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Text S1: Optimal Truncation 

Since we built the linear regression in EOF space, we examined its sensitivity to 
the number of EOFs retained for each field in the regression, evaluating how EOF 
truncation impacted the downscaling operator’s ability to reproduce the fine-scale 
GLORYS data from the coarse-grained GLORYS data. The downscaling was calculated 
using a 10-fold cross-validation, where 90% of the data was used to determine the 
operator, which was then used to downscale the remaining 10%; this process was cycled 
through ten times. As a metric of the goodness of fit for the resulting downscaled data, 
we computed the correlation between the downscaled fine-scale SSH anomalies and the 
original fine-scale SSH anomalies, evaluated along both time and spatial dimensions. Fig. 
S2a and d show this metric as a function of both predictor and predictand EOF 
truncation. For the West Coast, the best fit occurred with 34 /10 EOFs retained for the 
predictor/predictand. Additional EOFs eventually degrades the accuracy of the 
downscaling. For the East Coast, the best fit occurred for predictor/predictand truncation 
of 40/5 EOFs. 

 

Text S2: SVD of the downscaling operator 

What the downscaling operator (regression matrix) does is mapping the predictor 
space to the predictand space. SVD (singular vector decomposition) of the downscaling 
operator will help us better understand what modes in the predictor and predictand 
spaces contribute most to the downscaling. 

 The SVD of the downscaling operator is done as follows: 

𝐲 = 𝐁𝐱 
𝐁 = 𝐔𝚺𝐕𝐓 
𝐲 = 𝐔𝚺𝐕𝐓𝐱 

The column vectors in U constitute an orthonormal basis that spans the space of y, and 
the column vectors in V span the space of x. 𝚺 is a diagonal matrix and its diagonal values 
are the singular values of the SVD of B. In principle, the downscaling operator projects the 
predictor x onto each of the singular vector in V, then weights the projection by 
corresponding singular value, and finally multiplies by the singular vector in U. The relative 
magnitude of the singular vectors in V and the singular vector in U weighted by 
corresponding singular values indicates the pattern that has been amplified or damped in 
the downscaling process.  

The dominant three singular vector pairs for each downscaling operator are shown 
in Fig. S4-5. Note that the relative magnitude difference between the left and right singular 
vectors indicates whether this specific structure was amplified or damped by the 
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downscaling operator. For the west coast, the first singular vector pair (top row in Fig. S5) 
shows a pattern with the same sign all along the coast that is amplified by the downscaling, 
and likewise dominates the downscaling skill improvement (see Fig. S6). The second 
singular vector pairs is a dipole-like pattern also confined to the coast, amplified primarily 
in the Southwest coast. These patterns presumably represent effects of different phases of 
coastal Kelvin waves. The third singular vector pair has large magnitude off the coast, but 
the downscaling operator slight damps the pattern along the coast especially at the coast. 
The first and second singular pairs for the east coast are similar to that of the west coast, 
with the first one being a coherent structure and the second one being a dipole-like 
structure (Fig. S5).  Note that the changing sign of the anomalies when moving from the 
coast to the offshore region indicates the influence of the strength of the boundary current 
on the coastal sea level variability through geostrophic balance. 

 In addition, to assess the importance of each singular vector pair in the 
downscaling, we reconstructed the downscaling operator B using different SV truncations. 
Then the different downscaling operator B was used to downscale the hindcast and the 
skill of the downscaled hindcast are accessed. 

 The skills of the downscaled hindcast using different truncation of the singular 
vectors (SVs) in Fig. S4-5 are shown in Fig. S6. For the west coast, the first SV pair is the 
most important while the skill is gradually improved by adding more SV pairs in the 
downscaling operator, with the exception for San Francisco. For the Virginia Key and 
Charleston, only the first pair of the SVs matters for the skill, and the skill degrades if 
adding more SVs in the downscaling operator. For Atlantic City, adding more SVs slightly 
improves the skill, but it is presumably due to the trend component in the dataset (not 
shown). 
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Fig. S1 The sea level anomalies for (a) Virginia Key, (b) Charleston and (c) Atlantic 
City, from GLORYS (blue) and tide gauge observation (red). The correlation 
coefficient between tide gauge observation and GLORYS for each station is 
shown on top of each panel. The nearest grid point in the GLORYS grids to each 
the tide gauge location is used. The unit is centimeter. 
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Figure S2. Space and time aggregated correlation coefficient between the SSH 
anomalies from GLORYS reanalysis and the observational downscaled SSH anomalies for 
(a,b,c) West Coast and (d,e,f) East Coast.  (a,d)  show the correlation coefficient as a 
function of the EOF truncation for predictor and predictand; and (b,c,e,f) show the 
correlation coefficient as a function of the EOF truncation for the predictor (predictand) 
with the predictand (predictor) fixed. 
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Figure S3. The Anomaly Correlation of the ensemble mean of downscaling (left column) 
and interpolation (middle column) of the hindcast, verified against the tide gauge 
observation at San Francisco, South Beach, Virginia Key and Atlantic City, for each lead 
time and target month; the right column shows the AC difference of downscaling and 
interpolation of the hindcast (downscaling minus interpolation). The black dot indicates 
the correlation or correlation difference is not statistically significant at 0.1 level at that 
lead time and target month. 
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Fig. S4 The first three singular vector pairs from SVD of the regression matrix of the 
downscaling for the West Coast. Left column corresponds to the singular vectors related 
to predictor, and right column corresponds to the singular vectors related to predictor. 
The right column was weighted by the corresponding singular values so that the relative 
magnitude change from left column to right column represents the amplification from 
the regression matrix. The regression matrix is in EOF space, and the singular vector are 
reconstructed using the respective EOF patterns from reanalysis. The units of the singular 
vectors are arbitrary.  
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Fig. S5 Same as Figure S5 but for the East Coast. 
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Fig. S6 The anomaly correlation between the downscaled hindcast (solid lines) or 
interpolated hindcast (dash lines) and the tide gauge observation for three tide gauge 
stations at (a) west coast and (b) east coast. The downscaled hindcast is constructed 
using different truncation of the singular vectors in the SVD of the regression matrix (see 
details in Text S1). 
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Fig. S7 Anomaly correlation for Lead-7 month of (a,d) the downscaled hindcast and (b,e) 
the interpolated hindcast from CanCM3, verified against SSH anomaly from GLORYS 
reanalysis; (c,f) are the correlation difference between downscaling and interpolation. 
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Fig. S8 Same as Fig S7 but for CanCM4 model. 
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Fig. S9 Same as Fig. S7 but for CCSM4-UM model. 
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Fig. S10 Same as Fig. S7 but for CFSv2 model. 
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Fig. S11 Same as Fig. S7 but for GFDL model. 
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Fig. S12 Same as Fig. S7 but for ACCESS-S2 model. 
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Table S1. Description of the 6 retrospective forecast systems used in this study. For each 
model system, the corresponding organization, ensemble size, maximum lead (months), 

nominal horizontal resolution of the ocean component (degrees), and a reference are 
indicated. 

 
 

m
an

u
scrip

t
su
b
m
itted

to
J
G
R
:
O
c
e
a
n
s

Table 1. Description of the 6 retrospective forecast systems used in this study. For each model system, the corresponding organization, ensemble size, maximum

lead (months), nominal horizontal resolution of the ocean component (degrees), and a reference are indicated.

Model Organization Ensemble size Lead times Resolution Reference

(1) ACCESS-S2 Australian Bureau of Meteorology 12 1-9 0.25�

(2) CanCM3 Canadian Meteorological Centre 10 1-12 1� Merryfield et al. (2013)
(3) CanCM4 Canadian Meteorological Centre 10 1-12 1� Merryfield et al. (2013)
(4) CCSM4-UM University of Miami 10 1-12 1� Kirtman et al. (2014)
(5) CFSv2 National Centers for Environmental Prediction 24 (28) 1-10 0.5� Saha et al. (2014)
(6) GFDL CM2.1 Geophysical Fluid Dynamics Laboratory 10 1-12 1� Zhang et al. (2007)
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