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Abstract16

Numerical simulations of the tropical mesoscales often exhibit a self-reinforcing feedback17

between cumulus convection and shallow circulations, which leads to the self-aggregation18

of large cloud structures. We investigate whether this basic feedback can be adequately19

captured by large-eddy simulations (LESs). To do so, we simulate the non-precipitating,20

cumulus-topped boundary layer of the canonical ‘BOMEX’ case over a range of numer-21

ical settings in two models. Since the energetic convective scales underpinning the self-22

aggregation are only slightly larger than typical LES grid spacings, aggregation timescales23

do not converge even at rather high resolutions (<100m). Therefore, high resolutions or24

improved unresolved scales models may be required to faithfully represent certain forms25

of trade-wind mesoscale cloud patterns and self-aggregating deep convection in large-eddy26

and cloud-resolving models, and to understand their significance relative to other pro-27

cesses that organise the tropical mesoscales.28

Plain Language Summary29

The most detailed models of our atmosphere frequently have their clouds spontaneously30

organise into large clusters. Small clouds (less than a kilometre in size) seem to play an31

important role in such “self-aggregation”. However, even in detailed models small clouds32

are hard to adequately capture: Typically, they must resolve such clouds using less than33

10 pixels, thus requiring additional, lower-accuracy “unresolved-scales” models for cloudy34

motions smaller than this resolution. Here, we show that merely varying the resolution35

of several state-of-the-art atmospheric models has an effect on how quickly they predict36

the self-aggregation of clouds to occur, even when many complex, uncertain processes37

are removed from the problem. We hypothesise that this is because several fundamen-38

tal assumptions of our unresolved scales models are commonly violated in simulations39

of self-aggregating clouds. To help work out how important self-aggregation is in the real40

world, models of the phenomenon may therefore require higher numerical resolutions than41

previously thought.42

1 Introduction43

A striking feature of idealised simulations of the tropical atmosphere in radiative-44

convective equilibrium (RCE) is the spontaneous aggregation of their column-integrated45

moisture and convection into large clusters (Bretherton et al., 2005; Muller & Held, 2012).46

Many mechanisms have been proposed to explain this, including the collision and con-47

vective triggering of horizontally expanding and colliding cold pools of evaporated pre-48

cipitation (Tompkins, 2001; Böing, 2016; Haerter, 2019) and gravity wave-convection in-49

teractions (Yang, 2021). Yet, perhaps the strongest consensus is on the importance of50

shallow circulations (Shamekh et al., 2020; Muller et al., 2022), configured to transport51

moisture from dry to moist columns.52

These circulations can be traced to differential, radiative cooling between moist re-53

gions, which trap outgoing longwave radiation in their moisture-rich lower atmosphere54

and under high clouds, and dry regions, which more readily radiate their thermal energy55

to space (Muller & Held, 2012). Such heating anomalies give rise to ascent in moist columns56

and descent in dry columns, and may be framed as moisture-radiation instabilities (Emanuel57

et al., 2014; Beucler & Cronin, 2016) with negative moist gross stability (Bretherton et58

al., 2005; Raymond et al., 2009). However, the circulations may also be reinforced by tur-59

bulent mixing at cloud edges, which deposits moisture in the free troposphere and thus60

raises the livelihood and vigour of any subsequent convection; differential convection may61

then itself result in a net ascent of moist, convecting regions and descent in dry, non-convecting62

regions (Grabowski & Moncrieff, 2004; Tompkins & Semie, 2017). Interactions between63

these radiative and convective feedbakcs appear important, and their relative significance64

is debated (Beucler et al., 2018; Kuang, 2018).65
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Rooting deep convective self-aggregation in shallow circulations implicitly under-66

lines the importance of shallow convection in developing and maintaining them. Bretherton67

et al. (2005); Muller and Held (2012) make this connection explicit; they show that shal-68

low convection in dry regions exports moist static energy, an appropriate energetic mea-69

sure of the moisture, to moist, deep convective regions. If one removes cold-pool feed-70

backs, the shallow circulation is even more tightly coupled to the effects of shallow, non-71

precipitating convection. In such situations, self-aggregation occurs also on smaller do-72

mains (Jeevanjee & Romps, 2013) and without requiring radiative feedbacks (Muller &73

Bony, 2015).74

Interestingly, shallow cumulus convection under typical trade-wind conditions also75

self-organises into clusters much larger than that of individual cumuli (e.g. Narenpitak76

et al., 2021). Bretherton and Blossey (2017); Janssens et al. (2022) attribute such ag-77

gregation to the convective feedback: Shallow circulations driven by anomalous latent78

heating in shallow cumulus transport moisture from dry to moist regions in the absence79

of radiative or precipitating heterogeneity. If integrated over sufficiently long time pe-80

riods, simulations of this mechanism aggregate enough moisture into their moist regions81

to transition into deep, organised convection (see also Vogel et al., 2016). These stud-82

ies likely describe the confluence of shallow convective instability and the deep convec-83

tive instabilities described by Jeevanjee and Romps (2013); Muller and Bony (2015), and84

grounds the latter in the former.85

These paragraphs serve to illustrate that an extensive body of work may rely rather86

strongly on how well the numerical models used to simulate convective self-aggregation87

represent shallow convection. To remain tractable when running on domains of O(1000)88

km, numerical simulations of self-organisation often employ rather coarse grid spacings89

(usually greater than 1 km). At such grid spacings, shallow convection, whose energetic90

scales themselves lie around 1 km, are at best barely resolved, and at worst parameterised.91

This is relevant, since convective self-aggregation is sensitive to numerical settings92

and parameterisations in cloud-resolving simulations of deep convection (Muller & Held,93

2012; Wing et al., 2020) and large-eddy simulations (LESs) of cold pool-driven pattern94

formation in shallow convection (Seifert & Heus, 2013). One may therefore wonder if the95

self-aggregation of non-precipitating cumulus is subject to similar sensitivities, whether96

this matters when attempting to interpret numerical simulations of deep convective self-97

aggregation and ultimately how much the phenomenon bears on reality. This motivates98

us to ask the question: Can we consistently represent convective self-aggregation in its99

most basic form - shallow, non-precipitating cumulus convection - in LES?100

Guided by this question, we revisit a classical case of non-precipitating shallow cu-101

mulus convection and simulate it on a mesoscale domain in several numerical configu-102

rations (section 2). We then summarise the feedback mechanism discussed by Bretherton103

and Blossey (2017); Janssens et al. (2022) that drives the self-aggregation in these sim-104

ulations (section 3). Next, we demonstrate the multiscale nature of the feedback: Small,105

cumulus-scale processes drive moisture variability at scales an order of magnitude larger106

(section 4). This renders it sensitive to three choices that govern the effective resolution107

of finite-volume-based LES: grid spacing, advection scheme and unresolved scales model108

(section 5). We discuss the implications of these findings for modelling studies of shal-109

low and deep convective self-aggregation and their potential parameterisation in section110

6, before summarising in section 7.111

2 Numerical Simulations112

2.1 Case study113

Our study concerns a set of numerical experiments of the “undisturbed period” dur-114

ing the Barbados Oceanographic and Meteorological Experiment (BOMEX), as intro-115
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duced to the LES modelling community by Siebesma and Cuijpers (1995). We concen-116

trate on BOMEX because it represents the simplest imaginable setting of shallow cu-117

mulus convection, simulating only moist thermodynamics and boundary-layer turbulence.118

Three assumptions made in the composition of our case deserve mention here. First,119

in lieu of representing spatial and temporal variability in i) the large-scale subsidence,120

ii) horizontal wind and iii) surface fluxes of heat and moisture, we parameterise such larger-121

scale and boundary forcings with profiles that vary only in height. Second, we do not122

locally calculate radiative heating rates, instead approximating them with a slab-averaged123

cooling. Third, we explicitly ignore the formation and impact of precipitation. We will124

therefore suppress aggregation that is forced on our cloud-field by vertical motions of a125

scale larger than our domain, such as those imposed in the simulations conducted by Narenpitak126

et al. (2021) and observed by George et al. (2022), by radiation heterogeneity (Klinger127

et al., 2017) and by cold-pool dynamics (e.g. Seifert & Heus, 2013; Seifert et al., 2015;128

Anurose et al., 2020; Lamaakel & Matheou, 2022) respectively, all of which appear im-129

portant pathways to develop the mesoscale cumulus patterns observed in nature.130

We justify the neglect of these processes by noting that they are not necessary for131

large, aggregated cumulus structures to develop (Bretherton & Blossey, 2017). Instead,132

they accelerate and modulate an internal mechanism that also occurs without them. This133

feedback is intrinsic to moist, shallow convection (Janssens et al., 2022), and its sensi-134

tivity to resolution is most clearly exposed by only studying this aspect. We will return135

briefly to this discussion in section 6.136

2.2 Numerical model137

We perform simulations with two models: The Dutch Atmospheric Large Eddy Sim-138

ulaton (DALES, Heus et al., 2010; Ouwersloot et al., 2017) and MicroHH (Van Heerwaar-139

den et al., 2017). Both models attain a numerical representation of the atmospheric state140

on a staggered grid by solving filtered, finite difference approximations of the conserva-141

tion equations of mass, momentum, and scalars in the anelastic approximation:142

∂

∂xj
(ρ0uj) = 0 (1)

∂ui

∂t
= − 1

ρ0

∂

∂xj
(ρ0uiuj)−

∂π′

∂xi
+

g

θv

(
θv − θv

)
δi3 −

∂τij
∂xj

+ Sui
(2)

∂χi

∂t
= − 1

ρ0

∂

∂xj
(ρ0ujχi)−

∂Ruj ,χi

∂xj
+ Sχi , (3)

In these equations, ui ∈ {u, v, w} are the three (grid-filtered) components of ve-143

locity, χi ∈ {θl, qt} is a generic scalar whose set contains at least the total specific hu-144

midity qt and liquid-water potential temperature, approximated as145

θl ≈ θ − Lv

cpΠ
ql. (4)

where θ is the (dry) potential temperature, Lv is the latent heat of vaporisation, cp is146

the specific heat of dry air at constant pressure, ql is the liquid water specific humidity147

and148

Π =

(
p

p0

)Rd
cp

(5)

is the Exner function, where Rd is the gas constant of dry air and p is the reference pres-149

sure profile. The corresponding reference density is ρ0, π
′ are fluctuations of modified150
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pressure around p, g is gravitational acceleration, θv is the virtual potential temperature151

whose slab-mean is represented by an overbar, Sui and Sχi denote momentum and scalar152

sources, and τij and Ruj ,χi
are the residual fluxes of momentum and scalars that result153

from filtering the equations (the Sub-Filter Scale (SFS) fluxes). These fluxes are approx-154

imated with a traditional eddy viscosity model, which explicitly assumes the filtering to155

take place at a scale where diffusion of the resolved flow approximates the net dissipa-156

tion of homogeneous, isotropic turbulence; it must be significantly smaller than the energy-157

containing scales of the simulation:158

τij ≈ −Km

(
∂ui

∂xj
+

∂uj

∂xi

)
(6)

Ruj ,χi
≈ −Kh

∂χi

∂xj
(7)

These approximations introduce modelling errors which can be expected to influ-159

ence the large, resolved scales when their requirements are not met.160

The main differences between DALES and MicroHH reside in their model for the161

eddy diffusivities Km and Kh: DALES uses a one-equation closure for the turbulent ki-162

netic energy e (Deardorff, 1973) subject to Deardorff (1980)’s stability correction; Mi-163

croHH employs a stability-corrected Lilly-Smagorinsky model (Lilly, 1968). Both mod-164

els estimate Km and Kh through a mixing length λ associated with the grid-scale filter:165

λ = f (∆) , (8)

∆ = (∆x∆y∆z)
1
3 , (9)

where f subsumes the stability correction, which diminishes the eddy diffusivities in sta-166

bly stratified grid cells, and where ∆ assumes the grid spacing is isotropic, which is an167

assumption we will violate. Note that ∆ also sets the discretisation error in the model’s168

spatial gradients for a finite difference scheme of a given order; these errors will inter-169

act non-trivially with the modelling error made by the approximations above.170

2.3 Experiments171

We base our analysis on 8 simulations of BOMEX that are set up in the configu-172

ration reported by Siebesma et al. (2003), except for their computational grid, integra-173

tion time and advection scheme. To support mesoscale fluctuations with little influence174

from the finite domain size, the cases are run on domains with horizontal length L =175

102.4 km, a height of 10 km, for 36 hours. The vertical grid spacing ∆z = 40 m up to176

6 km, and is stretched by 1.7% per level above this height. To investigate how the de-177

velopment of mesoscale fluctuations is sensitive to numerics, we vary the horizontal grid178

spacing ∆x = ∆y ∈ [50, 100, 200] m. At their coarsest spacing, our grid cells attain179

rather high aspect ratios. Such anisotropic grids are commonly used in large-domain LES180

of shallow cumulus convection (e.g. Vogel et al., 2016; Klinger et al., 2017; Bretherton181

& Blossey, 2017; Janssens et al., 2022), although the isotropic filter length scale λ con-182

sequently overestimates the vertical length scale required from the SFS model, and un-183

derestimates the horizontal length scale (de Roode et al., 2022). As will become clear184

in section 5, we will be particularly concerned with the underestimation of the horizon-185

tal length scale. Therefore, we also run the DALES simulations at ∆x = 200 m with186

∆ = 200 m.187

All cases are run with a variance-preserving, second order central difference scheme188

to represent advective transfer, while the coarsest two DALES simulations are addition-189

ally run using a fifth order, nearly monotonic scheme (Wicker & Skamarock, 2002). This190
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Table 1. Differences in numerical configurations of BOMEX simulations. e refers to the one-

equation turbulence kinetic energy SFS model (Deardorff, 1973); SL refers to the Smagorinsky-

Lilly model (Lilly, 1968). Advection schemes are either O(2) central differences (a2), or the

O(5) scheme by Wicker and Skamarock (2002) (a5). ‘fiso’ refers to coarsening the filter as if it

were isotropically increasing with the horizontal grid spacing, while ‘nocorr’ denotes a run with

Deardorff (1980)’s stability correction turned off.

Abbreviation Model ∆x SFS model Advection scheme ∆

D1 DALES 200 e O(2) a2 117
D2 DALES 200 e O(5) a5 117
D3 DALES 200 e O(2) a2 200, fiso
D4 DALES 100 e O(2) a2 73.7
D5 DALES 100 e O(5) a5 73.7
D6 DALES 100 e O(5) a2 73.7, nocorr
D7 DALES 50 e O(2) a2 46.4
M1 MicroHH 200 SL O(2) a2 117
M2 MicroHH 100 SL O(2) a2 73.7
M3 MicroHH 50 SL O(2) a2 46.4

scheme is rather diffusive, consequently dampens the (co)variance contained in the small-191

est, resolved scales of the simulations we run (Heinze et al., 2015), and has an effective192

resolution commensurate with the five grid-point stencil it requires (Bryan et al., 2003).193

These properties have significant consequences.194

Finally, we test the effects of the stability correction on λ by running a single sim-195

ulation where it is turned off.196

We focus our analysis of the simulations on the period before their characteristic197

moisture length scales approach the domain size, as we wish to eliminate the finite-domain198

constraints posed by our doubly-periodic boundary conditions.199

3 Conceptual model for self-aggregation200

We will study the numerical sensitivity of the shallow convective self-aggregation201

using the conceptual model described by Janssens et al. (2022), which is a closed-form202

version of the theory introduced by Bretherton and Blossey (2017). The model is briefly203

summarised in this section; readers looking for a full derivation are encouraged to ex-204

plore the above manuscripts.205

3.1 Definitions206

In the following, self-aggregation of the convection in our simulations will be in-207

terpreted as growth in mesoscale fluctuations of vertically integrated moisture. To make208

this more precise, let us define mesoscale fluctuations in a generic scalar χ by partition-209

ing it into its slab-average χ and remaining fluctuation χ′, before scale-separating χ′ into210

a mesoscale component χ′
m and sub-mesoscale component χ′

s:211

χ = χ+ χ′ = χ+ χ′
m + χ′

s. (10)

χ′
m is defined with a spectral low-pass filter at 12.5 km, i.e. fluctuations larger than212

this scale are considered mesoscale fluctuations.213
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In our framework, self-aggregation is associated with the development of coherent,214

mesoscale moist, convecting regions, where q′tm > 0, and dry, non-convecting regions,215

where q′tm < 0. To identify these regions in our simulations, we use the density-weighted216

vertical average217

⟨χ⟩ =
∫ z∞
0

ρ0χdz∫ z∞
0

ρ0dz
, (11)

where z∞ = 10 km, yielding the column-averaged, or bulk, moisture ⟨qt⟩. Moist (dry),218

mesoscale regions as positions where ⟨q′tm⟩ > 0 (⟨q′tm⟩ < 0).219

With these definitions, we formulate a budget for χ′
m by subtracting the slab-average220

of eq. 3 from itself, mesoscale-filtering the result, and rewriting several terms:221

∂χ′
m

∂t
= −w′

mΓχ︸ ︷︷ ︸
Grad. prod.

− ∂

∂xjh

(ujhχ
′)m︸ ︷︷ ︸

Horizontal transport

− 1

ρ0

∂

∂z

(
ρ0Fχ′

m

)
︸ ︷︷ ︸
Vertical transport

−wls
∂χ′

m

∂z︸ ︷︷ ︸
Subsidence

+
∂

∂xj

(
Ruj ,χ′

m

)
︸ ︷︷ ︸

SFS diffusion

+S′
χm︸ ︷︷ ︸

Source

(12)

In this relation, the slab-averaged vertical gradient ∂χ/∂z = Γχ, while Fχ′
m

is the222

anomalous mesoscale vertical flux of χ′ around the slab average223

Fχ′
m
= (w′χ′)m − w′χ′. (13)

The conceptual model requires eq. 12 to be posed for measures of moisture and heat.224

To remain consistent with Bretherton and Blossey (2017); Janssens et al. (2022), we will225

use qt as our moisture variable, and liquid-water virtual potential temperature, defined226

as227

θlv = θl + 0.608θlqt ≡ θv − 7θlql, (14)

as our heat variable (e.g. B. Stevens, 2007). Both qt and θlv are conserved under non-228

precipitating shallow cumulus convection. Hence, in the absence of radiative heterogene-229

ity, we immediately recognise that S′
χm

= 0. In the following, we will additionally as-230

sume that the direct effects of horizontal transport, subsidence and SFS diffusion on the231

χ′
m budget are small.232

3.2 Model233

The main features of the conceptual model are captured by fig. 1. Its central panel234

shows a vertical cross-section of simulation D1 after 16 hours of simulation time, coloured235

by qt. Clouds are drawn on top of the qt field as small, black contour lines. They form236

preferentially on an anomalously moist, mesoscale patch in the cloud layer (smooth, black237

contour line, delineating the boundary where q′tm = 0); convection and clouds have self-238

aggregated into mesoscale structures in this panel.239

To explain why, we begin at fig. 1 a), which shows a progressing contrast in q′tm be-240

tween moist (blue) and dry (red) regions near the inversion base. Upon vertically aver-241

aging eq. 12, it can be shown that the resulting increase in ⟨q′tm⟩ is due primarily to the242

“gradient production” term, i.e.243

∂⟨q′tm⟩
∂t

≈ −⟨w′
mΓqt⟩ (15)
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Mesoscale moisture fluctuations  grow in cloud
layer on ascending branch of circulations 

Shallow circulations   result directly from heat flux
anomalies , assuming weak temperature gradients

;

Heat flux anomalies  

result from condensation
anomalies   in clouds

at small scales

Condensation anomalies 
 result from mesoscale

moisture fluctuations 

Mesoscale moist region

Clouds and condensation

Mesoscale circulation

Cloud top

Inversion

Cloud base

a) b)

c)d)

Figure 1. Overview over the circulation-driven self-aggregation mechanism in simulation D1

after 16 hours. Central panel: Example x-z cross-section depicting clouds (small, jagged black

contours), which form favourably on a moist, mesoscale region (coloured contours; large, smooth,

black contour), in turn driven by a mesoscale circulation (streamlines). Horizontal lines indicate

the cloud and inversion bases. a) Vertical profiles of q′tm and w′
m, averaged over moist (blue) and

dry (red) regions, evolving in time (increasing opacity). b) WTG approximation eq. 17 (maroon)

of w′
m compared to LES-diagnosed ground-truth (black). c) Mesoscale heat flux anomaly F ′

θlvm

(maroon, using eq. 13) and its liquid water flux approximation (blue, using eq. 20). d) As in cen-

tral panel, but coloured by relative humidity and overlaid by contours of 7θl (w
′q′l)m.
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This term expresses transport along the mean, negative moisture gradient with mesoscale244

vertical velocity anomalies w′
m, which in fig. 1 a) grow increasingly positive (negative)245

in the moist (dry), cloud layer. w′
m embodies the ascending and descending branches of246

a shallow circulation (drawn as in-plane streamlines in the central panel of fig. 1), which247

converges in the moist regions’ subcloud layer, transports mixed-layer moisture into the248

corresponding, moist cloud layer, and diverges near the trade-inversion base into dry re-249

gions, where it subsides.250

The shallow circulations (w′
m) may be understood as a direct result from heat flux251

differences between moist and dry mesoscale regions. To show this, consider fig. 1 b).252

It plots w′
m, averaged over the moist, mesoscale region as i) diagnosed by the LES model,253

and ii) as predicted by reducing eq. 12 for θlv to a diagnostic relation:254

∂θ′lvm
∂t

≈ −w′
mΓθlv − 1

ρ0

∂

∂z

(
ρ0F

′
θlvm

)
≈ 0 (16)

w′
m ≈ − 1

ρ0

∂

∂z

(
ρ0F

′
θlvm

)
/Γθlv . (17)

Eq. 17 essentially amounts to posing the Weak Temperature Gradient (WTG) as-255

sumption (e.g. Held & Hoskins, 1985; Sobel et al., 2001), as often successfully employed256

in models of self-aggregating deep convection (e.g. Emanuel et al., 2014; Chikira, 2014;257

Beucler et al., 2018; Ahmed & Neelin, 2019). Fig. 1 b) justifies making this assumption258

for our shallow convective self-aggregation too. Combining eqs. 15 and 17, integrating259

by parts and ignoring surface flux feedbacks (which are zero by definition in our config-260

uration with homogeneous surface fluxes) then yields a model for ⟨q′tm⟩ which finds its261

energetic support solely in the heat flux anomaly F ′
θlvm

, appropriately scaled by the ver-262

tical structure of the slab-averaged, thermodynamic state:263

∂⟨q′tm⟩
∂t

≈ −
〈
F ′
θlvm

∂

∂z

(
Γqt

Γθlv

)〉
(18)

To discover why F ′
θlvm

develops, let us multiply eq. 14 by w′, which decomposes264

the heat fluxes into flux measures of buoyancy and liquid water:265

w′θ′lv ≡ w′θ′v − 7θlw
′q′l. (19)

Fig. 1 c) attributes the primary contribution in this decomposition to liquid wa-266

ter flux anomalies, i.e.267

F ′
θlvm

≈ −7θlF
′
qlm

. (20)

In turn, the divergence of F ′
qlm

stems directly from mesoscale anomalies in the con-268

densation C′
m. Put differently, latent heating in clouds underpins the mesoscale circu-269

lation.270

Finally, as indicated in fig. 1 d), convective plumes rising into a cloud layer that271

is moister than the slab mean will condense and later reevaporate more water vapour272

than average, closing a feedback loop in q′tm . We express this feedback mathematically273

by assuming F ′
qlm

can be written in terms of q′tm through a poor-man’s mass flux approx-274

imation:275

F ′
qlm

≈ C ′w∗q′lm ≈ Cw∗q′tm (21)
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In combination, eqs. 18, 20 and 21 give a linear instability model for the moisture-276

convection feedback with time scale τq′tm :277

∂⟨q′tm⟩
∂t

≈
〈
qt′m

〉
τq′tm

, (22)

τq′tm =
1

Cθlw∗ ∂
∂z

(
Γqt

Γθlv

) . (23)

This minimal model is rather accurate for describing the evolution of ⟨q′tm⟩ in sim-278

ulation D1 (Janssens et al., 2022), and suffices to illustrate how the mechanism is sen-279

sitive to discretisation and modelling error.280

4 Dependence on sub-mesoscale dynamics281

If all assumptions made in deriving eq. 23 hold, it relies on only two variables: A282

convective velocity scale w∗ and the gradient of the ratio of slab averaged lapse rates of283

heat and moisture, i.e. the vertical structure of the mean environment. Janssens et al.284

(2022) show that the development of ∂/∂z (Γqt/Γθlv ) relies only on slab-averaged heat285

and moisture fluxes; so does w∗⟨q′tm⟩ through eqs. 20 and 21. Therefore, we pause for286

a moment to analyse which scales of motion control these fluxes.287

Eq. 20 argues that F ′
θlvm

is facilitated by cumulus clouds, whose energetic scales288

follow the depth of the boundary layer, of O(1000) m. Hence, the fluctuations in ver-289

tical velocity, heat and liquid water that construct Fq′lm
and Fθ′

lvm
generally are of a scale290

much smaller than q′tm , which by definition is larger than 12.5 km. It is therefore not triv-291

ial that Fθ′
lvm

should be controlled by q′tm as directly as eqs. 20 and 21 suggest.292

To illustrate this, consider fig. 2, which shows how the saturation excess qt − qs293

varies over a vertical cross-section of our domain (qs is the specific humidity at satura-294

tion). The white-to-blue contour lines identify a moist, mesoscale patch, with q′tm up to295

0.003 kg/kg near the inversion base at 1500m, which coincides with a region of high qt−296

qs, and upon which most of the clouds at these levels consequently form. However, the297

structure of these clouds, indicated by black contour lines, still varies horizontally with298

small fluctuations in qt−qs, on a scale commensurate with the cumulus convection it-299

self. As a result, Fq′l
, Fθ′

lv
and their mesoscale-filtered counterparts Fq′lm

and Fθ′
lvm

, plot-300

ted over the dashed line at 1500m in the top panel, also remain dominated by sub-mesoscale301

variation in heat, moisture and vertical velocity. Hence, one might view the mesoscale302

moisture fluctuations as preconditioners that raise the relative humidity over large re-303

gions of the local cumulus layer, while the resulting condensation and diabatic heating304

in that layer remains governed by sub-mesoscale, cloudy updrafts that carry sub-mesoscale305

fluctuations of water vapour (q′ts) into it.306

As a result, almost the entire basis of our mesoscale circulation is found in projec-307

tions of sub-mesoscale scalar fluxes onto the mesoscale. More formally, for χ′ ∈ {q′t, θ′lv, q′l},308

one can scale-decompose a mesoscale-filtered vertical scalar flux as309

(w′χ′)m = (w′
mχ′

m)m + (w′
mχ′

s)m + (w′
sχ

′
m)m + (w′

sχ
′
s)m (24)

and write the approximation310

(w′χ′)m ≈ (w′
sχ

′
s)m (25)
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in simulation D1, in moist (left) and dry (right) regions.

to very good accuracy, as shown for both (w′θ′lv)m and (w′q′l)m in fig. 3. Hence, for eq. 23311

to successfully explain the evolution of mesoscale moisture anomalies, it is crucial to get312

the sub-mesoscale fluctuations of w, θlv and ql that form them right.313

5 Sensitivity to resolution314

At ∆x = 200 m, our coarsest simulations barely resolve the energy containing scales315

of the shallow convection. While the impact of such assumptions may be limited in short316

simulations on small domains (Siebesma et al., 2003; Blossey et al., 2013), one might imag-317

ine simulations of mesoscale structures on large domains, at coarse resolutions and over318

long integration times to be more sensitive.319

Fig. 4 presents the time evolution of vertically integrated mesoscale moisture fluc-320

tuations, ⟨q′tm⟩ and the timescale τq′tm estimated from eq. 22 for the numerical model con-321

figurations in tab. 1. It shows that repeated grid refinement in the horizontal dimension322

more than doubles τq′tm in DALES, and quadruples it in MicroHH. The models do not323
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Figure 4. Time-evolution of ⟨q′tm⟩, averaged over moist (blue) and dry (red) mesoscale re-

gions, for numerical configurations indicated by the line styles, in simulations run by DALES

(dark colours) and MicroHH (light colours). Abbreviations “fiso”, “a5” and “nocorr” follow the

definitions from tab. 1.

agree even at ∆x = 50 m. Similar results are obtained for numerical setups that dis-324

sipate resolved fluctuations more strongly (simulations D2, D3 and D5). In fact, switch-325

ing from a second-order advection scheme to a fifth-order scheme (simulations D2 vs. D1326

and D5 vs. D4) slows the growth of ⟨q′tm⟩ to the point that it is barely perceptible. In327

all numerical configurations, the scale growth mechanism eq. 18 holds almost exactly (see328

fig. S1). Hence, while the form of the circulation-driven mechanism is rather resolution-329

invariant, its ingredients, w∗ and Γqt/Γθlv , are not.330

To investigate this in more detail, we will focus on how the DALES simulations run-331

ning at ∆x = 200 m (D1 and D3) and with fifth order advection (D5) and no stabil-332

ity correction (D6) differ from that running at ∆x = 100 m (D4). Since our length scale333

growth model is state-dependent, such differences are best studied by tracing the tem-334

poral divergence between experiments that start from an identical state after the model335

spinup. We choose that state to be simulation D4’s solution after 12 hours, when mesoscale336

fluctuations are small. For simulations D1 and D3, this solution is first coarse-grained337

onto a grid with ∆x = 200 m using a top-hat filter. We then run the cases on for 12338

hours with all other settings kept identical to simulations D1, D3, D5 and D6.339

Fig. 5 shows how profiles of the ingredients to eq. 18 evolve in these simulations340

in the first six hours after they have been relaunched. Their q′tm fields are initially iden-341

tical, as is Γqt/Γθlv . However, this state immediately elicits a response in the coarser sim-342

ulations’ Fθ′
lvm

. It increase in strength, amplifying w′
mΓqt . As a result, q′tm begins grow-343

ing more quickly in these simulations, supplying additional fuel that Fθ′
lvm

can feed on;344

the mechanism and divergence between the simulations intensifies over time.345

It is worth noting that the main sinks in the q′tm and θ′lvm budgets, the horizon-346

tal advection terms, barely respond to the changes in grid spacing (see fig. S1 and S2).347

The faster growth of q′tm in our coarse simulations is then not because mesoscale fluc-348

tuations are horizontally redistributed or dissipated down to the sub-mesoscale less ef-349

ficiently, but due to an enhancement of Fθ′
lvm

-driven production at a given q′tm . Put dif-350

ferently, it is the proportionality in eqs. 20 and 21 that is not grid-converged.351

Why is the development of Fθ′
lvm

resolution-sensitive? The spectra plotted in fig. 6352

offer a suggestion. In the first hour after the coarse-resolution simulation D1 has been353

–12–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

0

500

1000

1500

2000

2500

3000

He
ig

ht
 [m

]

12-14 hr 12-14 hr 12-14 hr 12-14 hr

0

500

1000

1500

2000

2500

3000

He
ig

ht
 [m

]

14-16 hr 14-16 hr 14-16 hr 14-16 hr

0.0002 0.0000 0.0002
q′tm

 [kg/kg]

0

500

1000

1500

2000

2500

3000

He
ig

ht
 [m

]

16-18 hr

0.01 0.00 0.01
F ′

lvm [K m/s]

16-18 hr

0.02 0.00 0.02
qt/ lv [kg/kg/K]

16-18 hr

5 0 5
w′

m qt [kg/kg/s] 1e 8

16-18 hr

D1: x = 200m, moist
D1: x = 200m, dry
D1: x = 200m, slab-mean

D3: x = 200m, fiso
D3: x = 200m, fiso
D3: x = 200m, fiso

D4: x = 100m
D4: x = 100m
D4: x = 100m

D5: x = 100m, a5
D5: x = 100m, a5
D5: x = 100m, a5

D6: x = 100m, nocorr
D6: x = 100m, nocorr
D6: x = 100m, nocorr

Figure 5. Vertical profiles of q′tm , Fθ′
lvm

, Γqt/Γθlv and w′
mΓqt (columns left to right), in moist

and dry regions (blue and red lines), averaged over 2-hour intervals (top to bottom rows) after

launching the cases D1, D3, D5 and D6 from the case D4 (different line styles).

relaunched from the finer-resolution simulation D4, it contains slightly less variance in354

its smallest scales of qt, w and θlv in the sub-cloud layer (figs. 6 a-c). But in the cloud355

layer, where our instability resides, fluctuations in qt, w and θlv are more energetic at356

their smallest, resolved scales (figs. 6 d-f) in simulation D1 than in D4. At the inversion357

base, where Fθ′
lvm

reaches its maximum, the small-scale fluctuations in the coarse sim-358

ulation are more energetic still (figs. 6 g-i).359

The excess variance in inversion-layer qt is initially almost ephemeral: Fig. 6 g) shows360

that the inversion-layer moisture field is dominated by its largest scales (wavenumbers361

smaller than km), which remain unaffected by the restart. In contrast, the variance in362

both w and θlv peaks at wavenumbers commensurate with the boundary layer height of363

O(1000) m, and retains a non-negligible contribution from a long range of scales smaller364

than that, especially in the cloud and inversion layers. In our coarse simulations, it is365

the excess small-scale w′ and θ′lv in these two layers that through eq. 25 provide the vari-366

ance that underpins the stronger Fθ′
lvm

and subsequent development of q′tm .367

The spectral variance plateau at the smallest, resolved scales at z = 1500 m per-368

sists even when ∆x = 100 m, explaining why simulations D7 and M3 (∆x = 50 m)369

self-aggregate over an even longer time scale than simulations D4 and M2 (∆x = 100370

m). In fact, the plateau even persists in the inversion layer at ∆x = 50 m (see fig. S3),371

raising questions as to whether the self-aggregation even in those simulations would be372
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c, f, i) for our 100m simulation (D4) and 200m simulation (D1) restarted from D4, averaged over

the first hour after the restart, over x-y cross-sections at 250m (a-c, in middle of sub-cloud layer),

750m (d-f, in cloud layer) and 1500m (g-i, at inversion base). km indicates the wavenumber that

separates the mesoscales from the sub-mesoscales, according to eq. 10.

grid-independent. Simulations with stronger diffusion (D3, D5 nad D6, see fig. S4) dampen373

the spectral plateau, and consequently reduce Fθ′
lvm

compared to simulation D1 (see fig. 5).374

So which, if any, of the results above can we trust? It is impossible to answer this375

question completely in the absence of observations. However, we believe we may elim-376

inate some ambiguity by testing the degree to which the simulations hold up to the fun-377

damental LES assumption that our quantities of interest should be independent of SFS378

effects. The SFS models employed in DALES and MicroHH assume these effects can rea-379

sonably be modelled by diffusion with diffusivity Km ∼ u′′l′′, where u′′ and l′′ are typ-380

ical velocity and length scales of the unresolved motions in the flow. This approxima-381

tion can be rationalised if l′′ ∼ ∆ resides in the inertial subrange of homogeneous, isotropic382

turbulence. In the inertial subrange, the mean rate of transfer of turbulent kinetic en-383

ergy e from any scale to a smaller one is scale-independent, and equal to the rate at which384

it is eventually dissipated by molecular diffusion at much smaller scales, ε (e.g. Wyn-385

gaard, 2010). Therefore, we are satisfied with resolving the larger, energy-containing ed-386

dies, characterised by velocity and length scales U and L, respectively, inserting ∆ in the387

inertial subrange, and employing a diffusive SFS model that we only ask to model ε cor-388

rectly. If it does, a necessary requirement is that ε is independent of ∆, and thus of our389

grid spacing (Sullivan & Patton, 2011). Fig. 7 shows that this is not the case; our coarse-390

mesh simulations underestimate ε with respect to our fine-mesh simulations throughout391

the cloud layer, and this underdissipation accelerates the observed length scale growth392

(fig. S5 paints the same picture for our MicroHH simulations). We are either making mis-393

takes within our model for ε at ∆x ∈ [100, 200] m, or must concede that these grid spac-394

ings are simply too coarse to reside in the inertial subrange.395
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Several pieces of evidence assign a high likelihood to the second of these options396

holding some truth. First, let us attempt to account for our anisotropic grid, which makes397

us underestimate ∆ in the horizontal direction. It is in principle possible that the insuf-398

ficient dissipation we observe stems from our abuse of this length scale. However, set-399

ting ∆ = ∆x according to Deardorff (1980)’s original proposition (simulation D3) still400

underestimates the dissipation with respect to higher-resolution simulations, even though401

it strongly overestimates the vertical component of this length scale relative to the ver-402

tical grid spacing. It is thus unlikely that our grid anisotropy alone is responsible for un-403

derestimating ε. Second, our empirical stability corrections might over-ambitiously di-404

minish the eddy diffusivities in stratified regions. This too could explain the excess small-405

scale variance, as it rises as the stratification increases through the cloud and inversion406

layers. Yet, switching off the stability correction entirely (simulation D6) only slightly407

reduces the small-scale variance, and does not measurably influence the evolution. There-408

fore, it is also unlikely that stability corrections are at the root of the problem. Third,409

the underestimation of dissipation is consistent across two independent LES codes with410

different thermodynamics and SFS models, and is thus unlikely related to individual model411

details. Finally, we remark that our resolutions may simply be too low to allow a proper412

turbulent flow to develop on the resolved scales. If we had such a flow, its large-eddy Reynolds413

number ReL ≫ 1. Following Wyngaard (1984),414

ReL =
UL

Km
∼ UL

u′′∆
∼ UL

ε
1
3∆

4
3

∼
(
L

∆

) 4
3

, (26)

if ε ∼ U3/L ∼ u′′3/∆, which holds if ∆ resides in the inertial subrange (Tennekes &415

Lumley, 1972). In our simulations, L ∼ 1000 m, and we attain ReL ∼ 10 for ∆x ∈416

[100, 200] m; this number is even lower for simulations with the O(5) advection scheme,417

whose effective resolution is approximately 6∆x (Bryan et al., 2003). Simulations of or-418

ganised, deep convection indicate that ReL ∼ 102 may be necessary for the flow to en-419

ter a regime where its statistics no longer scale with ReL (Bryan et al., 2003); the same420

seems necessary for certain shallow cumulus cases (D. E. Stevens et al., 2002). Thus, grid421

spacings at the lower end of what we test here, or even finer, may be required to sim-422

ulate organising shallow cumulus in LES, and any subsequent transition to deep, organ-423

ised convection, unless SFS models are employed that do not rely on ∆ residing in the424

inertial subrange.425

6 Discussion426

We find that the numerical representation of fluctuations in buoyancy and verti-427

cal velocity in shallow cumuli at scales smaller than 1 km have the potential to propa-428
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gate into significant differences in the moisture field at scales up to the 100 km domain429

sizes simulated here. We draw attention to a few implications for the modelling of trop-430

ical convection.431

First, it is worthwhile to place these results in the context of early LES model in-432

tercomparisons. In the BOMEX intercomparison (Siebesma et al., 2003), small-domain433

LES models agreed well with each other at the resolutions considered here. It proved much434

harder to achieve similar agreement for shallow cumulus under strong inversions, such435

as those that develop in conditions sampled during the Atlantic Tradewind Experiment436

(ATEX) (B. Stevens et al., 2001). It is precisely in the inversion, where the energy-containing437

turbulent length scales shrink below the boundary layer’s depth (e.g. Mellado et al., 2014,438

2017), that we find both the key to circulation-driven self-aggregation, and our SFS mod-439

els lacking. Given the tight coupling between the fluxes that grow the cumulus layer (B. Stevens,440

2007) and those that lead to its self-aggregation (Janssens et al., 2022), we wonder whether441

our results simply give the historical context of the ATEX intercomparison a new per-442

spective: It is perhaps simply too ambitious to simulate large-scale cloud structures that443

depend so strongly on inversion-layer dynamics at resolutions tractable for large-eddy444

simulations.445

In particular, our results suggest why the structures termed “flowers” by B. Stevens446

et al. (2020) are inadequately captured in simulations of even coarser resolution than con-447

sidered here (Schulz, 2021): They may just run an overly dissipative combination of ad-448

vection scheme and unresolved scales model. The results also indicate that small-scales449

driven development of mesoscale scalar variance poses a fitting and challenging test case450

for the development of better parameterisations in the convective gray zone, such as those451

discussed in (Honnert et al., 2020), and ultimately to the development of the next gen-452

eration of cumulus parameterisations in global models, which are unable to adequately453

estimate the contribution from the trades towards the equilibrium climate sensitivity (Myers454

et al., 2021; Cesana & Del Genio, 2021). At minimum, our results suggest that it is pru-455

dent for modelling studies of the spontaneous development of mesoscale shallow cloud456

patterns to incorporate an assessment of their degree of grid convergence. Concretely,457

we recommend to always assess the resolution sensitivity of one’s quantities of interest,458

e.g. ⟨q′tm⟩, and of our indicators of mesoscale variance production, e.g. F ′
θlvm

or τq′tm . If459

such sensitivities are found, inversion-layer w or heat spectra may offer insight into the460

sensitivity’s origins.461

We pose our recommendations on the basis of simulations with minimal physics.462

Therefore, it may not be immediately obvious why our results should be of interest to463

situations where radiation, precipitation or strong boundary forcings prevail over the moist464

convection. Yet, simulations of such situations often first appear to require non-precipitating465

cumulus to aggregate sufficient amounts of moisture into moist mesoscale regions before466

developing stratiform cloud layers and cold pools (Bretherton & Blossey, 2017; Naren-467

pitak et al., 2021), which may then modulate the mesoscale dynamics (Vogel et al., 2016;468

Anurose et al., 2020). Additionally, the microphysical parameterisations upon which such469

precipitation-driven mechanisms rely typically exhibit even larger model biases than the470

turbulence-parameterisations discsussed here (e.g. van Zanten et al., 2011). If such pa-471

rameterisations are not even driven by the right model dynamics, they can also not be472

expected to return realistic precipitation and cold pools. Exactly how large error prop-473

agation from dynamics-to-physics modules is for self-organising cumulus convection re-474

mains largely unquantified; appraising and amending such estimates is therefore a worth-475

while topic of future research.476

Finally, we return to the matter of self-aggregation in simulations of radiative-convective477

equilibrium discussed in the introduction. Our coarsest two simulations (D1 and M1)478

develop deep convective clouds on top of their mesoscale moist regions, displaying some479

form of radiation- and precipitation-less, deep convective self-aggregation. We do not ar-480

gue that these clouds are physical. Yet, their development does open a potential path481
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Figure 8. Power-spectral densities of ⟨qt⟩ (a) and w500 (vertical velocity at 500 hPa, b) of five

participating models in the RCE Model Intercomparison Project (RCEMIP), in the RCE-large

configuration detailed by Wing et al. (2018), over a sea surface at 300K and averaged over the

last 50 days of simulation. Simulations with more energetic small-scale vertical velocity fluctua-

tions contain more variance in their largest scales of moisture.

between the convective feedback in the shallow convection discussed here and the shal-482

low circulations that underlie deep convective self-aggregation. Therefore, our results may483

contribute to explain why numerical models set up on the same numerical domain, but484

with different advection schemes and SFS models, self-aggregate so differently in RCE485

(Wing et al., 2020). Running with grid spacings exceeding 1 km - i.e. a factor five greater486

than the coarsest grids used here - these simulations may simply dissipate energy from487

their oft-parameterised shallow convection at different rates and thus support highly vari-488

able circulation strengths and self-aggregation time scales (Shamekh et al., 2020). The489

spectra of vertically integrated water vapour and vertical velocity of several simulations490

that participate in Wing et al. (2020) bear these hallmarks (fig. 8). More study of choices491

in discretisation and unresolved scales schemes, and the resulting interaction of numer-492

ical and modelling errors with the resolved dynamics in cloud-resolving models of RCE493

is warranted.494

7 Summary495

In pursuit of understanding why and when idealised models of tropical convection496

self-aggregate, we have studied the sensitivity to numerical settings of self-aggregating497

shallow cumulus convection. In idealised large-eddy simulations with a homogeneous sur-498

face forcing and no radiation or precipitation models, spontaneous aggregation is facil-499

itated by a pure, convective instability: Small fluctuations in latent heating in shallow500

cumulus clouds prompt mesoscale circulations which transport moisture from dry to moist501

columns, resulting in aggregated patches of cumulus clouds which release more latent502

heat and strengthen the circulations.503

The instability represents a pathway for sub-mesoscale, turbulent fluxes of heat and504

moisture in kilometre-scale cumulus clouds to control the moisture variability at scales505

up to two orders of magnitude larger. Therefore, modellers must take great care when506

trying to represent the underlying, turbulent dynamics in LES or cloud-resolving mod-507

els: We find that the time scale of the instability is highly sensitive to differences in grid508

spacing and advection scheme, over a range of rather conventional choices for LES mod-509
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elling of shallow cumulus (fig. 4); even at ∆x = 50 m grid spacings, we find two LES510

codes with different SFS models to aggregate at rather different time scales. Given the511

potential role played by shallow convection in developing and maintaining deep convec-512

tive self-aggregation, we wonder whether similar differences in how cloud-resolving mod-513

els represent the effects of shallow convection matter in explaining the abundance of ag-514

gregation varieties observed in simulations of deep convection in RCE.515

Our results call for a thorough analysis of the degree to which models of shallow516

convective self-aggregation match reality, a question which has remained elusive for stud-517

ies of their deep-convective counterparts (Muller et al., 2022). A good start in this di-518

rection is offered by simulations of the EUREC4A field campaign (Narenpitak et al., 2021;519

Saffin et al., 2022), which exhibit circulation-driven moisture aggregation in more real-520

istic settings, and which compare favourably to the campaign’s observations. In fact, these521

observations include sufficiently detailed observations of mesoscale circulations (George522

et al., 2021) that the data required to reconcile models and nature may be in hand, bod-523

ing well for our understanding of self-aggregating convection.524

8 Open Research525

Frozen images of the versions of DALES and MicroHH used in this study have been526

stored at https://doi.org/10.5281/zenodo.6545655 and https://doi.org/10.5281/527

zenodo.822842 respectively. The numerical settings, routines and post-processed sim-528

ulation data used to generate the figures presented in the manuscript are available at https://529

doi.org/10.5281/zenodo.6772483. Living repositories for DALES, MicroHH and the530

postprocessing scripts are available at https://github.com/dalesteam/dales, https://531

github.com/microhh/microhh and https://github.com/martinjanssens/ppagg, re-532

spectively. Both DALES and MicroHH are released under the GNU General Public Li-533

cense v3.0. The standardized RCEMIP data is hosted by the German Climate Comput-534

ing Center (DKRZ) and is publicly available at https://www.wdc-climate.de/ui/info535

?site=RCEMIP DS.536
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