾2)1.5
+

1 + 𝐾2 − 5𝑒2𝐾2

𝐾(1 + 𝐾2 − 𝑒2𝐾2)
] 𝑑𝐾,   (A5)

∞

0

 

𝑋33 = −4𝑒𝜎𝑌
2𝐼𝑌

2 ∫ [𝐽0̅(𝐾𝑡∗) − 1]
∞

0

 

× {
1

(𝑒2𝐾2 − 1 − 𝐾2)2
[
1

2
+

2𝑒2𝐾2

1 + 𝐾2 − 𝑒2𝐾2
+

𝑒𝐾(𝑒2𝐾2 + 3 + 3𝐾2)

2(𝑒2𝐾2 − 1 − 𝐾2)(1 + 𝐾2)0.5
]} 𝑑𝐾.     (A6) 

where 𝒓 is the two-point separation distance and 〈𝑌〉 the ensemble mean of the log-conductivity 

𝑌 = ln 𝐾.  𝐽0̅ and 𝐽1̅ are, respectively, the zero and first order of the first kind Bessel functions.  

A3. Equations for displacement variances under isotropic conditions 

 Dagan (1984) provided analytical solutions for longitude and transverse displacement 

variances. This is a special case for the anisotropic case with 𝑒 = 1.The solutions are as follows:  

𝑋11 = 𝜎𝑌
2𝐼𝑌

2 {2𝑡∗ − 2 ∗ [
8

3
−

4

𝑡∗
+

8

𝑡∗3
−

8

𝑡∗2
(1 +

1

𝑡∗
) exp(−𝑡∗)]}.                        (A7) 

𝑋22 = 𝑋33 = 2𝜎𝑌
2𝐼𝑌

2 [
1

3
−

1

𝑡∗
+

4

𝑡∗3
− (

4

𝑡∗3
+

4

𝑡∗2
+

1

𝑡∗
) exp(−𝑡∗)].                       (A8) 

 

 

 


