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Key points (140 characters): 11 

• This study provides a high-resolution, high-fidelity Arctic hydrologic simulation and 12 

evaluation for 15 major Alaskan river basins 13 

• This work moves CTSM towards a more actionable Earth Science paradigm through 14 

optimization for hydrology-related applications  15 

• The optimization framework developed in this study is transferable to other CTSM 16 

applications and is informative for land models generally 17 

  18 
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Abstract (250 words) 19 

The Arctic hydrological system is an interconnected system that is experiencing rapid 20 

change. It is comprised of permafrost, snow, glacier, frozen soils, and inland river systems. 21 

Permafrost degradation, trends towards earlier snow melt, a lengthening snow-free season, soil 22 

ice melt, and warming frozen soils all challenge hydrologic simulation under climate change in 23 

the Arctic. In this study, we provide an improved representation of the hydrologic cycle across a 24 

regional Arctic domain using a generalizable optimization methodology and workflow for the 25 

community. We applied the Community Terrestrial Systems Model (CTSM) across the US state 26 

of Alaska and the Yukon River Basin at 4-km spatial resolution. We highlight several potentially 27 

useful high-resolution CTSM configuration changes. Additionally, we performed a multi-28 

objective optimization using snow and river flow metrics within an adaptive surrogate-based 29 

model optimization scheme. Four representative river basins across our study domain were 30 

selected for optimization based on observed streamflow and snow water equivalent observations 31 

at ten SNOTEL sites. Fourteen sensitive parameters were identified for optimization with half of 32 

them not directly related to hydrology or snow processes. Across fifteen out-of-sample river 33 

basins, thirteen had improved flow simulations after optimization and the median Kling-Gupta 34 

Efficiency of daily flow increased from 0.40 to 0.63. In addition, we adapted the Shapley 35 

Decomposition to disentangle each parameter’s contribution to streamflow performance changes, 36 

with the seven non-hydrological parameters providing a non-negligible contribution to 37 

performance gains. The snow simulation had limited improvement, likely because snow 38 

simulation is influenced more by meteorological forcing than model parameter choices. 39 

  40 
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1 Introduction 41 

The Arctic is experiencing rapid change across all Earth system components including 42 

Arctic hydrology (Fox-Kemper et al., 2021; Yang & Kane, 2020). Specifically, Arctic Alaska is 43 

experiencing a multitude of changes. Abrupt increases in permafrost degradation and increasing 44 

active layer depth greatly influence the subsurface runoff process (Jorgenson et al., 2006; 45 

Lawrence et al., 2012; Lawrence & Slater, 2005; Osterkamp & Romanovsky, 1999). Larger 46 

surface energy fluxes due to increased atmospheric temperatures and moisture lead to earlier 47 

snow melt, lengthening of the snow-free season, reduced river ice, frozen soil warming, 48 

permafrost degradation, and related shifts in the fluvial freshwater seasonality(Cox et al., 2017; 49 

Hamman et al., 2017; Pavelsky & Zarnetske, 2017; Stone et al., 2002). These anthropogenic 50 

climate-driven transformations in hydrology and river ice in the Alaskan and Yukon rivers will 51 

likely have substantial impacts on Indigenous community members who rely heavily on inland 52 

river systems for subsistence fishing and river-ice road transportation (Pavelsky & Zarnetske, 53 

2017). 54 

Hydrologic modeling of Arctic rivers is challenging due to the aforementioned complex 55 

and interacting terrestrial processes. However, recent developments in advanced land models 56 

(LMs) are now enabling us to simulate complex land surface processes and their subsequent 57 

impacts on hydrology (Clark et al., 2015; Hamman et al., 2016). Additionally, advances in 58 

computationally frugal optimization methods and improvements in LM agility (i.e., the 59 

capability to adjust model equations and parameters to faithfully represent observed processes; 60 

Mendoza et al., 2015), allow for parameter sensitivity and application-oriented optimization 61 

studies of these advanced LMs. 62 
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In this study, we specifically focused on a state-of-the-science land model, the 63 

Community Terrestrial Systems Model (CTSM). CTSM includes complex vegetation and 64 

canopy representation, a multi-layer snow model, as well as hydrology and frozen soil physics 65 

necessary for the representation of streamflow and permafrost in the Arctic (Oleson et al., 2010). 66 

More recent updates to parameterizations and model structures for hydrology and snow 67 

(Lawrence et al., 2019) further improves the physical representation related to freshwater cycles 68 

in cold regions, including spatially explicit soil depth (Pelletier et al., 2016), representation of 69 

soil organic matter (Lawrence et al., 2008), revised canopy interception and canopy snow 70 

processes, and updated fresh snow density (van Kampenhout et al., 2017). Finally, a 71 

representative hillslope hydrology capability has recently been implemented into CTSM, which 72 

enables parameterization of the impacts of slope and aspect on lateral water transfer and incident 73 

radiation and subsequent impacts on hydrology (Fan et al., 2019; Swenson et al., 2019). 74 

Earth System models are being applied at an increasingly higher resolution to improve 75 

accuracy and increase actionability (Bierkens et al., 2015; Singh et al., 2015). Higher-resolution 76 

models can more faithfully represent varied and complex topography, and thus often more 77 

realistically simulate seasonal snow, orographic precipitation patterns, and potentially 78 

heterogeneous permafrost (Newman et al., 2021; Rasmussen et al., 2011). A more realistic 79 

physical representation of the landscape and land-atmosphere interactions increases the 80 

credibility of a model in regional applications, which can help to build stakeholder trust in model 81 

results and can help to facilitate a move toward a more actionable Earth Science paradigm 82 

(Giorgi, 2019).  83 

As part of the Arctic Rivers Project, we are guided by an 11-member Indigenous 84 

Advisory Council. The Council helps project investigators make decisions about research design, 85 
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analysis, and deliverables to ensure that Indigenous knowledge and perspectives are included, 86 

valued, and protected, and that the project benefits the Indigenous peoples the project is intended 87 

to serve. We co-developed a climate information survey (Herman-Mercer, 2021) completed by 88 

23 Tribal Councils, Traditional Councils, First Nation Governments, City Councils, and 89 

Regional Indigenous Organizations. From the survey results, there was consensus that the most 90 

useful information for Indigenous decision-makers would be sub-watershed scale (or high-91 

resolution) streamflow and other land-surface and sensible (i.e., relatable) weather variables such 92 

as 2-m air temperature and precipitation. Configuring a high-resolution model is multi-faceted, 93 

which not only means a finer grid but also requires corresponding meteorological forcing data 94 

and land surface datasets that are often more difficult to work with if they even exist. In addition, 95 

high-resolution LMs require substantially more computational resources, which decreases their 96 

potential to be optimized. 97 

Even with improved process representation and hydrologically focused model 98 

configurations (Choi & Liang, 2010; Jiao et al., 2017; Singh et al., 2015), optimization of 99 

parameters within complex LMs is often necessary because of uncertainty in model parameters, 100 

model structural errors, and missing process representations (Lehner et al., 2019; Mendoza et al., 101 

2015; Sankarasubramanian et al., 2001). Optimization of complex LMs like CTSM is a 102 

substantial challenge given the high computational costs, and this challenge limits the usage of 103 

CTSM and similar models in large-scale hydrological or other stakeholder specific applications. 104 

Although several sensitivity analyses have been conducted to examine the hydrological 105 

responses to CTSM model parameters (Jefferson et al., 2015; Ren et al., 2016; Srivastava et al., 106 

2014), their limited spatial coverage or number of parameters cast few insights on sensitive 107 

parameters to Arctic terrestrial hydrology.  108 
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In this study, we provide: 1) a methodology for efficient optimization of CTSM for 109 

regional to large-scale hydrologically focused applications; 2) a high-resolution Arctic CTSM 110 

configuration focused on improved hydrologic simulation fidelity; and 3) tools available to the 111 

scientific community to apply our methodology to other regions and applications. Additionally, 112 

this study lays the foundation for knowledge co-production research with Indigenous 113 

communities for a range of topics, including improving our understanding of climate-induced 114 

impacts on the rivers and fishes, and communities necessary to inform adaptation efforts. We 115 

aim to move CTSM and other complex, process-rich land models toward a more actionable Earth 116 

Science paradigm (Findlater et al., 2021) through this regional hydrologic application. 117 

2 Study domain 118 

Our study domain includes the Yukon River Basin (dark blue boundaries in Figure 1) and 119 

Alaska. Over 200 Indigenous tribes and First Nations reside in this area and their culture and 120 

livelihood are deeply rooted in inland freshwater systems. Figure 1 highlights key river basins 121 

and gaging stations along the Yukon River that have minimal diversions and enough 122 

observations to be used for model calibration or validation. The Tanana River and Steward River 123 

are two major tributaries to the Yukon River. Along the North Slope, four river basins with 124 

quality flow observations are highlighted in Figure 1; the Colville River, Kuparuk River, 125 

Sagavanirktok River, and Wulik River. Six river basins south of the Yukon River Basin also 126 

have enough quality flow observations for our purposes; the Kuskokwim River, Iliamna River, 127 

Susitna River, Talkeetna River, Matanuska River, and Kenai River. We also used observations 128 

from two gauges along the main stem of the Yukon River, i.e., one at the Pilot station and one 129 

near Stevens Village denoted as Yukon_P and Yukon_S in Figure 1. 130 
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 131 

Figure 1: Study domain. The dark blue line denotes the boundary of the Yukon River Basin and 132 
black stars denote the outlets of the highlighted river basins. 133 

3 Baseline CTSM configuration 134 

To configure a high-resolution CTSM application, we downscaled the available coarse 135 

meteorological forcing data (Section 3.1) and used finer-than-default soil texture data (Section 136 

3.2). In addition, we used the hillslope hydrology scheme in CTSM to account for the remaining 137 

sub-grid topographic variability (Section 3.3) and used the satellite phenology CTSM 138 

configuration with default model parameter values. We used the vector-based mizuRoute to 139 

route runoff (Mizukami et al., 2016, 2021) and we extracted the river network from a high-140 

resolution global hydrography map, i.e., MERIT Hydro (Yamazaki et al., 2019). This constitutes 141 

our baseline CTSM model (Figure 2). 142 
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 143 

Figure 2: CTSM baseline scenario and workflow for optimization 144 

3.1 Downscaling meteorological forcing data - ERA5 145 

We used the fifth generation of ECMWF atmospheric reanalysis of the global climate 146 

(ERA5) as the meteorological forcing data (European Centre for Medium-Range Weather 147 

Forecasts, 2019). The forcing is at an hourly timestep and on a 0.25-degree (~14 km) latitude-148 

longitude grid. While a quarter degree resolution is a substantial improvement over previous 149 

global reanalysis, it is still too coarse to fully resolve complex topography and small-scale 150 

variations in near-surface meteorology, e.g., orographic precipitation, altitudinal temperature 151 

gradients (Monaghan et al., 2018; Rasmussen et al., 2011). Therefore, we performed a simple 152 

downscaling to add high-resolution information to our hourly forcing data. We used the monthly 153 

climatology from a 4 km simulation of coupled WRF and Noah-MP (Monaghan et al., 2018) to 154 

downscale the ERA5 data. This simulation was shown to represent historical observations well 155 
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(Monaghan et al. 2018) and is available from September 2002 to August 2016 (14 years), which 156 

we use to calculate ERA5 correction factors. For precipitation, we used a monthly multiplicative 157 

correction. Precipitation varies by orders of magnitude across regions and is bounded by zero so 158 

a multiplicative correction method is more appropriate than a delta method (Maraun & 159 

Widmann, 2018). 160 

 
Π!,#,$% = #!,#,$&'($$$$$$$

#!,#,$)'*+$$$$$$$$ 
(1) 

 #,,-,$./ = #,,-,$)'*+ × Π!,#,$%  (2) 

where P denotes precipitation. Π denotes the multiplicative correction factor, which has three 161 

dimensions, i.e., month (M), hour of the day (H), and grid (g). For each combination of month 162 

and hour, we averaged the values across 14 years to calculate the correction factor. Lower-case 163 

m and h denote the month and day for the to-be-corrected precipitation time series. We used a 164 

simple delta method to downscale the remaining meteorological forcing variables. 165 

 Σ!,#,$0 = '!,#,$&'($$$$$$$$ − '!,#,$)'*+$$$$$$$$ (3) 

 ',,-,$./ = ',,-,$)'*+ + Σ!,#,$0  (4) 

v denotes the meteorological forcing variables, i.e., air temperature, specific humidity, surface 166 

pressure, wind speed, longwave and shortwave radiation. Σ denotes the additive correction 167 

factor. In addition, corrected specific humidity was capped by its physically plausible upper 168 

limit, i.e., the specific humidity when air temperature equals the dew point. 169 

3.2 Soil texture and organic matter – SoilGrids 170 

Soil texture and organic matter directly affect the soil thermal and hydrologic properties 171 

and thus the hydrologic cycle. The spatial resolution of the default soil texture data in CTSM is 172 

very coarse, so we replaced it with the high-resolution soil property products from the SoilGrids 173 
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system (Hengl et al., 2017). The SoilGrids prediction model utilized over 230,000 soil profile 174 

observations from the WoSIS database (Batjes et al., 2020) and environmental covariates to 175 

generate global soil property maps at 250-m resolution for six standard depth intervals.  176 

 #*+1*23 =
,/45.

,/45. + ,/678 + ,974:
× 100% (5) 

 #*+;<*= =
,974:

,/45. + ,/678 + ,974:
× 100% (6) 

 0>! = ,; 	 ∙ 0?@7A ∙ 10BC
0.58  

(7) 

Percentages of sand and clay, #*+1*23 and #*+;<*=, were calculated based on the sand, silt, and 177 

clay contents (,/45., ,/678, ,974:, unit: g/kg). Organic matter density (0>!, unit: kg/m3) was 178 

calculated using the soil organic carbon (,; , unit: dg/kg) and bulk density (0?@7A, cg/cm3) with 179 

the assumption of carbon content 0.58gC per gOM. 180 

3.3 Sub-grid variability – Hillslope Hydrology 181 

Explicitly resolving hillslope-scale features can better capture the sub-grid distribution of 182 

water and energy within an LM grid cell (Fan et al., 2019), and has been implemented into 183 

CTSM (Swenson et al., 2019). The hillslope configuration used in this study consisted of four 184 

hillslopes per grid cell, each representing a different aspect (i.e., north, east, south, west), with 185 

each hillslope comprised of an upland column and a lowland column to explicitly simulate the 186 

flow of soil water along topographic gradients. In low-relief grid cells, only one column was 187 

specified.  188 
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 189 

Figure 3: Selected representative medium-sized basins for parameter estimation. Triangles 190 
denote SNOTEL sites with snow observations. Salcha River Basin is a subbasin of the Tanana River 191 
Basin (thick blue line) and Beaver River Basin is a subbasin of the Steward River Basin (thick orange 192 
line). 193 

4 Optimization framework 194 

We utilized a surrogate-based modeling optimization machine learning method to 195 

optimize CTSM parameters to provide improved hydrologic simulations across our study region. 196 

We specifically focused on river flow and snow and their objective functions were defined in 197 

Section 4.1. As a state-of-the-science land model, CTSM is computationally expensive to run, 198 

and it has over 200 tunable parameters. To constrain the computational cost, we first selected 199 

four representative medium-sized river basins for optimization: the Talkeetna, Salcha, Beaver, 200 

and Kuparuk river basins (Figure 3). Second, we determined the most sensitive parameters that 201 
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impact the simulation of Arctic hydrology (Section 4.2). In addition, we used a computationally 202 

frugal optimization method to reduce the total number of CTSM runs (Section 4.3). Based upon 203 

a preliminary optimization experiment for each basin, we found the optimized parameters 204 

showed substantial differences for the basin in the northern slope, i.e., Kuparuk, as opposed to 205 

the three southern basins. A simple parameter regionalization method was adopted with 206 

corresponding modifications to CTSM to accommodate the spatial heterogeneity of model 207 

parameters (Section 4.4). The optimization workflow is shown in Figure 2. 208 

4.1 Multi-objective functions for flow and snow conditions 209 

We aimed to provide optimized simulations of multiple components of the water budget.  210 

Given the limited observations in the region, we chose to optimize streamflow and snowpack as 211 

these two components of the water budget have direct measurements across our study domain 212 

over multiple years and locations. The flow objective function (6D) is the Kling-Gupta 213 

Efficiency (KGE, Gupta et al., 2009) using daily mean streamflow.  214 

 789 = 1 −:(% − 1)2 + (( − 1)2 + () − 1)2	 (8) 

 6D = 1 − 789 (9) 

789 is a comprehensive metric that integrates the linear correlation (%), a measure of flow 215 

variability error ((), and a bias term ()). For all USGS flow observations, we only used the data 216 

with a qualifier equal to A, which corresponds to the ice-free period. For snow, we designed an 217 

objective function (61) that aggregates three bias terms in snow simulations; relative errors in 218 

annual peak SWE (;9E1), snow persistence time (;981E), and snow melting rate (;901,). Snow 219 

persistence time is defined as the annual number of days with SWE larger than 0.1 mm. If it is 220 

perennial snow, the melting rate is calculated based upon the annual peak SWE and the SWE on 221 

August 31st, which is close to the date with the lowest annual SWE. If it is not perennial snow, 222 
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the melting rate is calculated based upon the annual peak SWE and the first day when SWE falls 223 

below 0.1 mm. The snow objective function is the quadratic mean of the three relative error 224 

terms, 225 

 61 = (;9E1F + ;981EF + ;901,F)
G
F (10) 

The aggregated snow metric 61 is unitless. 226 

4.2 Parameter sensitivity 227 

We were able to leverage ongoing CTSM parameter sensitivity experiments to inform our 228 

parameter optimization experiments. Dagon et al. (2020) established the most sensitive CTSM 229 

parameters for global surface energy balance and hydrology among a subset of 34 parameters. 230 

An ongoing experiment, the CTSM Perturbed Parameter Ensemble (henceforth PPE), extends 231 

this work to a larger set of CTSM parameters. This work is ongoing, but we were able to access 232 

their one-at-a-time experiment, which varied over 200 parameters across expert-derived ranges. 233 

Data and description are available via https://github.com/djk2120/clm5ppe. 234 

We adopted a two-step method to select sensitive parameters for optimization. First, we 235 

selected the top 40 parameters that exert a strong influence on Arctic hydrology from over 200 236 

parameters that were varied within the PPE. Because the CTSM configuration for the PPE did 237 

not utilize the hillslope hydrology nor did it include river routing, an additional filtering step was 238 

performed. While moving from over 200 to 40 parameters is a substantial simplification of the 239 

potential optimization space, it is still computationally expensive to tune 40 parameters within 240 

CTSM. Therefore, we further identified the most sensitive parameters by training a surrogate 241 

model to simulate the response surface of objective functions to each parameter. The top 14 out 242 

of the 40 pre-screened parameters were selected for optimization. Both steps are explained in 243 

detail as follows. 244 
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• Step 1: We used the PPE one-at-a-time experiment to select which parameters exert the 245 

most control on total runoff (QRUNOFF) and snow water equivalent (H2OSNO). To 246 

constrain computational costs, the PPE was run at 400 grid cells globally to represent the 247 

parameter sensitivities at different land cover types and climatologies. Seven of those 248 

grid cells fall in our study domain and we used the mean response across the seven grid 249 

cells to evaluate parameter sensitivity for Arctic hydrology. For QRUNOFF, we 250 

evaluated the mean, seasonality, and amplitude; for SWE, we evaluated the snow 251 

persistence duration, maximum monthly SWE, and snowmelt rate, which leads to a total 252 

of six variable-metric combinations. For each combination, we selected the top 15 most 253 

sensitive parameters and assigned a higher score to more sensitive parameters (e.g., 15 254 

points to the most sensitive parameter, 1 point to the least sensitive parameter). As a pre-255 

screen step, we would like to include as many sensitive parameters as possible within our 256 

capacity to handle complexity and we selected 15 after experimenting with different 257 

numbers. The scores for each parameter were summarized across all six variable-metric 258 

combinations and the total score represents the general uncertainty of the parameters to 259 

runoff and snow conditions in our study domain. A total of 40 parameters across all 260 

variable-metric combinations were pre-screened as candidate parameters and would be 261 

further selected in Step 2. 262 

 263 
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Table 1: Summary of 14 parameters selected for optimization, their categories, relevant physical processes, ranking based on 264 

scores in Step 2, parameter default values, ranges, as well as optimized values for northern and southern basins 265 

Category Parameters Relevant Physical process Rank 
Default 
value Range 

Optimized 
value in 
south 

Optimized 
value in 
north 

Acclimation 
parameters vcmaxha 

Photosynthesis, activation energy 
for Vc,max (maximum rate of 
Rubisco-mediated carboxylation) 14 72000 

[20000, 
250000] 20364 160155 

Hydrology 

om_frac_sf 
Scalar adjustment for organic 
matter fraction 2 

100%* 
DV 

[25%,200%]* 
DV 

26.876%* 
DV 

95.786%* 
DV 

slopebeta Surface water storage 11 -3 [-10,-0.5] -4.162 -6.713 

fff 
Decay factor for fractional 
saturated area 6 0.5 [0.01,10] 0.298 8.553 

e_ice Ice impedance factor 6 6 [1,8] 7.016 1 
Plant 
hydraulics krmax‡ 

Root segment maximum 
conductance 5 1.223×10-9 

[5.827×10-11, 
6.896×10-9] 2.046×10-9 2.735×10-9 

Sensible, 
latent heat 
and 
momentum 
fluxes 

d_max 

Heat and momentum flux for 
non-vegetated surface, dry 
surface layer (DSL) thickness 8 15 [5,100] 27.744 8.957 

frac_sat_soil_dsl_init 

Heat and momentum flux for 
non-vegetated surface, Fraction 
of saturated soil for moisture 
value at which DSL initiates 4 0.8 [0.25,2] 0.25 0.628 

cv 

Turbulent transfer coefficient 
between canopy surface and 
canopy air 11 0.01 [0.0025,0.04] 0.0165 0.04 
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a_coef 
Drag coefficient under less dense 
canopy 8 0.13 [0.05,0.15] 5.003×10-2 0.121 

Snow 
processes 

upplim_destruct_metamorph 

Upper limit for snow 
densification through destructive 
metamorphism 1 175 [10,500] 10 500 

n_melt_coef 
Parameter controlling shape of 
snow-covered area 3 200 [25,600] 93.702 526.216 

snw_rds_refrz 
Effective radius of re-frozen 
snow 11 1000 [500,1500] 526.434 500 

Stomatal 
resistance and 
photosynthesis Medlynslope‡ 

Medlyn slope of stomatal 
conductance-photosynthesis 
relationship 8 4.954 

[3.173, 
6.934] 4.287 3.196 

 266 

‡ denotes that the parameter is plant functional type (PFT) dependent and the value shown in the table is the mean value across all 267 

PFTs. 268 

DV is short for default values. 269 

Hydrologic parameters are highlighted using blue (Hydrology) and navy (Snow processes) and non-hydrologic parameters are 270 

highlighted using red (Sensible, latent heat, and momentum fluxes) and green (plant parameters). 271 

 272 
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• Step 2: To select the most sensitive parameters, we simulated the response of flow and 273 

snow objectives to the CTSM model parameters using surrogate models. For each river 274 

basin, we trained one surrogate model from 200 samples generated using the LHS 275 

method across the 40-dimension parameter space. Because the response of the objective 276 

function to one parameter in a multi-variate surrogate model is affected by other 277 

parameters, we can get a mean response by fixing the target parameter while perturbing 278 

the remaining 39 parameters. For example, to get the response to fff (Table 1) when fff 279 

equals 1, we utilized the 200 samples that were generated using LHS and fixed fff to 1, 280 

using the surrogate model to predict the response of the 200 modified samples, and 281 

average the responses to get a mean response. For one parameter, we calculated the mean 282 

responses at multiple points to get a two-dimensional response curve (Figure S1). The 283 

amplitude of the response curve was used to evaluate each parameter’s sensitivity. 284 

 285 

We used a simple weighting algorithm to select the final parameter list for optimization. 286 

For each river basin, the most sensitive 10 parameters were assigned non-zero scores, i.e., 287 

5, 3, 3, 2, 2, 2, 1, 1, 1, 1. In any single basin, parameters with ranks lower than 10 barely 288 

show sensitivity to the objective functions. In addition, this weighting algorithm 289 

emphasizes the most sensitive parameters in any single basin, which may not be sensitive 290 

elsewhere. In total, nineteen parameters were in the top 10 most sensitive across all 291 

basins. We selected all parameters with a total score higher than 1, meaning they were at 292 

least one of the 6 most sensitive parameters in any one basin, or somewhat sensitive in 293 

multiple basins. This resulted in fourteen parameters being selected for full optimization 294 
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(Table 1). It is possible that multiple parameters shared the same scores and therefore the 295 

same ranks, e.g., fff, e_ice (rank 6) and d_max, a_coef, medlynslope (rank 8) in Table 1. 296 

4.3 Adaptive Surrogate Based Modeling Optimization (ASMO) 297 

Adaptive Surrogate Based Modeling Optimization (ASMO) is an emerging optimization 298 

method that can be used for tuning hydrologic model parameters (Wang et al., 2014). Compared 299 

to the widely used Shuffled Complex Evolution global optimization method (Duan et al., 1994), 300 

ASMO is much more efficient, which is especially important in this application because CTSM 301 

is more computationally expensive than most hydrologic models due to its comprehensive suite 302 

of processes. We adopted the workflow developed in Gong et al (2016) for a multi-objective 303 

optimization, which is summarized below: 304 

• Initial Sampling: 200 samples were generated using the Latin Hypercube Sampling 305 

(LHS, McKay et al., 2000) method for the selected parameters. In this study, one sample 306 

denotes one set of parameter values. We ran CTSM using the 200 sets of parameter 307 

values and calculated their corresponding objective functions. 308 

• Main Loop (Iteration): We used the Gaussian Process Regression (GPR) model to train 309 

a surrogate model, which mimics the response of the objective functions to parameters. In 310 

the first iteration, we used all 200 initial samples and corresponding objectives to train 311 

the surrogate model. In each subsequent iteration, all samples from the initial sampling 312 

and previous iterations were used to train a new surrogate model. Then we used a multi-313 

objective optimization, i.e., Non-dominated Sorting Genetic Algorithm II (NSGA-II, Deb 314 

et al., 2002), on the surrogate model, and obtained N (N=20) Pareto optimal sets of 315 

parameters values. We then ran CTSM using the N sets of parameter values and 316 

calculated their objective functions. 317 
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The trained surrogate model better mimicked the response curves as the number of 318 

samples increases via iterating the Main Loop. In this study, we stopped after the tenth iteration 319 

given the limited improvement in the last iteration runs. We used k-fold cross validation to 320 

evaluate the accuracy of the surrogate model (k=5). We calculated the root-mean-square error 321 

(RMSE) of the simulated objectives from surrogate models versus the objectives calculated from 322 

CTSM runs. 323 

The optimization run ranges from 1 September 2002 to 1 September 2009. The first two 324 

years are used for spin-up, with data from 2004 to 2009 used for optimization. Prior to the 325 

optimization simulations, we used a 58-year spin-up forced by ERA5 data to generate the initial 326 

state for 1 September 2002 using the default CTSM parameters. All simulations were performed 327 

on the NCAR Cheyenne supercomputer (Computational and Information Systems Laboratory, 328 

2019). 329 

4.4 Parameter regionalization 330 

Many parameters within CTSM are spatially uniform by default, which can be a limiting 331 

assumption when optimizing a model as many parameters within hydrologic and land models 332 

should vary spatially to account for the heterogeneity across the landscape (Mizukami et al., 333 

2017; Rakovec et al., 2019; Samaniego et al., 2010). For plant parameters, parameter spatial 334 

heterogeneity might result from different plant traits in different dominant plant species. We 335 

conducted preliminary single basin optimizations which showed large optimal parameter 336 

discrepancies between the northern river basin, i.e., Kuparuk, and southern river basins, i.e., 337 

Beaver, Salcha, and Talkeetna (not shown). The Kuparuk River Basin is located north of the 338 

Arctic Circle, much farther north than the other three basins. Therefore, we conducted two 339 

optimization runs in this study, one for the northern river basin, and one for the three southern 340 
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river basins. Note that no SNOTEL sites near the Kuparuk have records overlapping with our 341 

optimization period, thus we conducted a single-objective optimization on river flow for the 342 

Kuparuk River. For the southern basins, we averaged the flow objectives across the three basins 343 

and snow objectives across ten SNOTEL sites (triangles in Figure 3). 344 

We leveraged the ecohydrology region classification level III by Environmental 345 

Protection Agency for our simple parameter regionalization (Gallant et al., 1995). Optimized 346 

parameters for the northern basin are applied to the two Arctic ecohydrology regions, Arctic 347 

Coastal Plain and Arctic Foothills (highlighted in blue lines, Figure 4b). The remaining area uses 348 

the optimized parameters for the southern basins. Three out of the 15 basins intersect both 349 

southern and northern parameter regions, the Colville, Wulik, and Kuparuk rivers. The Colville 350 

is comprised of 54% northern and 46% southern areas, the Wulik contains 72% northern and 351 

28% southern areas. Also, even though we optimized the Kuparuk to represent northern basins, 352 

10% of the area in the Kuparuk watershed is located in our southern region (Figure 4a). 353 

 354 

Figure 4: Parameter regionalization based on ecohydrology region classification. In Figure 4a, 355 

background colors denote the selection of optimized parameters, and river basins are highlighted using 356 

solid lines with colors corresponding to Figure 1. In Figure 4b, regions using optimized parameters for 357 

northern regions are highlighted in blue boundaries. 358 
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4.5 Parameter performance contributions 359 

For each optimization region, we applied the Shapley decomposition to quantify the 360 

contribution of each parameter to the total change in the objective functions (Roth, 1988). The 361 

Shapley decomposition originated from cooperative game theory, where it was applied to 362 

determine each player’s unique contribution to a total surplus generated by a coalition of all 363 

players. Recently, this method has also been applied in energy and environmental analyses (Ang 364 

et al., 2003; Yu et al., 2014). We performed the analysis on the 14 optimized parameters for 365 

southern and northern regions separately. The change in the objective function is calculated as 366 

 !! = #(%) (11) 

 Δ! = !"#$% − !&'!( (12) 

 Δ! =)*)(#)
)

 (13) 

where O denotes objective functions, f denotes the trained surrogate model for one region, 367 

subscript s denotes scenarios (s=optz, base, denoting the optimized and baseline scenarios 368 

respectively), % denotes the list of all parameters for optimization, and *)(#) denotes the unique 369 

contribution of parameter + for the selected region. For one selected parameter +, the unique 370 

contribution *)(#) is calculated as  371 

 *)(#) =
1
- ) .- − 1|0| 1

*+
(O(0 ∪ {+}) − !(0))

,⊆.\{)}
 (14) 

 .- − 1|0| 1 =
(- − 1)!

|0|! (- − 1 − |0|)! (15) 

where n is the total number of parameters for optimization, i.e., 14, %\{+} denotes all parameters 372 

except the selected one +, S denotes the subset of %\{+}, |0| denotes the length of the subset, 373 
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!(0) denotes the objective function when we replace the baseline value using the optimized 374 

value for all parameters in subset S. 375 

5 Results 376 

5.1 Optimization 377 

For the southern basins, flow simulation is improved substantially while snow simulation 378 

only sees minor improvements (Figure 5). Dots with the same color in Figure 5 constitute the 379 

simulated Pareto front for a given optimization iteration. A Pareto front consists of simulated 380 

Pareto optimal, i.e., if none of the objective functions can be improved in value without 381 

degrading some of the other objective values. In general, the simulated Pareto front shifts 382 

towards the origin, signifying improved model performance. Overlapping dots indicate the new 383 

iteration failed to improve the Pareto front at that point. The two-dimensional Pareto front serves 384 

as the basis for choosing our optimal parameter set. Future work could explore using an 385 

ensemble of optimal parameter sets along the Pareto front, but that is outside the scope of this 386 

initial investigation. We choose the set of optimized parameters that correspond to the minimum 387 

averaged flow and snow objectives, highlighted using a red star in Figure 5. For this parameter 388 

set, the corresponding flow and snow objective functions for the southern basins are 0.324 (0.676 389 

KGE) and 0.490 respectively, while the baseline flow and snow objectives are 0.696 (0.304 390 

KGE) and 0.489 respectively. Flow simulation in the Kuparuk is also significantly improved 391 

through optimization. Since we conducted a single-objective optimization for Kuparuk, we 392 

simply selected the set of parameters resulting in the best flow simulation. The optimized flow 393 

objective is 0.189 (0.811 KGE) while the default flow objective is 0.574 (0.426 KGE). 394 
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 395 

Figure 5: Simulated Pareto front of optimization for southern basins. Each colored dot 396 

corresponds to a Pareto optimal set of parameters. IS denotes initial sampling, I-1 denotes the first 397 

iteration, and so on, and BL denotes the baseline configuration. The red star denotes the selected 398 

optimized parameters. 399 

Interestingly, the northern and southern basins show very different hydrological 400 

responses to parameter perturbations as noted above. The mean response curve of flow (blue 401 

dots) and snow (red triangles) objectives to model parameters are shown in Figure 6. We used 402 

the method in Section 4.2 (Step 2) to calculate the mean response curves. Transparent dots 403 

denote the initial samples, while solid dots denote samples during optimizations and large dots 404 

correspond to the selected optimized parameters (optimized parameter values are shown in Table 405 

1). The parameter sensitivity differs across basins. For example, upplim_destruct_metamorph, 406 

which affects snow densification through destructive morphism, shows greater sensitivity on 407 

flow simulations in the southern basins and is only marginally sensitive in the Kuparuk. In 408 
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addition, the flow performance in the south degrades as upplim_destruct_metamorph increases 409 

while the opposite trend was observed in the north. Some other parameters also show the 410 

opposite sensitivity across regions, including, d_max, e_ice, frac_sat_soil_dsl_init, and 411 

om_frac_sf. This intrinsic sensitivity difference leads to the divergence in optimized parameters 412 

across regions. In some extreme cases, the optimized parameters approach the upper and lower 413 

limits for the northern and southern basins, respectively, e.g., fff, upplim_destruct_metamorph, 414 

e_ice, n_melt_coef, which might result from differences in physical processes across the domain. 415 

For example, e_ice together with soil ice content affects the hydraulic conductivity in frozen 416 

soils and therefore has impacts on the vertical distribution of soil moisture and runoff (Swenson 417 

et al., 2012). There is ice-rich permafrost in the north while not in the south (Saito et al., 2020), 418 

so the differences in soil ice content might affect the optimized value of the ice impedance factor 419 

differently. In addition, parameter values approaching limits could indicate that the ranges are 420 

not wide enough due to model structural or forcing data errors that are compensated for during 421 

parameter optimization.  422 

The responses of flow and snow objectives may diverge for the same parameter 423 

perturbation. For the southern basins, as upplim_destruct_metamorph, n_melt_coef, and 424 

om_frac_sf increase, flow simulation becomes worse while snow simulation improves (Figure 425 

6). These parameter divergences could be the result of compensating errors from model structure 426 

(either a lack of or incorrectly parameterized processes), meteorological forcing, or indicative of 427 

the true CTSM parameter sensitivities for our study domain (Clark & Vrugt, 2006; Vrugt et al., 428 

2005). In addition, the spread of the flow objective (blue dots) is much larger than that of the 429 

snow objective (red triangles) in Figure 6. The SWE simulation is likely more controlled by 430 
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meteorological forcing than parameter perturbations. Therefore, runoff and flow simulations 431 

might show a stronger sensitivity to the parameter perturbations than SWE. 432 

 433 

Figure 6: Mean response curve of flow (blue dots) and snow (red triangles) objectives to 434 

parameters. Transparent dots and triangles denote initial samples, solid dots and triangles with black 435 

edges denote samples during optimization iterations, and the large dot and triangle with darker colors 436 

denote the selected optimized parameters. 437 

5.2 Out-of-sample evaluation of optimized parameters 438 

We further evaluate the optimized CTSM at 15 major river basins and 12 of them are out-439 

of-sample. The daily KGE improves at 13 out of 15 basins and the median KGE across the 15 440 

basins increases from 0.40 to 0.63 after optimization. Furthermore, even though we only 441 

conducted optimizations for four medium-size river basins with a total confluence area of around 442 
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16,500 km2, 2.1% of the total out-of-sample simulated area, the optimized flow simulations for 443 

the largest basins still substantially improved (Figure 7). For example, the daily KGE for the 444 

Yukon River at Pilot Station (824,393 km2) increases from -0.76 to 0.51 and the daily KGE for 445 

the Yukon River at Stevens Village (502,458 km2) increases from -0.80 to 0.27. Only the 446 

Matanuska and Wulik river basins show slightly worse performance, with daily KGE decreasing 447 

from 0.63 and 0.57 to 0.60 and 0.51 respectively. 448 

 449 

Figure 7: Model evaluation for flow time series. KGE is based on qualified observed flow at a 450 

daily time step. 451 
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 452 

Figure 8: a) Default model performance (blue dot), and model performance using southern 453 

optimized parameters (orange dot), northern optimized parameters (orange triangles), and spatially 454 

distributed parameters by parameter regionalization (orange stars) and b) contribution of r, !, and ! to 455 

KGE changes using the spatially distributed parameters by parameter regionalization 456 

Improved model performance in cross-regional basins highlights the necessity of spatially 457 

variable parameters and parameter regionalization schemes. For Colville and Wulik, two 458 

uncalibrated basins, their model performance using spatially distributed parameters is better than 459 

that of any single optimized parameter set (Figure 8a). The optimized parameters in Kuparuk 460 

represent the northern region while our regionalization algorithm categorized 10% of the area in 461 
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Kuparuk to the southern region, which explains the slightly worse performance in Kuparuk using 462 

the spatially distributed parameters than that using only the northern optimized parameters. 463 

Improved flow variability contributes the most to better flow simulation. KGE combines three 464 

components in model errors, i.e., the linear correlation ("), a measure of flow variability error 465 

(!), and a bias term (#), so we decompose the KGE increment to the three components and 466 

calculate their relative contribution (RC) as follows 467 

 $% = ((2345 − 1)! − (("#$% − 1)!

|(-./2345 − 1)! − 0-./6789 − 11
!|
,( = ", !, # (16) 

Since we used the absolute value of KGE difference as the denominator, regardless of 468 

!"#!"#$ being higher or lower than !"#%&'(, a positive RC value always denotes better flow 469 

simulation and a negative RC value always denotes worse flow simulation. Additionally, when 470 

the sum of RC is positive, the optimized flow simulation is improved, and vice versa. Improved 471 

flow variability, linear correlation, and volume bias contribute the most to the improved flow 472 

simulations in nine, three, and one river basins respectively (Figure 8b). Poorly simulated flow 473 

variability and correlation mostly contribute to the poorer flow simulation in Matanuska and 474 

Wulik, respectively. 475 

We also compute the Nash-Sutcliffe Efficiency (NSE) as many hydrologists and 476 

stakeholders are more familiar with this metric (Table 2). Even though river flow with ice cover 477 

(qualifier = A e) was not included in our optimization, it is worthwhile reporting the all-year 478 

NSE given the frozen river flow from the USGS are the best estimates available. For the 479 

unfrozen flow observation only (qualifier = A), the median NSE across all 15 basins increases 480 

from -0.07 to 0.43 after optimization. For all-year flow observation, the median NSE increased 481 

from 0.17 to 0.57. 482 

 483 
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 484 

Table 2: Nash-Sutcliffe Coefficient for all river basins.  485 

 486 
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 487 

Figure 9: Evaluation of model performance on snow simulations. Panel a shows the distribution of aggregated snow metrics (!!) across 488 
all SNOTEL sites in Alaska, whose locations are highlighted in yellow stars in Panel b. Panels c, d, f summarize the performance of snow 489 
simulation based upon individual metrics, and BPZ in the legend of Panel d is short for a better performance zone. If orange dots are located in 490 
BPZ, it means optimization improves snow performance. In Panels a, c, d, f, yellow corresponds with the model runs using optimized parameter 491 
values and blue corresponds with model runs using default parameter values. 492 
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Seasonal snowpack simulation performance was not greatly improved by optimization 493 

across the final Pareto front, or with our final optimized parameter set by choice. The median 494 

value of the aggregated snow metric (!!, #$%&'()*	10) across all SNOTEL sites is 0.57 using 495 

our optimized parameters and 0.58 using default parameters (Figure 9a). We also examined each 496 

component of the snow metric. If the orange dots fall in the blue area in Figures 9b, 9c, 9d, it 497 

means that optimization improved the snow simulation. Out of 23 SNOTEL sites, optimization 498 

reduced relative biases in peak SWE, snowmelt rate, and snow persistence duration at 12, 7, and 499 

12 sites respectively (Figures 9b,9c, 9d). The median values for the relative bias in peak SWE, 500 

snowmelt rate, and snow persistence duration are -0.03, -0.31, 0.08 using optimized parameters, 501 

and -0.03, -0.35, and 0.10 using default parameters. 502 

5.3 Shapley decomposition 503 

In the southern region, large variations exist in the contribution of individual parameter 504 

perturbations to simulation performance changes. For example, reducing the 505 

upplim_destruct_metamorph value greatly improves flow performance, which contributes over 506 

50% of the KGE increment (Figure 10). Three other parameters made noticeable contributions to 507 

the improving flow simulation, i.e., frac_sat_soil_dsl_init, om_frac_sf, n_melt_coef. In addition, 508 

the same parameter perturbation leads to opposite contributions in our flow and snow 509 

simulations. The perturbation of upplim_destrct_metamorph, om_frac_sf, and n_melt_coef 510 

significantly improves flow simulation while degrading snow simulation, while the perturbation 511 

of a_coef and snw_rds_refrz worsens flow simulation while improving snow simulation. 512 

In the northern region, the variation of parameter contributions is much smaller than that 513 

in the southern region. The perturbation of fff contributes the most to the flow improvement in 514 

the southern region, which only accounts for 21% of the KGE increment (Figure 10). Other than 515 
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fff, the top 5 parameters that contribute to the improved flow simulation include d_max, e_ice, 516 

cv, and vcmaxha. These parameters belong to multiple categories, including acclimation 517 

parameters relevant to photosynthesis, hydrology, and parameters affecting sensible, latent heat, 518 

and momentum fluxes. 519 

 520 
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 521 

Figure 10: Contribution of each parameter to the changes in objective function using Shapley decomposition 522 
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6 Discussion and conclusions 523 

We have developed the first high-resolution application and optimization of CTSM for 524 

Arctic hydrology. We used a high-resolution configuration because higher resolution models can 525 

more faithfully represent the complex ridge-valley patterns and high peaks across Alaska, and 526 

thus often more realistically simulate seasonal snow, orographic precipitation distributions, and 527 

potentially heterogeneous permafrost conditions (Newman et al., 2021; Rasmussen et al., 2011). 528 

River flow simulations are significantly improved after optimization, while the optimized snow 529 

simulation as compared to SNOTEL sites remains similar. The limited improvement in snow 530 

simulations depends more on the meteorological forcing such as precipitation than model 531 

parameter choices (Günther et al., 2019; Raleigh et al., 2015). The median NSE of daily flow 532 

increases from 0.17 to 0.57 across 15 river basins. For the Yukon River at Pilot Station, the 533 

USGS site with the largest confluence area in Alaska, and the fourth-largest river in North 534 

America, the NSE of daily flow increased from -0.17 to 0.70. In addition, the optimization is 535 

highly efficient given that the total area of the four optimized river basins only occupies 2% of 536 

the confluence area at the Pilot Station. To our knowledge, this study provides the most 537 

comprehensive evaluation and optimization of hydrological simulations across Alaska and the 538 

Yukon River Basin, which can be used as a benchmark for future Arctic hydrological modeling 539 

studies. 540 

The optimization model framework is transferrable to other CTSM applications and can 541 

be informative when developing optimization workflows for complex land models. The 542 

transferability largely results from the global availability of the datasets used in this study, i.e., 543 

the ERA5 meteorological forcing data (European Centre for Medium-Range Weather Forecasts, 544 

2019), soil texture from SoilGrid (Hengl et al., 2017), MERIT Hydro vector-based river network 545 
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(Yamazaki et al., 2019), and especially the CTSM PPE global parameter sensitivity analysis. 546 

Correctly selecting sensitive parameters provides the foundation for the success of parameter 547 

optimization. The PPE experiment can be extensively used in selecting sensitive CTSM 548 

parameters not only to runoff and SWE but to any other variable simulated by CTSM. Finally, 549 

hydrologic modeling of Arctic Alaska and the Yukon is one of the most challenging regions in 550 

hydrological modeling due to the complicated land surface processes that are important in this 551 

region. The improvements in hydrological simulation achieved by our optimization framework in 552 

this environment imply potential efficacy in regions beyond the Arctic. 553 

We also show that Arctic hydrology is not only influenced by hydrological parameters 554 

but also parameters related to vegetation and thermal conductance. Previous hydrological studies 555 

using CTSM mostly focused on hydrological parameters (Ren et al., 2016; Zhang et al., 2021). In 556 

this study, out of the 14 optimized parameters, half are not directly related to hydrology and 557 

snow processes (Table 1), which reveals the strong influence of non-hydrological 558 

parameterization on Arctic hydrology. In the northern region, according to the Shapley 559 

decomposition, perturbations of the 7 non-hydrological parameters contribute a total of 38.5% to 560 

the KGE increment and 3 out of the top 5 sensitive parameters are non-hydrological, including 561 

d_max, cv, and vcmaxha (Figure 10). In the southern region, the non-hydrological parameter 562 

perturbations contribute 19.0% of the flow KGE increment and a decrease of 563 

frac_sat_soil_dsl_init alone contributes 25.8% increment. 564 

The Shapley decomposition analysis showed the different parameter contributions across 565 

regions, reflecting the spatial heterogeneity of parameter sensitivities. The heterogeneity 566 

manifests primarily in two ways. First, similar parameter perturbations lead to the opposite 567 

direction of effects across regions. For example, a decrease in effective radius of re-frozen snow 568 
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(snw_rds_refrz), i.e., from the default value to the lower limit, contributes 5.4% of flow KGE 569 

increment in the northern region but -11.0% in the south. Second, the opposite parameter 570 

perturbation leads to the same direction of effects. A decrease of n_melt_coef in the northern 571 

region, i.e., 200 to 94, and an increase of n_melt_coef in the southern region, i.e., 200 to 526, 572 

both contribute positively to their flow KGE increments, with the RC value of 7.3% and 16.0% 573 

respectively. Because CTSM by default uses many spatially constant model parameters, we have 574 

modified CTSM to read in distributed parameters when they are available. This effort should be 575 

informative to future CTSM development for allowing spatially distributed parameters. 576 

The parameter regionalization in this study is simple and effective, yet can still be 577 

improved. Spatially distributed parameters in Colville and Wulik, i.e., basins overlapping both 578 

southern and northern regions, generated better flow simulations than the parameters optimized 579 

for either region. However, for Matanuska, a southern basin, its flow simulation using northern 580 

optimized parameters is better than the one using southern optimized parameters, with daily flow 581 

KGE of 0.69 and 0.60, respectively (Figure 8a). The similarities between Matanuska and 582 

northern regions are neglected, likely because of either the oversimplified regionalization method 583 

or compensating errors. In addition, the large discrepancies in optimized parameters across 584 

regions only slightly affect the flow simulations in Kenai, Iliamna, and Matanuska (Figures 7, 585 

8a), which indicates that the selected parameters may not be very sensitive for those out-of-586 

sample basins. Therefore, for future improvement of regional applications, it may be helpful to 587 

include more representative basins for optimization and to implement a more sophisticated 588 

parameter regionalization algorithm. 589 

The surrogate model can only mimic the true response surface. For the southern region, 590 

the root-mean-square error (RMSE) of the simulated flow and snow objectives are 0.05 and 0.03 591 
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respectively, and the RMSE of the simulated flow objective is 0.09 for the northern region. In 592 

addition, the Shapley decomposition analysis is based upon the surrogate model, so the 593 

contribution of each parameter perturbation reflects the simulated response surface. However, it 594 

is infeasible to disentangle each parameter’s contribution without a surrogate model. We would 595 

need to run CTSM 16,384 (214) times for the Shapley decomposition while in this study we only 596 

ran CTSM 400 times. Additional benefits from using surrogate models might arise by 597 

incorporating other observational constraints, e.g., Active Layer Thickness, snow depth, or 598 

evapotranspiration.  599 

Finally, this work lays the foundation for a process-focused, stakeholder useful, high-600 

resolution coupled land and atmospheric modeling for cold regions both historically and under 601 

future projections to quantify climate change impacts on inland freshwater systems. 602 
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