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Abstract 20 

River stage fluctuation (RSF) is one of the most important factors influencing the physical, 21 

chemical, and ecological aspects of rivers. Despite widespread interest in river stage 22 

variations, there is currently no global benchmark of RSF and their spatial patterns. Our 23 

understanding of these characteristics remains limited. We used Sentinel-3 altimetry data to 24 

establish a benchmark dataset for RSF in wide rivers (width > 1 km). We conducted an initial 25 

investigation of the spatial patterns and inter-annual variability associated with RSF. The 26 

results show a wide range of fluctuation amplitudes spanning from a mere 1 m to 18 m. Notably, 27 

rivers in semi-arid regions exhibit more pronounced fluctuations. Further analyses indicate 28 

that human activities play a significant role in RSF. The results are of substantial interest to 29 

the scientific community, as they are closely linked to critical hydrological processes, including 30 

floods, river-floodplain dynamics, river-groundwater interaction, greenhouse gas emissions, 31 

and river restoration. 32 

33 

Plain Language Summary 34 

Rivers show a seasonal rhythm over time due to multiple processes. A critical aspect of the 35 

rhythm is the river stage, which resembles the pulse of a river as it rises and falls. Traditionally, 36 

river stages have been monitored using gauging stations. However, these local monitoring 37 

networks fall short in providing a comprehensive global perspective on river stage fluctuations, 38 

which are directly linked to significant events like floods and droughts. Advanced Earth 39 

Observation techniques now offer a means to better understand the pulse of rivers on broader 40 

scales. Specifically, satellite radar altimetry serves as a valuable tool for river stage records 41 

by measuring water surface elevation, thereby providing insights into the normality or 42 

abnormality of river conditions. This study represents one of the first global-scale 43 

investigations into the patterns of river stage fluctuations and inter-annual variability spanning 44 

from 2016 to 2022. Moreover, this new dataset holds practical value for related studies, such 45 

as the validation of the average depth of the channel when the river is full, the assessment of 46 

river channel storage variation, the facilitation of river navigation, stepwise ecological 47 

restoration, and more.  48 

49 

1 Introduction 50 

Rivers are complex ecosystems which have formed over a long time and continue to 51 

evolve (Humphries et al., 2014). The interactions between rivers and their landscapes work in 52 

different dimensions. Longitudinally, rivers flow down the river channel while laterally moving 53 

onto floodplains, and vertically, interact with groundwater (Hadeed & Thomson, 2006; Poff, 54 

2019). However, human activities can accelerate and redirect the evolution of such 55 

ecosystems (Hadeed & Thomson, 2006). With the advance of urbanization and economic 56 

development, rivers and their watersheds have been utilized heavily, leaving very few systems 57 

in a natural state, or freely flowing. For instance, the flow regime of the Lancang River has 58 

been changed due to the regulation as well as climate change (Liu et al., 2022; Zhang et al., 59 

2023). Munoz et al. (2018) revealed that river engineering largely contributes to the increased 60 

flood magnitudes. At the global scale, Grill et al. (2019) showed that only 37% of rivers longer 61 

than 1000 km remain free-flowing over their entire length and 23% flow uninterrupted to the 62 

ocean.  63 
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River level (stage), representing the vertical dimension of a river, is a key variable for a 64 

wide range of hydraulic, hydrological, ecological, biochemical, and geomorphological 65 

processes (Alsdorf et al., 2000; Koel & Sparks, 2002; Saleh et al., 2011). Beyond the wide 66 

applications of river stage for flood/drought assessment (Jiang, Zhao, et al., 2023; Zhong et 67 

al., 2022), hydrodynamic model calibration and validation (Jiang et al., 2021; Schneider et al., 68 

2018), discharge estimation (Leon et al., 2006; Zakharova et al., 2020), the variations in river 69 

stage are acknowledged to affect local groundwater flow because river stage fluctuations can 70 

influence hydraulic gradients between river and groundwater systems (Boutt & Fleming, 2009; 71 

Jasechko et al., 2021). During wet seasons, direct runoff to a river can increase the river stage 72 

and reverse the normal groundwater hydraulic gradient toward the river. Therefore, river water 73 

moves into the adjacent aquifer. During dry seasons, the river stage declines, and the normal 74 

hydraulic gradient is reestablished. Consequently, the stored water is discharged back into the 75 

river. This process is often termed “bank storage” (Squillace, 1996). In turn, the exchange of 76 

water flow can affect the water temperature and chemistry (Gu et al., 2012). Stage fluctuations 77 

can thus facilitate the movement of water and solutes between rivers and joining hyporheic 78 

and riparian zones and aquifers, influencing biochemical and ecological cycles (Baratelli et al., 79 

2016; Ferencz et al., 2019). Similarly, river stage fluctuation plays an important role in the 80 

river-floodplain systems (Bates et al., 2000). For instance, river stages basically determine the 81 

connectivity between rivers and floodplains, which supports a range of ecosystem functions. 82 

Moreover, river stage fluctuations play an important role in shaping river geomorphology, such 83 

as the river bank erosion (Liang et al., 2015) and also riverine methane emissions (Raymond 84 

et al., 2012; Rocher-Ros et al., 2023).  85 

Monitoring river stage and its fluctuations is of utmost importance. It serves various crucial 86 

purposes such as characterizing the patterns and processes of a river system, estimating river 87 

storage dynamics, managing hydrological disasters, validating hydraulic/hydrodynamic 88 

models, and enhancing our understanding of many interconnected hydro-biogeochemical 89 

processes (Humphries et al., 2014). Recent studies (e.g., Coss et al., 2023; Trautmann et al., 90 

2023) have highlighted the importance of river storage to the total water storage dynamics. 91 

However, the knowledge of stage fluctuations on a global scale is still very poor. One of the 92 

main obstacles impeding a global assessment of river stage fluctuations is due to the lack of 93 

in-situ monitoring networks (Ruhi et al., 2018). To the best of our knowledge, there is no global 94 

river stage network so far. The advent of Earth Observation from space has created new 95 

opportunities for better understanding river systems. The recently launched Surface Water 96 

and Ocean Topography mission (Biancamaria et al., 2016) might alleviate this problem in the 97 

near future. Currently, satellite altimetry has greatly increased the availability of water surface 98 

elevation (WSE) data globally (Abdalla et al., 2021; Birkett, 1995; Crétaux et al., 2015; Jiang 99 

et al., 2019, 2021). For example, Coss et al. (2020) produced a global river altimetry dataset 100 

covering the period from 2002 to 2016, which incorporated 932 virtual stations (VS) by 101 

leveraging data from the Envisat and Jason-2 missions. In contrast, a recent study by Jiang 102 

et al. (Jiang, Zhao, et al., 2023) revealed that Sentinel-3 constellation has created an 103 

impressive number of over 80,000 VSs, despite their assessment being based on more than 104 

3,000 VSs. The spatial coverage is mainly affected by the altimeter orbits. Compared to the 105 

Jason series, the new generation radar altimetry mission, Sentinel-3, based on a constellation 106 
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of two satellites, allows the spatial coverage much denser than previous missions of short 107 

repeat orbit. On top of its higher data quality as reported by previous studies (Gao et al., 2019; 108 

Halicki & Niedzielski, 2022; Jiang et al., 2020; Jiang, Nielsen, et al., 2023; Jiang, Zhao, et al., 109 

2023; Kittel et al., 2021), its spatial coverage allows us to monitor and assess global river 110 

dynamics (Jiang, Nielsen, et al., 2023).  111 

In this context, the main purpose of this study is to assess global river stage fluctuations 112 

for the first time. To achieve the objective, we first built a global river level dataset based on 113 

Sentinel-3 altimetry data. This dataset enabled us to compute river stage fluctuations based 114 

on the time series of river WSE. Subsequently, we conducted an analysis of long-term river 115 

stage fluctuations along with an assessment of the annual fluctuations’ variability. Additionally, 116 

we explored the impact of human activities on these river stage fluctuations. The water level 117 

time series and stage fluctuations are made free and publicly accessible to the scientific 118 

community.  119 

2 Data and Methods 120 

2.1 Altimetry Data 121 

Data quality of satellite altimetry has been greatly improved since the 1990s (Jiang, 122 

Nielsen, et al., 2023). Sentinel-3 mission, comprising a constellation of two satellites, Sentinel-123 

3A (S3A) and Sentinel-3B (S3B), provides nearly global observations with a cycle period of 27 124 

days (Donlon et al., 2012). Both satellites carry a Ku-band SAR altimeter operating in open-125 

loop mode, providing more reliable and high-quality observations. Together, the distance 126 

between nominal ground tracks is about 52 km, allowing sample more river reaches. In this 127 

study, level-2 GRD Land products at Non Time Critical (NTC) timeliness were collected for the 128 

periods of 2016-2022 and 2018-2022, respectively, for S3A and S3B.  129 

2.2 Data Processing 130 

Water surface elevation (WSE) for each 20 Hz measurement is calculated according to 131 

the equation below, 132 

WSE = h − (Runc + Rgeo) – N, 133 

where, h is the altitude of satellite, Runc is the retracked range without geophysical and 134 

atmospheric corrections, Rgeo is the sum of atmospheric (ionospheric delay, dry and wet 135 

tropospheric delays) corrections and geophysical (pole tides, solid earth tides) corrections, 136 

and N is the EGM2008 geoid height. Note that we used the default OCOG retracked Runc for 137 

most VSs. However, this retracker cannot deliver useful Runc over the Yangtze river due to 138 

heavily contaminated waveforms as reported by our previous study (Jiang et al., 2020). 139 

Therefore, we used MWaPP+ retracker (Jiang et al., 2020) to obtain the retracked Runc.  140 

To calculate the river stage fluctuation, time series of WSE at Virtual stations (VS) are 141 

needed. VS were first created by intersecting the nominal sentinel-3 ground tracks with river 142 

centerlines from the Global River Widths from Landsat database (Allen & Pavelsky, 2018a). 143 

Since this study is conducted at the global scale, we focused on VS where the river is wider 144 

than 1 km.  145 
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WSE observations were filtered following three steps. Firstly, we used water occurrence 146 

(< 20%) (indicating the likelihood one observation is on water, (Pekel et al., 2016)) and DEM 147 

(the difference between the DEM value and observation, i.e., ∆H > 30 m) to remove spurious 148 

observations. Secondly, we used the median of absolute deviation (MAD) to filter out the 149 

outliers for each pass. Thirdly, we applied IQR and support vector regression (SVR) to 150 

observations of all passes to obtain final reliable observations. Then we finally used the 151 

tsHydro tool (Nielsen et al., 2015) to obtain the WSE for each pass. In cases where tsHydro 152 

fails, we instead used the median value of each track to represent the WSE. 153 

To ensure accuracy of WSE retrievals and remove any outliers that were not filtered by 154 

the automatic methods, we also manually checked those with extremely large/small 155 

fluctuations. Therefore, the quality of WSE is slightly better than a previous study (Jiang, Zhao, 156 

et al., 2023), which is indicated by the lower median standard deviation of the along-track 157 

measurements, i.e., 11.19 cm and 11.22 cm for S3A and S3B, respectively. And the 158 

counterpart is 24.4 cm and 23.3 cm from (Jiang, Zhao, et al., 2023).  159 

2.3 Stage Fluctuation Estimates and Analysis 160 

In principle, the stage fluctuation is equal to the difference between the highest and lowest 161 

WSE within a given period. However, satellite altimetry observations are subject to uncertainty 162 

and spurious outliers. Therefore, instead of the maximum and minimum of WSE, the 95th and 163 

5th percentiles were used. Nevertheless, we calculated stage fluctuation using both methods, 164 

and they yielded a high level of consistency (see Figure S1). Thus, the annual fluctuation and 165 

long-term fluctuation were estimated by the difference between the 95th and 5th percentiles of 166 

WSE observations within a calendar year and the whole study period, respectively.  167 

The variability of annual fluctuations is quantified by the standard deviation (STD) of 168 

annual fluctuations. To compare the variability across different rivers, the coefficient of 169 

variation (CV, also called relative variability) is used to normalize the influence of absolute 170 

fluctuation on the STD. Specifically, CV is calculated by dividing the STD of the annual 171 

fluctuations by the average annual fluctuation. To analyze global patterns in stage fluctuations, 172 

we also spatially aggregated VSs across large river basins.  173 

2.4 Ancillary Data 174 

Global Aridity Index and Potential Evapotranspiration Database - Version 3 (R. J. Zomer 175 

et al., 2022) was used to analyze river stage fluctuations over different climate zones. Similarly, 176 

the Global Runoff Data Center (GRDC) Major River Basins were used to investigate the spatial 177 

patterns of stage fluctuations. To analyze the human influence on river stage fluctuations, we 178 

broadly grouped VS into two categories based on the river flowing status, i.e., free-flowing 179 

river reach or non-free-flowing reach (G. Grill et al., 2019). Specifically, we used the 180 

connectivity status index (CSI) to reflect the degree to which a river reach is altered by human 181 

activities.  182 

3 Results and Discussion 183 

3.1 Long-term River Stage Fluctuation 184 
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Overall, river stage fluctuations of 3,272 VSs were estimated, among which 1,649 VSs 185 

are from S3A and 1,623 from S3B, respectively. Geographically, these VSs are mainly from 186 

the northern high latitude and the Equator. Their distributions along latitude and longitude of 187 

both S3A and S3B are generally the same (Figure 1), indicating a high level of consistency of 188 

the fluctuation estimates although the temporal coverage is slightly different. It should be noted 189 

that the temporal coverage matters since the river stage at 95th and 5th percentiles may be 190 

different and thus the fluctuation differs. Broadly, higher fluctuation amplitudes occur in South 191 

America, Siberia, and Asia. Moreover, the fluctuation amplitude increases gradually in the 192 

downstream direction, especially at the relatively less regulated Arctic rivers, Amazon, and 193 

Congo rivers, although discontinuities also appear at a few locations.  194 
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195 

Figure 1. Distribution and statistics of river stage fluctuations on a global scale (a: Sentinel-196 

3A; b: Sentinel-3B), and (c) fluctuation statistics at basin scales including data from both 197 

satellites. Only basins with at least 5 VSs (numbers are given on the top) are included. The 198 

pie chart in (a) and (b) shows the percentage of the five fluctuation classes, the colors of which 199 

are associated with that of the pie chart.  200 

Global statistics show that the median fluctuation amplitude of S3A is about 3.63 m, 201 

ranging from 0.38 to 17.84 m, while that of S3B are 3.55 m and 0.30 ~ 14.89 m. The smaller 202 

fluctuations are mainly from VSs located at the most downstream reaches running into seas, 203 
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where the stage peaks are attenuated. This is supported by the relationships between 204 

fluctuation variability and the distance to the outlet (Figures S2, S3 & S4). As shown in Figure 205 

1, over two thirds (70% and 71% for S3A and S3B) of VSs exhibit stage fluctuation below 5.5 206 

m, whereas a smaller proportion (2% and 4% for S3A and S3B) with a fluctuation amplitude 207 

over 11.5 m. These hot spots (clusters of larger fluctuations) clearly spread over the Orinoco, 208 

Madeira, Solimões, lower Mekong, and Yangtze rivers. Specifically, the middle reach of the 209 

third largest river, Orinoco, shows a mean fluctuation of 11.94 m. The Madeira, although 210 

regulated by reservoirs, has a much larger mean fluctuation of 12.63 m. The reach of Solimões 211 

between Iquitos and Manaus shows a mean fluctuation of 10.46 m. While over the Mekong 212 

and Yangtze, just a few VSs exceed the threshold of 11.5 m (Figures 1a &1b).  213 

In terms of river basins, the 28 mega river basins exhibit contrasting stage fluctuation 214 

patterns (Figure 1c). Notably, the Orinoco, Mississippi, Yangtze, Irrawaddy, and Amazon 215 

basins emerge as the top five with the highest median amplitudes, that is, 11.38 m, 10.65 m, 216 

8.14 m, 7.80 m, and 7.02 m, respectively. However, the interquartile ranges (middle 50%) and 217 

whiskers (outside the middle 50%) of Amazon and Yangtze are larger than that of other rivers 218 

due to their complex river networks, highlighting the pronounced spatial variability of river 219 

stage fluctuations across the whole basins. Besides, five Arctic rivers, i.e., Lena, Ob, Yukon, 220 

Mackenzie, and Yenisey also exhibit large fluctuations.  221 

To understand the fluctuation in regard to climate aridity, VSs were grouped into five 222 

categories (hyper arid, arid, semi-arid, dry sub-humid, and humid). As shown in Figure 2, the 223 

general patterns are very similar for both altimeters. It should be noted that the temporal 224 

coverage of S3A is longer than that of S3B, thus the fluctuation amplitude is slightly different. 225 

As expected, the humid regions have the largest number of VSs, accounting for 68.0% and 226 

71.5% of VSs for S3A and S3B, respectively. Regarding the fluctuation amplitude, the semi-227 

arid regions exhibit the greatest median fluctuation amplitude, i.e., 4.60 m and 4.35 m for S3A 228 

and S3B. The median amplitude in both the dry sub-humid and humid regions are smaller, 229 

with values of 3.61 m and 3.45 m, and 3.56 m and 3.40 m for S3A and S3B, respectively (see 230 

boxplots in Figure 2). In contrast, the arid regions possess less (ca. 2%) large rivers, and these 231 

rivers have relatively smaller stage fluctuations in the order of 2.5 m. As shown in Figure 2, 232 

the relationship between stage fluctuation and aridity is parabolic instead of monotonic in 233 

general. This pattern is likely dominated by the seasonality of precipitation and 234 

evapotranspiration (Feng et al., 2019), but may also be affected by the interactions between 235 

surface water and groundwater. In drier climates, rivers are more common to lose water to 236 

recharge surrounding aquifers (Jasechko et al., 2021). This may explain the observed larger 237 

fluctuations in semi-arid than in humid climate. 238 
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239 

Figure 2. Global patterns (a: Sentinel-3A; b: Sentinel-3B) of river stage fluctuation in regard 240 

to climate aridity. Climate classification scheme (hyper arid, arid, semi-arid, dry sub-humid, 241 

and humid) is based on the global aridity index. Note that due to very few VSs located in hyper 242 

arid region, these VSs (3 from S3A) are not included in this figure.  243 

3.2 Variability in Annual Stage Fluctuation 244 

Since we calculated annual stage fluctuation using calendar year, the results shown are 245 

based on VSs with data spanning from 2017 to 2022 (S3A). Here we did not use S3B due to 246 

the short period (i.e., four years). The coefficient of variation (CV) provides a measure of 247 

temporal variability relative to the mean. Overall, the year-to-year variability in annual 248 

fluctuations is within about 35% of the mean. As indicated by the pie chart (Figure 3a), over 249 

85% of VSs have a relatively narrow range between 0.02 and 0.35 over a broad range of 250 

fluctuation amplitudes (i.e., 0.27 - 14.69 m). Details of the mean and standard deviation of 251 

fluctuation amplitudes refer to Figure S5. Smaller CV values are mainly clustered in the tropical 252 

regions, while larger CV values (> 0.35) can be seen in the high latitude rivers (Figure 4a). At 253 
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basin scales, CV ranges from 0.11 to 0.37, with the largest ones found in the Neva, Parana, 254 

Mackenzie, Dnieper, and Pechora River basins, while the smallest ones in Brahmaputra, 255 

Orinoco, Aral Sea, Indus, and Niger river basins (Table S1).  256 

In the boxplots depicted in Figure 3b, there are observable maximum and minimum 257 

fluctuations at the VSs on a global scale each year. Nonetheless, these fluctuations vary from 258 

one year to another. Specifically, about 23.2% of VSs have maximum fluctuations in 2022 259 

while only 11.9% in 2019, which may indicate a larger variation in water balance within 2022. 260 

In contrast, over 23.9% of VSs experienced the minimum fluctuation in 2019 while only 9.7% 261 

in 2020. This may be explained by the low variability in water balance in 2019. However, the 262 

results have to be carefully interpreted since a smaller fluctuation does not necessarily imply 263 

a drought. At basin scales, we can clearly see that arctic river basins (e.g., Lena, Mackenzie, 264 

Ob, Yenisey, Yukon) experienced larger fluctuations in the last 3 years (in warm colors in 265 

Figure 3c) while the south-hemisphere river basins (e.g., Orinoco, Congo, Parana, Niger, 266 

Zambezi) mainly in 2018 and 2019 (in cold colors Figure 3c). For example, in 2022, 29.2% of 267 

VSs in the Lena River basin and 35.1 of VSs in the Mackenzie River basin experienced the 268 

largest fluctuations. In contrast, in 2020, 60.0% of VSs in the Yukon River basin showed 269 

significant variances. The Arctic experienced notable precipitation in recent years, especially 270 

in the 2021/22 water year (Walsh et al., 2023), which might relate to the variability in large-271 

scale atmospheric and oceanic circulations, especially the North Atlantic Oscillation and  Arctic 272 

Oscillation (Bintanja et al., 2020; Haine et al., 2015; Peterson et al., 2002). Moving back in 273 

time, 44.2% of VSs in the Congo and 35.3% of VSs in the Parana exhibited the most 274 

pronounced fluctuations in 2019. The Indian Ocean Dipole might be responsible for the excess 275 

precipitation over Congo Basin while El Niño–Southern Oscillation is probably related to the 276 

drought in Parana Basin (Antico & Vuille, 2022; Jarugula & McPhaden, 2023). Furthermore, 277 

in 2018, the Orinoco and Niger basins saw their largest fluctuations at 81.3% and 50.0% of 278 

VSs respectively (Figure 3c and Table S2). The variability of these tropical rivers might be 279 

explained by the El Niño–Southern Oscillation events (Amarasekera et al., 1997). Further 280 

investigation is beyond the scope of this study.   281 

Attribution of the observed variability is challenging. Aside from human activity, many 282 

factors affect the spatial patterns of the observed variability as shown in Figure 3a, such as 283 

climate, water availability, geomorphology of river channel, etc. Through the analysis of aridity 284 

and variability in stage fluctuation, a negative relationship is revealed. That is, the drier the 285 

climate, the larger the variability in stage fluctuation (i.e., the larger CV values). This explains 286 

the smaller CV in the tropic regions and larger values in high latitude rivers (Figure S6a). 287 

However, this relationship is not monotonic but parabolic with the peak occurring around semi-288 

arid climate (Figure S7). Additional analysis of variability in water balance (Figure S6b) shows 289 

that stage fluctuation variability is positively correlated to the variability of water balance (i.e., 290 

P - ET) in most river basins, which might be expected a priori because of the correlation 291 

between river discharge and stage. However, one should note that the variability of water 292 

balance is not directly comparable to the variability in annual stage fluctuations since no 293 

downstream accumulation is considered. Moreover, the calculated water balance (P-ET) over 294 

the high latitude rivers might be unrealistic due to the snow accumulating/melting processes.  295 

296 
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 297 

Figure 3. (a) Coefficient of variation (CV) of annual stage fluctuations (1,636 VSs); (b) the 298 

number of VSs for each year in which the maximum and minimum fluctuations occur. Here 299 

1375 VSs with data covering the full 6 years were used. (c) similar to (b) but for 25 river basins. 300 

Note that basins with data less than 6 years were excluded.  301 
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3.3 River stage fluctuation affected by human activities 302 

Besides climate effects, river stage changes behind dams can be very dramatic, highly 303 

unnatural. As shown in section 3.1, the largest fluctuations are found in big rivers, such as the 304 

Amazon, Orinoco, Madeira, Yangtze, etc. However, river fluctuations do not consistently 305 

exhibit high amplitude along the river, largely due to regulatory interventions. Besides, it is 306 

important to note that the size of a river, even in cases of closed river basins where water use 307 

surpasses the available renewable water supply, such as the Colorado (Molle et al., 2010), 308 

does not necessarily correlate with the amplitude of stage fluctuations. This phenomenon is 309 

primarily attributed to the influence of intensive human activities (Di Baldassarre et al., 2018). 310 

To assess the degree of human-induced alterations within a river reach, we used the river 311 

connectivity status index (CSI), given the absence of reservoir operation rules.  312 

Here, we used the weighted linear regression to take the spread of fluctuation amplitude 313 

within a CSI bin into consideration. As shown in Figure 4, the fluctuation amplitude has a 314 

positively significant relationship with CSI (p value < 0.005). As the CSI increases, there is a 315 

tendency toward larger amplitude. In other words, as rivers flow more freely with few dams, 316 

the stage fluctuations are likely larger. Statistically, 51.2% of the variation in stage fluctuation 317 

amplitude can be explained by the CSI. This is somewhat reasonable considering the 318 

conditions followed (G. Grill et al., 2019). Firstly, the CSI mainly describes river connectivity 319 

that may be attributed to different factors instead of just reservoirs and dams. Depending on 320 

the capacity and main purpose of reservoirs, the impact on river stage fluctuations can be 321 

different and the relationship may be highly nonlinear. Secondly, these rivers intrinsically have 322 

different fluctuations even though we only considered those in humid regions. Therefore, the 323 

larger fluctuations with CSI of 40-45%, 45-50%, and 70-75% may be due to other factors. 324 

Nevertheless, river stage fluctuation is heavily affected by human activities as reflected by the 325 

linear correlation (Figure 4) and Spearman rank correlation (ρ > 0.61 and p value < 0.05). 326 

More effort is needed to delve into the quantitative identification of human impacts on river 327 

stage fluctuations.  328 

329 
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Figure 4. The relationship between river stage fluctuation amplitude and CSI (Connectivity 330 

Status Index) binned with a five percent interval using both S3A and S3B VSs over the Humid 331 

climate. The blue line shows the weighted linear regression, and the grey shaded area 332 

represents the 95% confidence interval. R2 and p-values are in the upper left corner and the 333 

number of VSs in each bin is also labeled at the top of each box.  334 

4 Conclusion and Perspectives 335 

The high-quality Sentinel-3 altimetry observations, provided by a dual-satellite 336 

constellation, offer an excellent balance between spatial and temporal coverage for monitoring 337 

river dynamics. This study presents the first attempt to estimate stage fluctuations in major 338 

global rivers using satellite altimetry data. On a global scale, the median maximum river stage 339 

fluctuation is about 3.63 m during the period of 2016 and 2022, and median annual fluctuation 340 

is 2.88 m. At basin scales, the Orinoco, Mississippi, Yangtze, Irrawaddy, and Amazon basins 341 

stand out as the top five with the highest median amplitudes (> 7 m). Our results also show 342 

that the median fluctuation is larger over semi-arid climate regions than dry sub-humid and 343 

humid regions. The observed fluctuation amplitudes have a significant correlation with river 344 

connectivity status index, indicating large impacts of human activities on river stage fluctuation. 345 

The presented results are conservative and may be underestimated due to the relatively 346 

short period of time of Sentinel-3 data on one hand, which may not be long enough to 347 

represent the climatology of river stage fluctuations for certain rivers. On the other hand, the 348 

27-day repeat cycle of Sentinel-3 may miss capturing extreme high peaks and low troughs.349 

As the continuity of high-quality altimetric observations from Sentinel-3C and -3D, a more 350 

reliable climatology of river fluctuations can be established. Further, a longer record can reflect 351 

the changes due to, for example, the building of river dikes.  352 

Despite the short period, this study presents a first global picture of large river stage 353 

fluctuations based on satellite observations of river water surface elevation. Thus, this study 354 

enhances our understanding of global river dynamics in the vertical dimension. We anticipate 355 

the stage fluctuation dataset will facilitate related work in a broad range of geosciences. For 356 

instance, river stage fluctuations can be used to estimate river channel storage changes (Coss 357 

et al., 2023). In analogy to the estimation of lake or reservoir storage change, channel storage 358 

change can be estimated by combining the stage fluctuation and corresponding river area 359 

derived from imagery for a given reach. In addition, the information about river stage 360 

fluctuation can guide river navigation (Trigg et al., 2022). Adequate water depth in the channel 361 

is required to allow ship transport safely through the river. This is especially pertaining to poorly 362 

gauged rivers.  363 

Moreover, it can be used as an alternative bankfull depth for discharge estimation and 364 

hydrodynamic modeling (Andreadis et al., 2013; Mersel et al., 2013). We did a comparison 365 

with the bankfull depths from Andreadis et al. (2013) (hereafter referred to as Andreadis2013). 366 

Note that the Andreadis2013 bankfull depths were generated using a regression equation (d 367 

= 0.27Q0.3) based on estimated mean annual peak flow. Nevertheless, we expect that our 368 

stage fluctuations should be always lower than the Andreadis2013 bankfull depths as we 369 

report actual change of river depth rather than the static maximum depth. Overall, we indeed 370 

see general agreements (Figure S8). About 67.2% of our fluctuations (based on the maximum 371 
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and minimum) are within the Andreadis2013 confidence interval of bankfull depth, and the 372 

corresponding percentage is 54.3% if fluctuation calculation is based on the 95th and 5th 373 

percentiles. But still this comparison reveals inconsistencies. For instance, the observed 374 

fluctuations greatly exceed the Andreadis2013 bankfull depths (see Figure S8). This indicates 375 

the Andreadis2013 estimates are largely underestimated. This case contributes conservatively 376 

10.3% of all considered locations based on the 95th and 5th percentiles, whereas it can be 19.0% 377 

using fluctuation calculated by the difference between the maximum and minimum. For this 378 

case, we strongly recommend adopting our fluctuations as alternatives to the values for 379 

bankfull depth. In principle, our fluctuations should be less representative over humid larger 380 

river basins, since these rivers seldom have very shallow river depths (i.e., unobservable 381 

depth is relatively larger). Last but not least, this dataset may also be useful to study the 382 

interactions between streamflow and groundwater (Jasechko et al., 2021). 383 

Potentially, over 86,000 VSs can be established using S3A and S3B, while the number 384 

can still be very large (12,607) considering rivers wider than 300 m. Future work will expand 385 

the dataset through including more rivers of widths down to a few hundred meters. Since the 386 

large- to medium-sized rivers constitute a large proportion of global river networks, taking the 387 

pulse of these rivers is meaningful to better understand the spatial patterns and explore the 388 

regional differences. The findings hold significant interest for the scientific community as they 389 

are intimately connected to pivotal hydrological processes. These processes encompass a 390 

range of vital areas, including flood risk assessment, river-floodplain interactions, river-391 

groundwater interplay, greenhouse gas emissions, and stepwise ecological restoration of 392 

rivers (Liu et al., 2021). 393 
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