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Introduction This supplementary material provides additional information supporting16

the main article.17
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Text S1. Model Description Some ground work for the PIC model in dipole geometry18

has been laid out by Min, Liu, Denton, and Boardsen (2018) and Min, Němec, Liu,19

Denton, and Boardsen (2019). The description of the model here is focused on the special20

feature of the present simulation domain on a constant L-shell surface.21

S1.1 Governing Equations22

Similar to other PIC codes (e.g., Liu, 2007), the equations to be solved are Maxwell’s23

equations for the electric and magnetic fields24

∇ · E = 4πρ; ∇× E = −1

c

∂B

∂t
;25

∇ ·B = 0; ∇×B =
1

c

∂E

∂t
+

4π

c
J; (1)26

equations of motion for kinetic particle species, α27

mα
dv

dt
= qα

(
E +

v

c
×B

)
; (2)28

and the cold plasma momentum equation for the cold species, c (adopting the approach29

of Tao, 2014)30

∂Jc
∂t

=
ncq

2
c

mc

E + Jc ×
qc
mcc

B. (3)31

S1.2 Coordinates32

We use orthogonal coordinates (φ, s), where φ denotes the usual azimuthal coordinate33

and s ≡ LRE

∫ λlat
0

√
1 + 3 sin2 λlatdλlat is the dipole field line arc length. The grid points34

in the φ direction are regularly spaced, but in the s direction the grid point density is35

inversely proportional to the dipole field strength (e.g., Hu & Denton, 2009).36

For two-dimensional simulations in the meridional plane (typically used in simulations37

of electromagnetic ion cyclotron waves (e.g., Hu & Denton, 2009) and chorus (e.g., Lu38

et al., 2019)), φ is ignorable (i.e., ∂/∂φ = 0) when solving the field equations. Likewise,39
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for the present simulations in a constant L-shell plane, ν is assumed to be ignorable (i.e.,40

∂/∂ν = 0), where ν is the coordinate perpendicular to both φ and s. For particles, since41

the particles’ cyclotron motion must be resolved to properly describe drift and bounce42

motion, all three coordinates are kept for the simulation particles.43

S1.3 Equilibrium44

The dipole magnetic field is curl-free (∇ × B0 = 0). When a distribution of charged45

particles is introduced, it generally produces a non-vanishing current. For equilibrium,46

an additional magnetic field B1 should be introduced to balance this current: ∇×B1 =47

(4π/c)J1,⊥. For the two-dimensional case where φ is ignorable, this current amounts to48

(e.g., Ebihara & Ejiri, 2003; Hu et al., 2010)49

J1,⊥ ≈ c
B0

B2
0

×
[
∇P⊥ + (P‖ − P⊥)

(B0 · ∇)B0

B2
0

]
, (4)50

where P⊥ and P‖ are the pressure components perpendicular and parallel to B0, respec-51

tively. Note that the total magnetic field B is replaced by B0, assuming B1 � B0.52

For the present setup, the expression for J1,⊥ is different. For a distribution, f , of53

charged particles, the current density is given by54

J1,⊥ = q

∫
(VGC + vg)fd3v, (5)55

where we have separated the velocity, v, into the guiding center part, VGC , and the56

gyrating part, vg. Making use of the expression for the velocity of the guiding center57

(e.g., Roederer, 1970) located at L0, the current density due to guiding center motion58

may be written as59

JGC =
c

B

B×∇B
B2

(
P⊥ + P‖

)
. (6)60
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Considering the diagram shown in Figure S2, the contribution to J1,⊥ due to gyration61

comes from the fact that with azimuthal symmetry, the arc length of the inbound and62

outbound portions of the gyro orbit separated by the constant-L0 surface is different.63

As a result, 〈vg · eφ〉 is non-vanishing, where the angled brackets denote gyro-averaging.64

(On the other hand, 〈vg · ∇L〉 vanishes due to symmetry.) To quantify this contribution65

for dipole geometry, let us consider the coordinate system shown in Figure S3. (The x66

axis is along the Earth’s dipole moment.) The guiding center position in the unprimed67

coordinate system is given by R = R(sinλex + cosλey). For a gyro-radius, rg, much68

smaller than R, the gyro-velocity vector may be written as69

vg = v⊥ (ey′ cos(Ωct)− ez sin(Ωct))70

= v⊥

[
ex cos(Ωct)

3ξ
√

1− ξ2√
1 + 3ξ2

+ ey cos(Ωct)
1− 3ξ2√
1 + 3ξ2

− ez sin(Ωct)

]
, (7)71

where Ωc is the (signed) cyclotron frequency (evaluated at the guiding center); v⊥ = |vg|;72

ξ = sinλ; and73

ex′ =
1− 3ξ2√
1 + 3ξ2

ex −
3ξ
√

1− ξ2√
1 + 3ξ2

ey and ey′ =
3ξ
√

1− ξ2√
1 + 3ξ2

ex +
1− 3ξ2√
1 + 3ξ2

ey. (8)74

Making use of the expression for the gyro-radius vector75

rg =
B× vg
BΩc

= rg (ey′ sin(Ωct) + ez cos(Ωct)) , (9)76

the position vector of the particle is written as77

r = R + rg78

=

(
Rξ + rg sin(Ωct)

3ξ
√

1− ξ2√
1 + 3ξ2

)
ex +

(
R
√

1− ξ2 + rg sin(Ωct)
1− 3ξ2√
1 + 3ξ2

)
ey79

+rg cos(Ωct)ez. (10)80
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Meanwhile, with the position vector r = rxex + ryey + rzez and r · eφ = 0, the unit vector81

in the azimuthal direction at the particle position can be written as82

eφ(r) =
−rzey + ryez√

r2y + r2z
. (11)83

Using equation (10), the denominator can be written as84

r2y + r2z =

(
R
√

1− ξ2 + rg sin(Ωct)
1− 3ξ2√
1 + 3ξ2

)2

+ r2g cos2(Ωct)85

≈ R2

(
(1− ξ2) + 2

rg
R

sin(Ωct)(1− 3ξ2)

√
1− ξ2√
1 + 3ξ2

)
, (12)86

where rg/R� 1 is assumed for the approximate expression. Finally, combining equations87

(10), (11), and (12), the azimuthal component of the gyro velocity can be written as88

vg · eφ =
−v⊥√

(1− ξ2) + 2 rg
R

sin(Ωct)(1− 3ξ2)

√
1−ξ2√
1+3ξ2

(√
1− ξ2 sin(Ωct) +

rg
R

1− 3ξ2√
1 + 3ξ2

)
89

≈ −v⊥

(
sin(Ωct) +

rg

R
√

1− ξ2
1− 3ξ2√
1 + 3ξ2

cos2(Ωct)

)
, (13)90

where rg/R� 1 is assumed for the approximate expression. Gyro-averaging vg ·eφ yields91

〈vg · eφ〉 ≈ −
v2⊥

2ΩcR

1− 3ξ2√
(1− ξ2)(1 + 3ξ2)

. (14)92

Finally, evaluation of Jg = q
∫
〈vg〉fd3v yields the gyro-averaged current density due to93

gyro-motion94

Jg ≈ −eφ
1− 3ξ2√

(1− ξ2)(1 + 3ξ2)

c

B

P⊥
R
. (15)95

Combining equations (6) and (15), the total current density is given by96

J1,⊥ =
c

B

B×∇B
B2

(
P⊥ + P‖

)
− eφ

c

B

1− 3ξ2√
(1− ξ2)(1 + 3ξ2)

P⊥
R
. (16)97

Figure S4 compares the above analytic expression and the result from test particle tracing.98

Captions for Movies S8 to S11 Movies S8 and S9 show the movie version of Figure99

4b, corresponding to δB‖ and δEφ, respectively.100
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Movies S10 and S11 show the movie version of Figure 7, corresponding to δB‖ and δEφ,101

respectively.102
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Figure S2. An illustration of the finite gyro-radius contribution to the current density.
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Figure S3. The coordinates (x, y, z) are defined in the Earth-centered Cartesian

coordinate system whose x-y plane contains the guiding center, R. (The x axis is along

the Earth’s dipole moment.) The coordinates (x′, y′, z′) are defined in the local Cartesian

coordinate system centered at the guiding center, R, as depicted. Here, ez = ez′ .
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Figure S4. Time evolution of the average velocity of equatorially mirroring test

particles initialized according to the delta function distribution, f ∼ δ(v‖)δ(v⊥ − vr).

The blue curve represents the radial (ν) component which has zero average value. The

red curve represents the azimuthal component which is negative for positively-charged

particles. The dashed line denotes the value obtained using equation (16).
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Figure S5. Time evolution of the reduced velocity distributions (
∫∫

fdv‖dφ) of partial shell

protons sampled at the latitude listed in each panel. These results are from the local two-

dimensional PIC simulations carried out by Min and Liu (2020). Colors from black to red

represent the progression of simulation time with the end time labeled in each panel. The

vertical dashed lines denote vA(λlat)/vA,eq.
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Figure S6. Two-dimensional color plots (in logarithmic scale) of (a) magnetic, 〈δB2〉φ, and

(b) electric, 〈δE2〉φ, field intensity corresponding to Figures 5a and 5b in the main article but

for the simulation with an extended time period. The horizontal dashed lines denote the time

when all kinetic particles were removed from the system.

June 27, 2020, 7:51am



MIN ET AL.: PIC SIMULATION OF MAGNETOSONIC WAVES X - 13

-2 -1 0 1 2

2

4

6

8

-20 -10 0 10 20

s [RE]

tΩ
p,
eq

[×
10
0]

λlat [°]

(a)
〈S∥〉ϕ 4π

Beq
2 vA,eq

[×10-4]

-2

-1

0

1

2

-2 -1 0 1 2

2

4

6

8

-20 -10 0 10 20

s [RE]

λlat [°]

(b) θp

[°]

0

50

100

150

Figure S7. (a) Parallel component of the Poynting flux, 〈S‖〉φ, shown in linear scale corre-

sponding to Figure 5c but for the simulation with an extended time period. (b) Poynting vector

angle, θp = cos−1(〈S‖〉φ/〈|S|〉φ), corresponding to Figure 5d but for the simulation with an ex-

tended time period. The horizontal dashed lines denote the time when all kinetic particles were

removed from the system.
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