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Introduction The supporting information included in this document pertains to the

calculations used for solving the corona onset criterion for the onset surface field of the

charged hydrometeor. While these full derivations are not necessary in the paper and can

in principle be done by the reader, providing them supports reproduction of the study.

Specifically, derivations for the distance ρab to the point of photon absorption (Text S1),

the electric field E(ρ, r, θ) of a conducting ellipsoid (Text S2), and the distance rmax

between the tip of the ellipsoid and the position of the breakdown field Ek (Text S3)

are presented. The calculations are supported by Figures S1 to S4. The MATLAB code

used to implement the model is given as additional supporting information and uploaded

separately. Comments are provided in the MATLAB scripts for clarity and an Excel file

is also included to be able to run these scripts.

Text S1. Derivation of the distance ρab

The distance ρab to the point of photon absorption, which will now be referred to as the

’observation point’, is in the direction of the electric field. This direction is given by the

bisector of the two straight lines from the focal points of the spheroid to the observation

point (Curtright et al., 2020). The bisector ρab is depicted in Figure S1.

Since the origin of the spherical coordinate system in Figure S1 is placed at the tip of

the ellipsoid on the positive z-axis, the lines from the focal points to the observation point

given by ρ2 = x2 + y2 + z2 become in spherical coordinates:

ρ21 = (r sin θ)2 + (a− d+ r cos θ)2 = r2 + (a− d)2 + 2(a− d)r cos θ,

ρ22 = (r sin θ)2 + (a+ d+ r cos θ)2 = r2 + (a+ d)2 + 2(a+ d)r cos θ,

(1)

with coordinates as given in Figure S1 and the linear eccentricity d2 = a2 − b2.

Using the law of cosines, the angle 2β between these two lines ρ1 and ρ2 is given by:
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cos (2β) =
1

2ρ1ρ2

(
ρ21 + ρ22 − 4d2

)
. (2)

Using the trigonometric identity cos (2β) = 2 cos2 β − 1 the cosine of the angle between

ρab and ρ1 is found:

cos (β) =

√
1

2
+

1

4ρ1ρ2
(ρ21 + ρ22 − 4d2). (3)

The acute angle φ between ρ1 and the z-axis follows from:

sinφ =
r sin θ

ρ1
. (4)

Since the acute angle between ρab and the z-axis is given by φ− β, it can be concluded

that

ρab =
r sin θ

sin (φ− β)
, (5)

where β and φ are given by Equations 3 and 4, respectively. The final expression for ρab

can be formulated more compactly by applying the trigonometric identity sin (φ− β) =

sin (φ) cos (β) − cos (φ) sin (β). Figure S1 shows that cosφ = (r cos (θ) + a − d)/ρ1.

Moreover, the law of sines applied to the triangle with the observation point and the

two focal points as vertices in Figure S1, in combination with the trigonometric iden-

tity sin (2β) = 2 sin (β) cos (β), gives sin (β) = sin (φ)d/ cos (β)ρ2. Finally, the following

expression for ρab is obtained:

ρab =

√
2ρ1

2

√
(4
√
a2−b2(a+r cos(θ))+ρ12)(2ar cos(θ)+b2+ρ1ρ2+r2)

ρ1ρ2

ρ12 + ρ1ρ2
, (6)
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with ρ1 and ρ2 the straight lines from the two focal points of the ellipsoid to the obser-

vation point (see also the supplementary materials) given by

ρ1 =

√
r2 + (a−

√
a2 − b2)2 + 2(a−

√
a2 − b2)r cos θ, (7)

ρ2 =

√
r2 + (a+

√
a2 − b2)2 + 2(a+

√
a2 − b2)r cos θ, (8)

This expression reduces to ρab =
√

(r sin θ)2 + (ρ0 + r cos θ)2 for a sphere of radius

a = b = ρ0.

Text S2. Derivation of the electric field E(ρ, r, θ)

The electric field of a conducting ellipsoid has been derived analytically by Köhn and

Ebert (2015) for the prolate spheroid case and by Curtright et al. (2020) for arbitrary

dimensions. The derivation of the electric field strength E yields

E(x, y, z) =
Q

4πε0

(
3∏

k=1

1√
a2k + Θ

)/√√√√( 3∑
m=1

x2m
(a2m + Θ)2

)
, (9)

where Q is the charge on the ellipsoid surface, ε0 is the vacuum permittivity, and

a1 = ax = b, a2 = ay = b and a3 = az = a are the semi-axes of the ellipsoid. Moreover,

the Θ-equipotentials follow from

3∑
k=1

x2k
a2k + Θ

= 1, for Θ > 0. (10)

Solving equation (10) for Θ gives
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Θ =
1

2

(√
(−a2 − b2 + x2 + y2 + z2)2 + 4 (−a2b2 + a2x2 + a2y2 + b2z2)− a2 − b2 + x2 + y2 + z2

)
.

(11)

Substituting this in equation (9) and converting to spherical coordinates (ρ′, θ′, φ′) with

the origin at the center of the ellipsoid yields an expression for the electric field in terms

of ρ′, the radial coordinate from the center of the ellipsoid, and θ′, the azimuthal angle

for the origin at the center of the ellipsoid. Using the trigonometric relations

θ′ = tan−1
(

r sin(θ)

a+ r cos(θ)

)
(12)

and

cos (2 tan−1 u) = (1− u2)/(1 + u2), (13)

with u = r sin(θ)
a+r cos(θ)

, the obtained electric field expression can be rewritten in the desired

θ coordinate. Note that the conversion from θ′ to θ can be done in multiple (equivalent)

ways using the tangent, sine or cosine. Now, the radial coordinate ρ′ needs to be converted

to the ρ coordinate along the electric field direction. This is done using the expression for

ρab, which is the distance to point of photoionization along the ρ coordinate and is given

by equation (6). By simple trigonometry the following relation can be derived

ρ′ =
√

2a∆−∆2 + ρ2 + 2∆r cos(θ), (14)

with ∆ = ∆(r, θ) = a −
√
ρ2ab + 1

2
r2 cos(2θ)− r2

2
+ r cos(θ) the distance between the

center of the ellipsoid and the intercept of ρab with the major axis and with ρab given by

equation (6). Writing out equation (14) gives
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ρ′ =

√
2ar cos(θ) (3a2 − 3b2 + ρ2) + 2a2ρ2 + a2ρ1ρ2 − b2ρ2 − b2ρ1ρ2 + ρ2r2 + ρ2ρ1ρ2 + p

2a2 + 2ar cos(θ)− b2 + r2 + ρ1ρ2
,

(15)

with p = 2a4 − a2b2 + 2a2r2 cos(2θ) + a2r2 − b4 − 2b2r2 cos(2θ) − b2r2. Thus, equa-

tion (14) allows us to convert ρ′ to ρ. However, as r is also a function of ρ′ through

ρ′ =
√
a2 + r2 + 2ar cos(θ) (or equivalently r =

√
1
2
a2 cos(2θ)− a2

2
+ ρ′2 − a cos(θ)), this

derivation is not complete. Substituting the expression for r in terms of ρ′ in equation

(14) gives an equation that is not analytically solvable. Ideally, an electric field would be

obtained that is only a function of ρ and θ. As an analytical expression is required for the

model, the expression for the electric field in terms of ρ, r and θ is now accepted, given

by

E(ρ, r, θ) =
2b2E0ρ

′√
a2 − b2 + q + ρ′2

(
−a2 + b2 + q + ρ′2

)√
q

(b2−a2)(a2+2ar cos(θ)+r2 cos(2θ))
a2+2ar cos(θ)+r2

+q+ρ′2

,

(16)

with the shorthand q =
√

2ρ′2(b2−a2)(a2+2ar cos(θ)+r2 cos(2θ))
a2+2ar cos(θ)+r2

+ (a2 − b2)2 + ρ′4 and where

ρ′ is converted to ρ using equation (15). As eventually the γ = 1 equation is solved

numerically, the dependence of r is not a problem as long as the resulting αeff (which

depends on the electric field) behaves correctly.

Text S3. Derivation of the distance rmax

The distance rmax between the tip of the ellipsoid and the position of the breakdown

field Ek can be found from the relation ρab(rmax, θ.φ) = ρc. Here, ρab is the bisector in the

direction of the electric field, and ρc is the distance (in terms of the ρ coordinate) to the
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position of the breakdown field E(ρc) = Ek. Thus, to solve for rmax, ρc needs to be found

first, where ρc is defined by the equation E(ρc) = Ek (the electric field is derived in the

supplementary materials). However, due to the complicated nature of the electric field of

a conducting ellipsoid, this equation cannot be solved explicitly for ρc. Nevertheless, it

turns out that there is a fairly good approximation for rmax.

The surface of a conducting ellipsoid is an equipotential. One can mistakenly think

that the electric field is constant on the surface. From symmetry it then follows that

the points where the electric field has a certain constant value, such as Ek, will lie on an

ellipsoid. Though this is based on a false assumption, it might prove useful to approximate

the surface E = Ek as forming an ellipsoid. Simulating the electric field in COMSOL,

specifically for the semi-axes a = 5 cm and b = 2 cm, the field at the tip E0 = 95.2

kV/cm and the breakdown field Ek = 32 kV/cm, results in the plot of Figure S2. This

figure shows that near the tip of the ellipsoid in the (x, z)-plane, where x is the horizontal

coordinate and z the vertical coordinate, the line of E = Ek approximately follows the

shape of an ellipse around the conducting ellipse. The validity of the approximation can

be tested, by importing the data points where E = Ek into MATLAB, and fitting these

using the equation of an ellipse. This ellipse has unknown semi-axes a′ and b′, which are

the fitting parameters, and is centered at the center of the conducting ellipsoid (here at

(0, 0)) because of symmetry. The fitting equation is thus z = a′
√

1− (x/b′)2. The data

points imported from COMSOL and the fit through these points is depicted in Figure S3,

where (x, z) = (0, 5) is the position of the tip of the ellipsoid. It follows that the data

points indeed approximately lie on an ellipse near the tip of the conducting ellipsoid, as

the fit agrees very well with the data points.
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It can thus be concluded that the surface where E = Ek can be approximated as an

ellipsoid. Because of symmetry, only an ellipse in the (x, z)-plane or (y, z)-plane needs to

be considered. The next step is to find an analytical expression for rmax going from the

origin at r = 0 at the tip of the conducting ellipsoid to the ellipse where E = Ek.

While rmax cannot be found from the electric field for arbitrary θ, it can be found for

θ = 0 and θ = π/2. First, the electric field is reformulated in terms of only r and θ. Then,

filling in θ = 0 and solving E(r, 0) = b2E0

2ar+b2+r2
= Ek for r gives:

rmax(θ = 0) =

√
a2 +

b2(E0 − Ek)
Ek

− a. (17)

Obtaining rmax(θ = π/2) proves more difficult. Filling in θ = π/2 in the electric field

expression yields:

E(r, θ = π/2) =
2b2E0

√
(a2+r2)

(
(b2−a2)

(
2a2

a2+r2
−1

)
+
√
4a2r2+b4−2b2r2+r4+a2+r2

)
√
4a2r2+b4−2b2r2+r4+2a2−b2+r2

4
√

4a2r2 + b4 − 2b2r2 + r4
(√

4a2r2 + b4 − 2b2r2 + r4 + b2 + r2
) . (18)

Setting the above expression equal to Ek and solving for r leads to a case known as ’Casus

irreducibilis’. For an irreducible degree 3 polynomial with three real roots, it has been

proven that complex numbers need to be introduced to express the solution in roots of any

degree, even though the solution is real (Wantzel, 1843). Solving E(r, θ = π/2) = Ek for

r, for example using software like Mathematica, leads to 6 solutions containing imaginary

parts. Setting b close to a, it is found that one of these solutions approaches the solution

of a sphere, accompanied by a very small imaginary part. For example, for a = 3 cm,

b = 2.99 cm, E0 = 100 kV/cm, Ek = 32.75 kV/cm a value of 10−12 cm is found for the

imaginary part. These negligibly small imaginary contributions, which are found for any a
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and b and remain negligibly small, are a results of numerical noise in the machine number

calculations in Mathematica (or other numerical software packages).

Possibly due to this ’Casus irreduciblilis’ issue, rmax(θ = π/2) has no solution at a = b, so

for the reduction to a sphere. However, when b approaches a, rmax(θ = π/2) approaches

the solution of a sphere. For example, taking again a = 3 cm, b = 2.99 cm, E0 = 100

kV/cm, Ek = 32.75 kV/cm, the real part of rmax(θ = π/2) is 4.27758 cm, while the

rmax of a sphere at θ = π/2 is 4.29894 cm. Instead taking b = 2.9999999 cm (seven

decimals) gives rmax(θ = π/2) = 4.29894 cm for the ellipsoid. It can thus be concluded

that rmax(θ = π/2) approaches the correct solution for a sphere and can be safely used,

as the goal is to implement the model for an ellipsoid and not a sphere, for which simpler

expressions are already known. Writing out the found solution for rmax at θ = π/2 for a

conducting ellipsoid gives:

rmax(θ = π/2) =
1

2
√

3

√
F

G
, (19)

where F and G are given by:
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F = 32 3√2(1−i
√
3)a8E4

k+12 3√2i(
√
3+i)a2b6E2

k(E2
0+3E2

k)

+24a2b2E2
k(

3
√
b4(3b4Ek(a4C5Ek−C1E

2
0+2C1E

2
k)+6a4E3

k(2a
4C7Ek+C1)−18a2b6C4E

2
k
+3a2b2C1Ek(E2

0−4E2
k)−b8C3)+C2

+4 3√2i(
√
3+i)a4E2

k)

+b4
(
4(E2

0−2E2
k) 3
√
b4(12a8C7E

4
k
+3a4b4C5E

2
k
−18a2b6C4E

2
k
+3a2C1C6Ek−b8C3−3b2C1C6Ek)+C2+2 3√2(1−i

√
3)a4E2

k(4E2
0+49E2

k)
)

−16a4E2
k

3
√
b4(12a8C7E

4
k
+3a4b4C5E

2
k
−18a2b6C4E

2
k
+3a2C1C6Ek−b8C3−3b2C1C6Ek)+C2

+(1+i
√
3)(256a12E6

k−1152a10b2E6
k−6b6(6a6E4

k(8E2
0+49E2

k)+C1C6Ek)

+6a4b8C5E
2
k−36a2b10C4E

2
k+6b4(4a8C7E

4
k+a

2C1C6Ek)−2b12C3)
2/3+2 3√2(1−i

√
3)b8(E2

0+E
2
k)

2
,

G = E2
k

(
a2 − b2

)
3

√
b4 (12a8C7E4

k + 3a4b4C5E2
k − 18a2b6C4E2

k + 3a2C1C6Ek − b8C3 − 3b2C1C6Ek) + C2,

and where C1, C2, C3, C4, C5, C6 and C7 are defined as follows:

C2
1 = −12a8E4

k

(
8E2

0 + E2
k

)
+ 36a6b2E4

k

(
7E2

0 + E2
k

)
− 3a4b4E2

k

(
13E4

0 + 72E2
0E

2
k + 12E4

k

)
+6a2b6E2

k

(
7E4

0 + 10E2
0E

2
k + 2E4

k

)
− 3b8E4

0

(
4E2

0 + E2
k

)
,

C2 = 128a12E6
k − 576a10b2E6

k − 18a6b6E4
k

(
8E2

0 + 49E2
k

)
,

C3 = 2E6
0 − 21E4

0E
2
k + 6E2

0E
4
k + 2E6

k ,

C4 = 2E4
0 + 2E2

0E
2
k + 3E4

k ,
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C5 = 5E4
0 + 46E2

0E
2
k + 122E4

k ,

C6 = 2a2E2
k + b2

(
E2

0 − 2E2
k

)
,

C7 = 4E2
0 + 85E2

k .

Now that analytical expressions are found for rmax(θ = 0) and rmax(θ = π/2), the ellipse

approximation for rmax at arbitrary θ can be applied. Noting that the origin is placed at

the tip of the ellipsoidal conductor, the equation for the ellipse where E = Ek is given by:

(z′ + a)2

a′2
+
x′2

b′2
= 1, (20)

where (z’,x’) is a point on the ellipse E = Ek, a
′ is its major semi-axis and b′ its minor

semi-axis. This configuration is depicted in Figure S4, where the grey region represents

the photon absorption region. Here it is seen that a′ = a + rmax(θ = 0), z′ = rmax cos θ,

and x′ = rmax sin θ.

Setting z′ = 0 in equation (20), which corresponds to x′ = ±rmax(θ = π/2) as can be

seen from Figure S4, gives

a2

a′2
+
rmax(θ = π/2)2

b′2
= 1. (21)

which can be solved for the minor semi-axis b′ of the ellipse E = Ek:

b′ =
rmax(θ = π/2)√

1− a2

a′2

. (22)
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Substituting the found expressions for a′, b′, z′ and x′ into equation (20) results in the

final expression for rmax(θ) in the ellipse approximation:

rmax(θ)=
rmax(θ=π/2)(

√
rmax(θ=0)2(2a+rmax(θ=0))2 sin2(θ)+rmax(θ=π/2)2(a+rmax(θ=0))2 cos2(θ)−armax(θ=π/2) cos(θ))

rmax(θ=0)(2a+rmax(θ=0)) sin2(θ)+rmax(θ=π/2)2 cos2(θ)
.

(23)

Looking back at Figure S3, the ellipse fit of the data points gives rmax(θ = 0) =

(5.743 − 5) cm= 0.743 cm in the z-direction, and rmax(θ = π/2) = 1.408 cm in the x-

direction. Equation (23) gives for the same input, a = 5 cm, b = 2 cm, E0 = 95.2 kV/cm

and Ek = 32 kV/cm, the values of rmax(θ = 0) = 0.736 cm and rmax(θ = π/2) = 1.397 cm.

The discrepancy between these values is very small (relative error of about 1%) and caused

by equation (23) being derived using the data points of E = Ek at θ = 0 and θ = π/2

and basing the ellipse shape on that, while the ellipse in Figure S3 is based on more data

points. Hence, the ellipse of equation (23) is formulated such that the two computed

rmax at θ = 0 and θ = π/2 lie on the ellipse, while for the fit the optimal fit does not

necessarily go through these two points precisely. Equation (23) can also be compared to

Figure S3 for arbitrary 0 ≤ θ ≤ π/2. For example, θ = 0.9497 rad gives rmax = 0.928 cm

for the ellipse fit, and rmax = 0.919 cm for equation (23). Moreover, θ = 0.5120 rad gives

rmax = 0.792 cm and rmax = 0.784 cm, respectively. We thus conclude that equation (23)

is a fair approximation of the actual rmax of a conducting ellipsoid.
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Figure S1. Schematic of the bisector giving the electric field direction outside a

conducting ellipsoid.
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x (cm)

z (cm)

E = E
k
 (32 kV/cm)

Figure S2. The line of constant E = Ek (red) for an ellipse with semi-axes a = 5 cm

(vertical) and b = 2 cm (horizontal). Here only half of the width of the ellipse is shown

and the axis of symmetry is drawn.

Figure S3. Fit of E = Ek data points using an ellipse fit of z = a′
√

1− (x/b′)2. It is

found that a′ = (5.743± 0.002) cm and b′ = (2.86± 0.01) cm.
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Figure S4. The conducting ellipsoid (solid, black line), with positions of constant

E = Ek (solid, red line), the edge of the ionization region, approximated as an ellipse

shape (dashed line) with coordinates (z′,x′) and semi-axes a′ and b′.


