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Abstract 22 

Physics-based simulations are important for elucidating the fundamental mechanisms behind the 23 

time-varying complex ionospheric conditions, such as field-aligned currents (FACs) and plasma 24 

convection patterns, against unprecedented solar wind variations incidents in the Earth’s 25 

magnetosphere. However, to perform a huge parameter survey for understanding the nonlinear 26 

solar wind density dependence of the FAC and convection patterns, for example, a large-scale 27 

cluster computer is not fast enough to run state-of-the-art global magnetohydrodynamic (MHD) 28 

simulations. Here we report the impressive performance of a machine-learning based surrogate 29 

model for the ionospheric outputs of a global MHD simulation, using the reservoir computing 30 

technique called echo state network (ESN). The trained ESN-based emulator is exceptionally fast 31 

to perform the parameter survey, suggesting a missing solar wind density dependence of the 32 

ionospheric polar cap potential. We discuss future directions including the promising application 33 

for the space weather forecast.  34 

Plain Language Summary 35 

We developed a machine-learning emulator to mimic a global magnetohydrodynamic (MHD) 36 

simulation of a dynamically changing auroral oval. We conducted a state-of-the-art global MHD 37 

simulation called REPPU for four magnetic storm events to experience large dynamic ranges of 38 

input solar wind parameters changes. The long-term REPPU simulation results are then used to 39 

train the machine-learning model called echo state network (ESN). Using the ESN-based 40 

emulator, we confirmed one of the well-known solar wind parameter dependences of the auroral 41 

activities on the solar wind magnetic field directions. From the parameter survey using the ESN-42 

based emulator, we further suggest a missing nonlinear solar wind density dependence. 43 

Compared to the computationally expensive global MHD simulations, the ESN-based emulator 44 

is surprisingly quick to run, leading to a breakthrough for operational space weather forecasting 45 

and opening a pathway for future data assimilation studies of the solar wind-magnetosphere-46 

ionosphere coupling.  47 

 48 

1 Introduction 49 

Machine learning (ML) techniques have been recognized as a useful tool for predicting 50 

geomagnetic activity indices, as represented by the AE, Kp, and Dst indices, using solar wind 51 

parameters as inputs, such as the solar wind speed (Vsw), proton density (Np), and interplanetary 52 

magnetic field (IMF). Many such attempts have been thoroughly reviewed by Liemohn et al. 53 

(2018). One of the latest studies used the ML technique called echo state network (ESN) to 54 

successfully predict the AE index to diagnose the nonlinearity of a magnetosphere-ionosphere 55 

coupled system using a synthetic solar wind time series (Nakano and Kataoka, 2022).  56 

In principle, and in more detail, the high-latitude geomagnetic activity indices are 57 

products of the two-dimensional (2D) distributions of ionospheric currents, as characterized by 58 

the field-aligned currents (FACs) into and out of the ionosphere (Iijima and Potemra, 1978), 59 

ionospheric horizontal plasma flow called ionospheric convection, and height-integrated 60 

ionospheric conductivity. Detailed 2D patterns of ionospheric convection, FACs, and 61 

ionospheric conductivity can be empirically modeled as a function of the solar wind parameters 62 

and geomagnetic activity indices (Weimer, 1995; 2001; Weimer and Edwards, 2022). The 63 
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empirical models, however, have limitations in that they predict the averaged observed patterns 64 

and cannot account for dynamic solar wind variations or unprecedented solar wind variations. 65 

To overcome the limitations, a straightforward physics-based approach is to solve the 66 

idealized magnetohydrodynamic (MHD) equations for the solar wind and magnetospheric 67 

plasma flows, setting the appropriate height-integrated ionospheric conductivity layer as one of 68 

the boundary conditions. In global MHD simulations, we can obtain 2D patterns of the 69 

ionospheric convection and FACs, where auroral ovals are consistently represented by 2D 70 

patterns of the ionospheric conductivity (e.g., Tanaka et al., 2022). State-of-the-art global MHD 71 

simulations are also essential for understanding the mechanism behind the dynamically changing 72 

auroral oval distribution (e.g., Ebihara and Tanaka, 2022). Further parameter surveys using such 73 

simulations are still necessary to understand the nonlinear effects, for example, the density effect 74 

on the ionospheric potential or energy deposition (Khachikjan et al., 2008; Ebihara et al., 2019; 75 

Yang et al., 2020; Nakano and Kataoka, 2022). However, the practical use of the global MHD 76 

simulation for such a parameter-survey purpose is still limited because it is computationally 77 

expensive.  78 

 A reasonable next approach to addressing the time-comsumption issue is emulate the 79 

computationally expensive physics-based global MHD simulation by ML techniques, although 80 

the physics behind the simulation becomes a black box. Once such an ML-based emulator is 81 

developed, we can predict dynamically changing 2D maps of ionospheric conditions 82 

instantaneously. It is therefore practically possible for a small computer to make a thorough 83 

parameter survey by the ML-based emulator.  84 

The purpose of this study is to develop such an ML-based emulator and to examine the 85 

potential impacts. While an emulation that works with a global MHD simulation was attempted 86 

for parameter tuning (Kleiber et al., 2013; Heaton et al., 2015), here we develop an ESN-based 87 

emulator for predicting the dynamic ionospheric responses of the magnetosphere-ionosphere 88 

system to variable solar-wind time-series input. The methods of emulating global MHD 89 

simulation results by the ESN model are briefly introduced in Section 2. In Section 3, we 90 

examine the obtained results from the newly developed ESN-based emulator. In Section 4, we 91 

discuss the predictive capabilities of the ESN-based emulator and some future directions. 92 

2 Materials and Methods 93 

2.1 Global MHD simulation 94 

REPPU (REProduce Plasma Universe) is an MHD simulation code developed for 95 

studying the global magnetosphere-ionosphere coupling (Tanaka, 1995; Tanaka 2020). The 96 

REPPU code is characterized by an excellent ionospheric reproduction of fundamental auroral 97 

phenomena such as substorm onset (Ebihara and Tanaka, 2015a,b), sun-aligned arcs (Tanaka et 98 

al., 2017), and the theta aurora (Tanaka et al., 2018). In this study, we used an improved REPPU 99 

simulation, including the effects of a tilted dipole axis and seasonal changes of solar zenith 100 

angles. The total number of grid cells in the magnetosphere is 30722 (horizontal) times 240 101 

(vertical), where the unstructured grid system described by Moriguchi et al. (2008) is employed. 102 

The number of grid cells in the ionosphere is 30722. The improved REPPU simulation is 103 

essentially the same as that used for the real-time REPPU simulation of space weather forecast 104 

executed by the National Institute of Information and Communications Technology (Nakamizo 105 

and Kubota, 2021). We used high-resolution OMNI-2 one-min data (Bx, By, Bz, Np, Vx, Vy, 106 
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Vz, and proton temperature) for input. Note that we used B vectors in the GSM coordinate 107 

system and we provisionally used V vectors in the GSE coordinate system.  108 

We ran a REPPU simulation to obtain several-days worth of activity outputs for training 109 

and testing the emulator. Four different long-term output datasets for moderate and intense 110 

magnetic storm events as driven by corotating interaction regions (CIR) or coronal mass 111 

ejections (CME) were connected and used for training (see Kataoka and Miyoshi (2006) for the 112 

difference between CIR and CME driven storms): Intense (Dst peak = -130 nT) CIR storm (~24 113 

hours from 2015/10/7 0000 UT), moderate (Dst peak = -56 nT) CIR strm (~21 hours from 114 

2015/10/18 0000 UT), moderate (Dst peak = -87 nT) CME storm (~34 hours from 2015/11/06 115 

1200 UT), and intense (Dst peak at -166 nT) CME storm (~36 hours from 2015/12/19 1200 UT). 116 

Further, we prepared the testing data from non-storm time 16.5-hour data from 2015/09/06 0000 117 

UT. Note also that we discarded the first one hour of data for each run, in which the global 118 

plasma distribution cannot yet be physically realistic.  119 

 We used 10-min averaged output data for the ionospheric potential Φ, FAC J//, and 120 

height-integrated conductivity maps. The ionospheric potential contours represent the 121 

ionospheric convection pattern. The FAC is positive for upward (out of the ionosphere) and 122 

negative for downward (into the atmosphere). The selected height integrated conductivity Σxx is 123 

a tensor component, where x is positive to the north and y is positive to the east. For coarse-124 

graining purposes, as well as to clearly resolve the Region-1 and Region-2 FAC patterns, we 125 

binned the Φ, J//, and Σxx maps for the northern polar region (>50 deg latitude) into 15 × 32 in 126 

latitude and longitude, respectively, from the original resolution of 60 × 320.  127 

 We then applied principal component analysis (PCA) to the 2D maps of the simulation 128 

results to reduce the dimensions. Note that Cousins et al. (2015) applied a similar method to 129 

evaluate variable FAC patterns. In this study we used the PCA module of Python 3 scikit-learn 130 

(https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html). To 131 

reproduce the > 90% variance of the original features, we decomposed the J// pattern into 15 132 

PCA components, and the Φ and Σxx patterns into 10 PCA components (Supplemental 133 

Information Figures S1 and S2). 134 

2.2 Machine learning technique 135 

We require an ML technique that can be trained by a small training dataset because the 136 

REPPU simulation is still computationally expensive for long runs. Therefore, the standard deep 137 

learning technique is not appropriate. We also need a specific ML technique suitable for time-138 

series prediction, because the ionosphere dynamically changes following the time history in the 139 

magnetosphere and ionosphere. Both needs can be satisfied by the reservoir computing method 140 

ESN (Jaeger, 2001; Jaeger and Haas, 2004), as reviewed by Tanaka et al. (2019). We used 141 

essentially the same ESN method as documented by Kataoka and Nakano (2021) and Kataoka et 142 

al. (2022). In this study we used the ESN module of Python 3 as developed by Tanaka et al. 143 

(2022) (See https://github.com/GTANAKA-LAB/DTS-ESN/).  144 

The basic ESN model used in this study is described by the reservoir sate vector x and the 145 

model output vector y (time series of PCA components of J//, Σxx, and Φ) at t = n + 1 steps as 146 

follows:   147 

 148 

 ( 1) tanh ( 1) ( )inn W n W n+ = + +x u x ,     (1) 149 
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( 1) ( 1)outn W n+ = +y x .      (2) 150 

Here, the weight matrices Win and W are multiplied by the input vector u (the solar wind 151 

time series) and the reservoir state vector x, respectively. In this study, we set the number of the 152 

nodes (elements of x) to be 300. These Win and W are fixed, while only Wout is trained by the 153 

Ridge regularization with regularization parameter of 10-3.  154 

 To create the random and sparse node connections of W, where only 10% of the matrix 155 

elements are random values between -1.0 and 1.0, and the remaining 90% are zero. We chose the 156 

optimal spectral radius (maximum eigenvalue of W) to be 0.55, 0.60, and 0.65 for J//, Σxx, and 157 

Φ, respectively, by evaluating the normalized root-mean square errors using both training and 158 

testing data (Supplemental Information Figure S3). As the input vectors u, the solar wind speed 159 

and density are roughly normalized as log10 Vsw - 2.5, and log10 Np - 1.0 before training the 160 

ESN model. It is noteworthy here that both the speed and density follow log-normal distributions 161 

(Burlaga and Lazarus, 2000).  162 

We constructed the emulators for J//, Σxx, and Φ maps, independently. However, the 163 

current continuity J// = div(Σ grad Φ) relates these three parameters and any inconsistencies 164 

among the three parameters therefore give hints of unphysical parts of the emulator to potentially 165 

fix, or avenues to evaluate errors in the emulation results for future applications. 166 

3 Results and discussions 167 

 168 

 169 

Figure 1. Snapshot example of field-aligned currents, ionospheric potential, and conductivity 170 

maps obtained from ESN emulator (top) and REPPU simulation (bottom) at a testing time of t = 171 

735 steps. 172 

 173 

An example result from the ESN-based emulator compared with a REPPU simulation is 174 

shown in Figure 1. We can see a reasonable agreement between the results from ESN-based 175 

emulator and REPPU simulation; such as Region 1 and Region 2 FAC patterns and two-cell 176 

convection patterns, although the strong conductivity enhancement in the dusk sector was not 177 

reproduced. See Supplemental Information Movie S1-S3 for the other time intervals.  178 
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 179 

Figure 2. Solar wind parameters (a) and top five PCA components (b-f) for FAC. Black curves 180 

show the REPPU simulation results and the red curves are from the ESN model. The testing time 181 

interval, which are not used for training but used for score evaluation, is shown by the gray 182 

hatched time interval. 183 

 184 

Figure 2 shows the performance of training and testing the ESN emulator of the FAC 185 

map. See Supplemental Information Figures S4-S5 for the same figures for potential and 186 

conductivity. The input solar wind parameters are shown in the top panel. The top five PCA 187 

components and the prediction from the ESN model are shown. The training interval is t < 664 188 

steps. The trained ESN model reproduces the time variation of PCA components for both the 189 

training and the testing intervals. 190 

 191 
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 192 

Figure 3. Quasi-steady state FAC patterns as obtained from the ESN-based emulator for 193 

different IMF clock angles using synthetic solar wind data. 194 

 195 

Instead of directly comparing the emukation results with the observation data, which are 196 

available only for spatially limited areas, we benchmark the emulation results against the 197 

standard empirical models (Weimer, 1995; 2001). Figures 3 and 4 show an example of the IMF 198 

clock-angle dependence of FAC and convection patterns using synthetic solar wind data 199 

(Supplemental Information Figure S6), fixing the density at Np = 5 /cc, the solar wind speed at 200 

Vsw = 400 km/s, and the IMF strength at B0 = 5 nT. We selected the results from quasi-steady 201 

state time steps for each IMF directions (i.e., 15 steps = 150 min after the IMF changes). The 202 

IMF By and Bz dependence of the Region-1 and Region-2 FAC system as well as the overall 203 

convection pattern morphology show a reasonable agreement with those as they appears in the 204 

Weimer models (Weimer, 1995; 2001); such as pairs of Region 1 and Region 2 FAC patterns 205 
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(Figure 3) with round-cell and clecent-cell convection patterns (Figure 4) and their IMF By 206 

dependence during southward IMF Bz (SBZ) conditions.  207 

 208 

 209 

Figure 4. Quasi-steady state ionospheric potential map as obtained from the ESN-based 210 

emulator for different IMF clock angles using synthetic solar wind data. 211 

 212 

For comparison with empirical models, there is a notable drawback of this study by 213 

selecting active-time magnetic storm events as the training data set. Note that the unrealistically 214 

large-amplitude of the Region-2 FAC appeared during the northward IMF (NBZ) due to a poor 215 

sample of the NBZ situation in the training data. Further dataset which includes plenty enought 216 

NBZ situation are therefore needed to correctly train the emulator model for NBZ conditions. 217 
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Note that the ESN-based emulator can even learn from the other global MHD simulation results 218 

if necessary, and the ring current coupled MHD simulation (e.g. Kataoka et al., 2005) would also 219 

be interesting to be included for further discussing the dynamic evolution of Region-2 FAC 220 

system in future. 221 

The ESN-based emulator is exceptionally fast to run and it is useful for a thorough 222 

parameter survey of so-called heatmap analysis, which cannot be done by observations or 223 

simulations. As an example, we input the synthetic solar wind variations to the ESN-based 224 

emulator to examine the nonlinear density effect on the cross-polar cap potential (CPCP), as 225 

shown in Supplemental Information Figures S7-S8. Note that it is computationally expensive for 226 

the REPPU simulation to obtain the following heatmap results. Note also that we fixed the solar 227 

wind speed in the input, so that the density effect is essentially the same as the dynamic pressure 228 

effect.  229 

 230 

Figure 5. Heatmap analysis of the parameter survey to examine the nonlinear density effect on 231 

the cross polar-cap potential, changing (a) SBZ and (b) By component using the ESN-based 232 

emulator. 233 

 234 

As shown in Figure 5a, the CPCP has a negative dependence on the density during strong 235 

SBZ. In fact, the similar tendency has been identified by Khachikjan et al. (2008) using active-236 

time SuperDARN observations. Khachikjan et al. (2008) discussed that the shrinking dayside 237 

magnetopause by high dynamic pressure may be relevant to reduce the possible effect of dayside 238 

reconnection that is powering the CPCP.  239 

Recognizing that the overall IMF By dependence was fairly reproduced by the ESN-240 

emulator as shown in Figures 3 and 4, we further diagnose the density dependence by changing 241 

the IMF By component, turning off the contribution of SBZ. From the heatmap analysis without 242 

SBZ component, Figure 5b shows that the density dependence is positive when By < 4 nT, while 243 

it is negative for larger By. The By-aymmetric density effect is a new problem “predicted” from 244 

the ESN-based emulator, which suggests that the nonlinear density effect on CPCP can be more 245 

complex than imagined from the SBZ reconnection hypothesis. Note that the IMF By 246 
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dependence does not clearly appear if we integrate the obtaind By-Np heatmap in density, which 247 

is consistent with SuperDARN observations (Mori and Kustov, 2013). Related future works 248 

therefore include the observation-based identification of the By-aymmetric density effect as well 249 

as the detailed analysis of the global MHD simulation results of both magnetosphere and 250 

ionosphere to identify of the exact mechanism to cause the By-aymmetric density effect.  251 

In this study we used simulation data for CIR- and CME-driven magnetic storm events 252 

that occurred in the fall to winter seasons. The training data set is therefore limited to the 253 

particular situation where the auroral activity is high and the northern hemisphere is darker than 254 

the southern hemisphere. A detailed discussion of the sunlight effect associated with solar zenith 255 

angles and the general north-south asymmetry are therefore interesting future subjects of study 256 

when we have accumulated more long-term REPPU simulation results, including different 257 

seasons. 258 

More generally, the ESN-based emulator is capable of dynamic predictions following the 259 

time history, and this study investigated the performance of reconstructing the 10-min scale 260 

dynamics. In such a time scale, the ESN-based model developed in this study can be readily 261 

applicable to the operational space weather forecast by replacing the input file by the real-time 262 

solar wind data. Emulating more dynamic phenomena such as sudden commencements and 263 

substorms is therefore the next technical challenge. The ESN method can be applied to diverse 264 

temporal scales (Tanaka et al., 2022), and in future studies we plan to tune the ESN-based 265 

emulator to a higher time resolution, choosing the right leaking rate matrix to reproduce both 266 

min-scale to 10-min scale dynamics.  267 

This paper presented the first kick-off results to demonstrate the potential impact of the 268 

emulator. For a practical use, the accuracy must be improved by learning NBZ and other variable 269 

conditions. Future studies using the ESN emulator of the REPPU simulation therefore include an 270 

examination of the accuracy in reproducing observation data, such as SuperDARN convection 271 

maps. Any partial data or point data can also be used with cutting-edge data assimilation 272 

techniques (Nakano et al., 2020). For data assimilation, we need to increase the ensemble 273 

number of simulation runs for integrating large probabilistic ensembles, and the ESN-based 274 

emulator will play an essential role. In this manner, the ESN-based emulator can be expected to 275 

become a basic technique for future space weather reanalysis studies.  276 

4 Conclusions 277 

Using the ESN model trained by long-term REPPU simulation runs for magnetic storm 278 

events, we developed an emulator to instantaneously reproduce the REPPU simulation results for 279 

the ionospheric conditions by inputting the solar wind parameter time series. The newly 280 

developed ESN-based emulator reasonably reproduces the active-time 2D patterns of the 281 

ionospheric potential, FAC, and conductivity. A missing By-assymetric density effect is also 282 

suggested from the parameter survey using the ESN-based emulator. The ESN-based emulator 283 

can lead to breakthrough advances for real-time space weather forecasting operations as well as 284 

for accelerating the data assimilation studies.  285 
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