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Abstract21

Recently a polynomial reconstruction technique has been developed for reconstructing22

the magnetic field in the vicinity of multiple spacecraft, and has been applied to events23

observed by the Magnetospheric Multiscale (MMS) mission. Whereas previously the mag-24

netic field was reconstructed using spacecraft data from a single time, here we extend25

the method to allow input over a span of time. This extension increases the amount of26

input data to the model, improving the reconstruction results, and allows the velocity27

of the magnetic structure to be calculated. The effect of this modification, as well as many28

other options, is explored by comparing reconstructed fields to those of a three-dimensional29

particle in cell simulation of magnetic reconnection, using virtual spacecraft data as in-30

put. We often find best results using multiple-time input, a moderate amount of smooth-31

ing of the input data, and a model with a reduced set of parameters based on the order-32

ing that the maximum, intermediate, and minimum values of the gradient of the vector33

magnetic field are well separated. When spacecraft input data are temporally smoothed,34

reconstructions are representative of spatially smoothed fields. Two MMS events are re-35

constructed. The first of these was late in the mission when it was not possible to use36

the current density for MMS4 because of its instrument failure. The second shows a ro-37

tational discontinuity without an X or O line. In both cases, the reconstructions yield38

a visual representation of the magnetic structure that is consistent with earlier studies.39

Plain Language Summary40

The magnetic field plays a crucial role in many space physics processes. Ideally, we41

would image the magnetic field, but spacecraft make only point observations. Reconstruc-42

tion techniques allow us to infer the structure of the magnetic field around the trajec-43

tory of spacecraft and to visualize that structure. Here we extend our previous technique44

of polynomial expansion of the magnetic field by using input from spacecraft over a span45

of time rather than at just one point in time. We test the new technique, as well as our46

previous technique, by reconstructing the magnetic field around the trajectory of virtual47

spacecraft flying through a simulation of magnetic reconnection. Then we use our new48

technique to reconstruct the magnetic field around the trajectory of the Magnetospheric49

Multiscale (MMS) spacecraft for two events observed in space.50

1 Introduction51

The magnetic field plays a crucial role in magnetic reconnection and other space52

physics processes. In order to understand these processes, it is helpful to determine the53

structure of the magnetic field and the velocity of that structure relative to the space-54

craft. Single spacecraft techniques to determine both the structure and velocity include55

reconstruction based on Grad-Shafranov equilibrium (Sonnerup et al., 2006, and refer-56

ences therein), magnetohydrodynamics (MHD) and Hall MHD (Sonnerup & Teh, 2008,57

2009), and electron MHD (EMHD) (Hasegawa et al., 2019; Korovinskiy et al., 2021, and58

references therein). Empirical models using observations by multiple spacecraft of the59

magnetic field have also been developed. First order Taylor expansion (FOTE) of the60

magnetic field has been described by Fu et al. (2015, 2016, 2020). Recently Torbert et61

al. (2020) and then Denton et al. (2020) extended this technique to a quadratic model62

using the current density measured by the spacecraft as an input to the model, and ap-63

plied these techniques to events observed by the Magnetospheric Multiscale (MMS) mis-64

sion. The empirical methods have fewer assumptions than the single spacecraft techniques65

and yield time-dependent maps of the magnetic field around the spacecraft.66

Using the reconstruction method of Denton et al. (2020), Denton et al. (2021) used67

the varying location of the reconstructed reconnection X-line relative to the spacecraft68

to estimate the velocity of the magnetic structure. (The reconnection X-line is the mag-69

netic null of the magnetic field in the plane containing the reconnection magnetic field70
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and direction across the current sheet.) Basically, this technique assumed that the re-71

connection structure, or at least the position of the X-line, was time stationary or at least72

slowly varying. In this paper, we will also use polynomial reconstruction to reconstruct73

the magnetic field and determine the structure velocity, but using a more integrated tech-74

nique. We will assume that the structure velocity is constant during some segment of75

time that includes multiple times at which the data was sampled, and will find the ve-76

locity and reconstruction parameters that lead to a best fit to all the spacecraft mag-77

netic field and current density observations during that time segment. The resulting ve-78

locity optimizes the fit to all the data, not just the position of an inferred X-line. We79

will call this new method “multiple-time input”, as distinguished from the “single-time80

input” method of Denton et al. (2020).81

Here we test the multiple-time input technique using data from a 3D particle-in-82

cell simulation of magnetic reconnection with small but nontrivial spatial variation out83

of the reconnection plane (Liu et al., 2019). Then we use this technique to determine the84

magnetic structure for two events observed by MMS.85

In section 2 we briefly discuss the data and method, in section 3 we reconstruct the86

magnetic field for the simulation data, in section 4 we reconstruct the magnetic field for87

two MMS events. Finally in section 5 we summarize our results.88

The largest section of this paper tests various options for reconstruction in section 3.89

For someone interested only in actual MMS events, they may want to skim through sec-90

tion 2 and then skip to section 4. Section 3 is important for learning what options work91

best and how well the reconstructions agree with the actual fields that are being recon-92

structed, but the results of section 3 are also summarized in section 5.93

A new and key feature of our simulation data is that they are three dimensional.94

As we will see, it is challenging to accurately reconstruct the variation of the fields in95

the direction of least spatial variation (minimum gradient).96

2 Reconstruction method97

What we want to do is to get a quadratic expansion of the magnetic field in terms98

of the reconnection coordinates L, M , and N ; L and N define the reconnection plane,99

where L is aligned with the direction of the reconnection magnetic field and N is the “nor-100

mal” direction across the current sheet; M completes the coordinate system, and is ide-101

ally the direction of invariance, although that may not be the case if the L direction is102

determined based on maximum variance of B (Denton et al., 2016, 2018). Note that we103

use L, M , and N (or l, m, and n discussed below) as either coordinates or component104

labels, similar to the way x, y, and z are commonly used.105

The complete quadratic expansion in terms of these coordinates is106

Bi = Bi,0 +
∂Bi

∂L
L+

∂Bi

∂M
M +

∂Bi

∂N
N (1)

+
∂2Bi

∂L2

L2

2
+

∂2Bi

∂M2

M2

2
+

∂2Bi

∂N2

N2

2

+
∂2Bi

∂L∂M
LM +

∂2Bi

∂L∂N
LN +

∂2Bi

∂M∂N
MN,

where the i subscript in Bi stands for L, M , or N . The equations for µ0J = ∇×B (ne-107

glecting the displacement current) and ∇ · B = 0 are found by taking the curl or di-108

vergence of equations (1) as described in Appendix A. We assume that there are four109

spacecraft. And for each of these spacecraft, there are three components of B and three110

components of J, leading to 24 equations. There are also four equations from ∇·B =111

0, one for spatially constant terms, and three derived from terms proportional to L, M ,112

or N (Appendix A). For more details, see work by Denton et al. (2020).113
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For each of equations (1), with i = L, M , or N , there are 10 parameters; so al-114

together, there are 30 parameters to determine at any one time. Using data from a sin-115

gle time, there are 24 plus 4 equals 28 equations, not enough to solve for all 30 param-116

eters. To get around this problem, Torbert et al. (2020) and Denton et al. (2020) used117

models depending on the coordinates n, l, and m based on Minimum Directional Deriva-118

tive (MDD) analysis, which calculates the gradient of the vector magnetic field measured119

by four spacecraft (Shi et al., 2005, 2019); n, l, and m are the maximum, intermediate,120

and minimum gradient eigenvector coordinates, respectively. Normally the direction of121

the maximum gradient will be the direction across the current sheet, ∼ eN (Denton et122

al., 2018). Then if the minimum gradient is relatively steady and approximately in the123

eM direction, l, m, and n will be similar to L, M , and N .124

Based on the fact that the linear m dependence is by definition smallest, Torbert125

et al. (2020) dropped the ∂2Bi/∂m
2 terms and used a superposition of solutions with126

28 parameters in order to exactly match the values of B and J at the spacecraft posi-127

tions. But Denton et al. (2020) showed that that procedure results in overfitting, lead-128

ing to a solution that could wildly vary away from the spacecraft positions. The prob-129

lem is similar to that resulting from use of a high order polynomial with respect to one130

variable to exactly fit a number of data points. In order to avoid overfitting, Denton et131

al. (2020) used a reduced set of terms based on the ordering ∂/∂n ≫ ∂/∂l ≫ ∂/∂m.132

Now we introduce our multiple-time input approach using measurements over an133

interval of time. We will assume that the spacecraft are moving through the magnetic134

structure with a constant velocity for several observation times. This is similar in prin-135

ciple to the method of Manuzzo et al. (2019), who used several data points to evaluate136

the structure velocity from the potentially single-point Spatial-Temporal Difference (STD)137

method of Shi et al. (2006). STD as implemented by Shi et al. (2006) assumes that the138

time dependence of the magnetic field observed by all four spacecraft is due to convec-139

tion through a steady spatial structure, and solves for the structure velocity from the140

convection equation using the spatial gradient of the magnetic field evaluated at one time.141

Most other systems of reconstruction also assume a constant velocity over a period of142

time (e.g. Hasegawa et al., 2019).143

Expanding L, M , and N , or l, m, and n around the centroid of the spacecraft at144

the central time of the time segment, we can use the constant velocity to calculate the145

coordinates of the spacecraft at earlier or later times. Then we can get a best fit to all146

the data, 24 equations for each observation time plus the four ∇ · B = 0 conditions.147

In practice, we start with a guess for the velocity using the STD method, and then use148

a nonlinear minimization routine (Matlab fminsearch) to find the velocity that minimizes149

the squared difference between the model and the observations.150

Like Denton et al. (2020), we normalize distances to the average spacecraft spac-151

ing dsc. Then B and µ0J = ∇ × B have the same units for the least-squares calcula-152

tion. We also satisfy ∇ · B = 0 exactly. Using the complete quadratic expansion in153

equations (1), there is no need to rotate to the MDD coordinates, as was done by Torbert154

et al. (2020) and Denton et al. (2020, 2021). However, we also consider solutions using155

reduced sets of equations with fewer terms (Denton et al., 2020). In that case, we nor-156

mally evaluate the solution for each data time segment (set of observation times) in the157

MDD l-m-n frame of the central time value of that time segment. Then the resulting158

reconstructed fields are rotated back to the L-M -N coordinate system for comparison159

to the simulation or MMS data.160

Denton et al. (2020) called a model that neglected ∂2Bi/∂m
2 terms, but kept all161

the other terms in the quadratic expansion, “full quadratic”, and abbreviated the name162

of the model as Q-3D. This model has the same equations as equations (1) neglecting163

the ∂2Bi/∂M
2 terms, but with M , L, and N replaced by m, l, and n, respectively. To164

avoid confusion with our past nomenclature, we will abbreviate the name of the “com-165
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Table 1. Characteristics of reconstruction models

Model Abreviation Uses J ∂2/∂m2 ∂2/∂m∂n ∂/∂m ∂2Bn/∂n
2

as input ∂2/∂m∂l ∂2Bl/∂l
2

∂2Bn/∂n∂l
∂2Bl/∂n∂l

3D Complete Quadratic CQ-3D Yes Yes Yes Yes Yes
3D Quadratic Q-3D Yes No Yes Yes Yes
3D Reduced Quadratic RQ-3D Yes No No Yes No
3D Linear with only B as input LB-3D No No No Yes No
2D models -2D Dependsa No No No Dependsa

aDepends on the particular model.

plete quadratic” model in equations (1) as CQ-3D, and maintain the same model abbre-166

viations for the “full quadratic”, “reduced quadratic”, and linear models as were used167

by Denton et al. (2020), Q-3D, RQ-3D, and LB-3D respectively. In terms of the local168

MDD ccordinates, m, l, and n, the equations of the 3D reduced quadratic (RQ-3D) are169

Bl = Bl,0 +
∂Bl

∂n
n+

∂Bl

∂l
l +

∂Bl

∂m
m+

∂2Bl

∂n2

n2

2
(2)

Bm = Bm,0 +
∂Bm

∂n
n+

∂Bm

∂l
l +

∂Bm

∂m
m (3)

+
∂2Bm

∂n2

n2

2
+

∂2Bm

∂n∂l
nl +

∂2Bm

∂l2
l2

2

Bn = Bn,0 +
∂Bn

∂n
n+

∂Bn

∂l
l +

∂Bn

∂m
m+

∂2Bn

∂l2
l2

2
, (4)

in addition to a single equation for ∇ ·B = 0.170

We also consider a linear model, “LB-3D” (Denton et al., 2020), with171

Bi = Bi,0 +
∂Bi

∂L
L+

∂Bi

∂M
M +

∂Bi

∂N
N, (5)

in addition to a single equation for ∇ · B = 0. This is essentially the same model as172

the FOTE model of Fu et al. (2015).173

All of these models include at least a linear dependence on m, and so are three-174

dimensional. 2D versions of these models, Q-2D, RQ-2D, and LB-2D, eliminate all m-175

dependent terms from the 3D versions (Denton et al., 2020). (A 2D version for the CQ-176

3D model would be the same as Q-2D, since these models only differ because of the ∂2Bi/∂m
2

177

terms.) Table 1 summarizes the characteristics of the various models discussed in this178

paper. The terms in the header of Table 1 are expressed using l-m-n coordinates, but179

all the models can also be evaluated in terms of L-M -N coordinates, and we will explore180

that option below.181

3 Reconstruction of simulation data182

3.1 Simulation data183

The simulation data that we will use are from the particle in cell simulation of sym-184

metric (across the current sheet) magnetic reconnection by Liu et al. (2019). The pur-185

pose of this simulation was to study how magnetic reconnection develops when the re-186

gion of a thin current sheet is limited in the reconnection M direction (the “out of plane”187

direction normal to the reconnection L-N plane). A two-dimensional reconnection plane188
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contains an X point, which is the magnetic null in the BL and BN components. In three189

dimensions, the X point is extended into an X line in the M direction.190

Figure 1 shows the magnetic field at three different values of M . Because the sim-191

ulation data files are so big, time-resolved field data were not saved, so we are using a192

snapshot of the simulation fields at one time. Four virtual spacecraft move through the193

simulation with a velocity (3, 2, 1) di in L-M -N coordinates, where di is the ion iner-194

tial length ≡ c/ωpi =
√

mi

nie2µ0
, where ωpi is the ion (or proton) plasma frequency, mi195

is the ion mass, ni is the ion density, e is the proton charge, µ0 is the magnetic vacuum196

permeability, and time is dimensionless. Since the velocity is constant, the time of flight197

of our virtual spacecraft corresponds directly to distance traveled. We use the N coor-198

dinate for the time. That is, at t = 0, N = 0 di, indicating that the centroid of the199

spacecraft is at center of the current sheet.200

The virtual spacecraft move along the diagonal lines from the bottom left to top201

right in Figure 1; the colored circles show the positions of the spacecraft in each panel.202

At the same time, they are moving into the page, that is, in the positive M direction.203

Here only, L, M , and N are measured relative to the fixed center of the simulation; else-204

where, they will be measured from the centroid of the virtual spacecraft. The field in each205

panel corresponds to the field at the M value of the centroid of the spacecraft, so that206

the centroid M value is greater for Figure 1c (-5.5 di) than for Figure 1a (-12.5 di). Note207

that at L = 0, the current sheet is thicker in Figure 1a, and the reconnection has pro-208

gressed less, as indicated by the smaller island width on the left and right sides of the209

plot and the smaller values of BM . There is also difference in the structure of BM as M210

is varied (comparing Figure 1a to Figure 1c). So the virtual spacecraft are moving through211

a structure that is really three-dimensional, though the gradient in the M direction is212

significantly smaller than that in the reconnection plane.213

The simulation proton to electron mass ratio was 75. The simulation grid point spac-214

ing was 0.04 di and the separation between the virtual spacecraft is significantly larger,215

0.5 di.216

At each point in time, the magnetic field and current density are determined for217

each of the four virtual spacecraft. As we have done for our previous reconstructions of218

MMS data (Torbert et al., 2020; Denton et al., 2020, 2021), we initially smoothed the219

virtual spacecraft data using a boxcar average over a time interval (or displacement in220

N) tsmooth. The amount of smoothing can make a significant difference in the results.221

In this study, we considered three choices, tsmooth = 0.4, 0.8, and 1.6. Figure 2 shows222

the effects of smoothing on the fields. Note that in figures such as Figure 2 with two-223

part labels, e.g., “(Aa)”, the uppercase letter (here “A”) refers to a row of panels, whereas224

the lowercase letter (here “a”) refers to a column of panels. Broadening of B and broad-225

ening and decrease of the magnitude of J occurs with greater smoothing (progressing226

from Figures 2A to 2D and from Figures 2E to 2H). These effects are minimal for tsmooth =227

0.4, but substantial for tsmooth = 1.6.228

Figure 3 shows the eigenvectors of MDD and Minimum Gradient Analysis (MGA)229

(Shi et al., 2005, 2019). This plot is made for tsmooth = 0.8, but the results of MDD230

and MGA do not depend greatly on the smoothing (not shown). Both MDD and MGA231

use the matrix ∇B calculated from the instantaneous data from four spacecraft (here232

virtual) to find eigenvectors, but MDD calculates the maximum, intermediate, and min-233

imum gradient directions, en, el, and em, respectively, whereas MGA finds the maximum,234

intermediate, and minimum variance (“MVA-like”) directions, el,MGA, em,MGA, and en,MGA,235

respectively. The L, M , and N directions that we used were the original axes of the sim-236

ulation (x, y, and z, respectively, of Liu et al. (2019)). These directions differ at most237

by 2◦ from those calculated using the method of Denton et al. (2018) that makes use of238

the maximum gradient direction for eN and the maximum variance direction for eL.239
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Figure 1. Magnetic field from the simulation of Liu et al. (2019). (a–c) show the simulation

magnetic field at (a) M = −12.5 di at time t = −1.75, (b) M = −9 di at time t = 0, and

(c) M = −5.5 di at time t = 1.75, where M was measured relative to the central M value of

the simulation. Streamlines of the L and N components of the magnetic field in the L-N plane

are shown by the black curves. The color scale shows BM , which is small compared to the re-

connection magnetic field ∼0.25 (in the simulation normalization). The diagonal lines show the

trajectories of virtual spacecraft, with black, red, green, and blue corresponding to spacecraft 1,

2, 3, and 4. The circles, using the same colors, show the positions of the spacecraft at the time

t when the centroid of the spacecraft is at the M values listed above. Thus the spacecraft are

moving in the positive L, N , and M directions relative to the magnetic structure.
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Figure 2. Input data to the reconstruction of simulation data showing the effects of smooth-

ing. The (a) L, (b) M , and (c) N components of (A–D) the magnetic field B, and (E–H) the

product of the current density, J, and the spacecraft spacing dsc. In the simulation, dscJ has the

same units as B. The time intervals for boxcar smoothing of the input data are shown at the

right of panels c; tsmooth = 0 indicates no smoothing (raw data).
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L, M , and N components of the MDD local gradient directions (b) el, (c) em, and (d) en; (e)

magnetic field components averaged over the four virtual spacecraft; and (f–h) MGA eigenvector
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Figure 3e shows the magnetic field averaged over the four spacecraft for context.240

The maximum gradient eigenvalue, equal to the square of the maximum gradient of the241

magnetic field (red curve in Figure 3a), is largest at the current sheet crossing where Bav,L242

(blue curve in Figure 3e) reverses sign; Bav,N reverses sign sooner but close to the time243

of the Bav,L reversal (red curve in Figure 3e), showing that the spacecraft are passing244

close to the X line (Figure 1). Note the asymmetry in Bav,M on the two sides of the cur-245

rent sheet, which is because the spacecraft passed to the right of the X line in Figure 1.246

For much of the time, especially t < 0 and t > 1.6, el, em, and en are close to247

eL, eM , and eN (Figures 3b–3d). For 0.1 < t < 1.5, however, em is significantly dif-248

ferent from eM , with a significant contribution from eL, as has sometimes been observed249

for MMS data (Denton et al., 2016, 2018). This confirms that the simulation is truly three-250

dimensional, although the gradients are smaller in the M direction.251

The correspondence of el,MGA, em,MGA, and en,MGA with eL, eM , and eN is not252

as strong, though for a significant portion of the time, −0.6 < t < 0.7, el,MGA is fairly253

close to eL.254

3.2 Simulation reconstruction cases255

We reconstructed the simulation magnetic field using the variations of method sum-256

marized in Table 2. The set of equations used in the model is indicated in the second257

column of Table 2. “Yes” in the fifth column of Table 2 with the “l-m-n?” header in-258

dicates that the local (time-dependent) MDD l-m-n coordinate system was used for the259

reconstruction. The RQ-3D and Q-3D models are normally calculated in the local l-m-260

n coordinate system, whereas the CQ-3D model is calculated in the fixed L-M -N coor-261

dinate system. With the complete quadratic expansion, the results are independent of262

the coordinate system. The same is true of the linear model, LB-3D, so we could have263

calculated that in the L-M -N coordinate system also. But we can calculate any of these264

models in either coordinate system. Results are always shown in the L-M -N coordinate265

system.266

Cases 1–3 examine differences in results because of different smoothing. Cases 1,267

2, and 3 use the RQ-3D model with tsmooth = 0.4, 0.8, and 1.6, respectively (third col-268

umn of Table 2). In cases 1–3, we use observations at multiple times over an interval tinput =269

tsmooth/2 (fourth column of Table 2). The resolution of the data is 0.05, so the number270

of data points used as input to the model is tinput/0.05+1. For tinput = 0.2, five data271

points are used. Using tinput = tsmooth/2 does not effectively increase the amount of272

smoothing, and yields slightly better reconstructions than are found using fewer obser-273

vation times (not shown).274

Cases 4–6 show results using input data from a single time (Denton et al., 2020),275

so tinput = 0.276

Using the multiple-time input method with a finite time interval, we solve for the277

structure velocity. The velocity is listed in the rightmost 3 columns of Table 2; the no-278

tation “NA” for not applicable indicates that the velocity component is not calculated.279

For cases 1–3 and 7–10, we solve only for the l and n (for RQ-3D or Q-3D models) or280

L and N (for the CQ-3D model) components of the velocity. This choice is indicated in281

the fifth column of Table 2 labeled “vm/M?”, where “No” in that column indicates that282

the m or M component is not calculated. The motivation for not calculating the m or283

M component is that that component of the calculated velocity is not very accurate, as284

we will show below. Although we calculate l and n components of the structure veloc-285

ity for the RQ-3D and Q-3D methods, we convert these to L, M , and N components for286

the purposes of comparing to the known structure velocity. Thus for the RQ-3D or Q-287

3D models, we find a small velocity component in the M direction (e.g., Table 2, case 8),288
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but not for the CQ-3D model that is calculated using an expansion in the L, M , and N289

coordinates (e.g., Table 2, case 10).290

For cases 11-14, we solve for the three-dimensional structure velocity, as indicated291

by “Yes” in the sixth column of Table 2 labeled “vstr,m/M?”.292

Cases 15–18 are like cases 7–10 (multiple times for input, but not calculating the293

m or M velocity component), except that all the models (even RQ-3D and Q-3D) are294

evaluated in the L-M -N coordinate system, as indicated by “No” in the fifth column of295

Table 2 with the “l-m-n?” header. So for the Q-3D model, for instance, the ∂2Bi/∂M
2

296

rather than ∂2Bi/∂m
2 dependence is not included in the model.297

Cases 19–21 show results for 2D versions of the models. Cases 19–21 are evaluated298

in the l-m-n coordinate system as indicated by “No” in the fifth column of Table 2 with299

the “l-m-n?” header. So for these cases, none of the models have any m dependence. Cases 22–300

24 are similar except evaluated in the L-M -N coordinate system, so that none of the mod-301

els have any M dependence.302

The seventh, eighth, and ninth columns of Table 2 show the average (mean) error303

parameter dBerr,av, with304

dBerr =
|Bmod −Bsim|

Bsim,max
, (6)

at three radial distances from the centroid of the spacecraft positions, where Bmod is the305

reconstruction model field, Bsim is the simulation field, and Bsim,max is the maximum306

magnitude of the simulation field in the reconstructed region, which has the shape of a307

cube with L/dsc, M/dsc, and N/dsc varying from -2 to +2. Values of dBerr,av are shown308

for radii of 0.35dsc, 1dsc, and 2dsc from the centroid of the spacecraft within the three-309

dimensional volume. The averaging is done over different locations at the radii specified310

(roughly within a spherical shell of width 0.1 dsc) and over the time interval t = −0.4311

to 0.4. That is the time interval over which the errors are greatest. For a perfect recon-312

struction, the values of dBerr,av would be zero. A value of dBerr,av equal to unity would313

mean that the reconstructed magnetic field is far from the simulation field. The radius314

0.35dsc is less than the distance to the individual spacecraft at 0.61dsc and within the315

spacecraft tetrahedron. The radius of 1dsc is outside the spacecraft tetrahedron, and the316

distance 2dsc is significantly farther away.317

Cases 25–28 in Table 2 are the same as cases 7–10 except that dBerr,av is calculated318

using spatially smoothed simulation data, as described in section 5.7. So the only dif-319

ferent numbers in Table 2 for cases 25–28 are the boldface numbers showing dBerr,av val-320

ues.321

3.3 Reconstruction results considering differences in smoothing322

Figure 4 compares model (solid curves) and the smoothed virtual spacecraft data323

(dotted curves) components of B and dscJ for simulation reconstruction case 2 in Ta-324

ble 2. This case used the RQ-3D model with tsmooth = 0.8 and tinput = 0.4 and solved325

for the three-dimensional structure velocity without calculation of vstr,m. Comparing the326

solid and dotted curves, the data was fairly well described by the model. The agreement327

is least good for JN , but note that the values of JN are very small. Other cases using328

the RQ-3D model show comparable agreement. Much better agreement is achieved with329

the Q-3D and CQ-3D models because of the greater number of parameters in those mod-330

els.331

Agreement of the model and simulation fields at the spacecraft positions, as shown332

in Figure 4, is a consistency check for the model, but it does not show that the recon-333

structions accurately represent the simulation fields away from the spacecraft positions.334
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Figure 4. Comparison of model and virtual spacecraft data. Model (solid) and virtual space-

craft data (dotted) (a–c) magnetic field and (d–f) current density components multiplied by dsc

for simulation reconstruction case 2 in Table 2.
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Figure 5. Reconstruction magnetic field in the L-N plane for reconstruction case 1. (a) Mag-

netic field averaged over the four virtual spacecraft, Bav, versus time showing the times of the

two-dimensional representations of the magnetic field in panels b–q. (b–q) Reconstructed mag-

netic streamlines in the L-N plane (black) and magnetic field into the plane of the page, BM

(color scale). The positions of the virtual spacecraft relative to the spacecraft centroid (origin of

each panel) are indicated by the black, red, green, and blue circles for spacecraft 1, 2, 3, and 4.
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Figure 5 shows the reconstructed magnetic field for case 1 during the time that the335

virtual spacecraft come close to the reconnection X line. The X line does not progress336

with constant velocity past the spacecraft, as it should based on how we created the vir-337

tual spacecraft data. Furthermore, there are unrealistic features (comparing these recon-338

structions to Figure 1), like the island at t = −0.4. The sudden appearance of this is-339

land (movie S1 in the Supplementary Information) indicates inconsistency in the recon-340

structions.341

With tsmooth increased to 0.8 (case 2 in Table 2), there is much more consistency342

in the reconstructions (movie S3 in the Supplementary Information for case 8 equiva-343

lent to case 2). The magnetic structure in the L-N plane is always in relatively good agree-344

ment with that of Figure 1, and the X line of the magnetic structure moves past the space-345

craft with a nearly uniform velocity. While it is possible that the magnetic structure would346

evolve during the time period that the spacecraft moved past the X line for an event ob-347

served by MMS (see, e.g. Denton et al., 2020), one should be cautious in coming to such348

an interpretation because of the inaccuracies in reconstruction. And there should be a349

reasonable physical explanation for the evolving structure. The consistency of the recon-350

structions for case 2 is evidence that supports the validity of these reconstructions.351

Figure 6 compares the reconstruction magnetic field for case 2 with the simulation352

field in the L-N plane, where the simulation field is calculated for each time at the M353

value of the centroid of the spacecraft positions. There are some unrealistic features. For354

instance, the model shows a small island in the upper left of the top panel of Figure 6c355

and the X line stays in the reconstruction domain at late times, whereas the simulated356

fields show that the X line should be outside the field of view (Figure 6f–6h). Also, there357

are significant differences in the structure of BM , as will be discussed below. But over-358

all, the reconstruction does a good job of representing the magnetic structure. And the359

velocity of the X line does appear to be accurate when the X line is closest to the space-360

craft (Figure 6c–6e).361

Now consider the error parameter dBerr,av for cases 1–3 in Table 2. At a radius from362

the spacecraft centroid, R, equal to 0.35dsc and 1dsc, these error parameters are small-363

est for case 1 with the smallest value of tsmooth = 0.4. This is because the reconstruc-364

tion is based on the temporally smoothed fields. The reconstruction yields a smoother365

gradient in the dominant component BL with respect to N than is present in the sim-366

ulation. So the fields within and close to the spacecraft positions are more accurate with367

less smoothing. But with a moderate increase in error at the small values of R, we can368

achieve a big reduction in the errors at R = 2dsc by using tsmooth = 0.8 (case 2) (re-369

duction of dBerr,av from 0.61 to 0.33). Furthermore, as shown in movie S3 and Figure 6,370

case 2 yields reconstructions with consistent magnetic structure which appear to be re-371

alistic. Case 3, with tsmooth = 1.6 has a further decrease in the errors at R = 2dsc at372

the expense of greater error at small radii. But from now on, all results will use the mod-373

erate amount of smoothing, tsmooth = 0.8, with a moderate distortion in the magnetic374

field and current density (Figure 2).375

3.4 Results for different models using a single observation time for in-376

put377

Cases 4–6 in Table 2 show the simulation results using observations at a single time378

(method of Denton et al. (2020)). Except for case 6 using the Q-3D model, the errors379

are comparable to, but somewhat greater than, those of case 2 using the multiple-time380

input method. The errors for the Q-3D model are significantly larger at R = 2dsc (dBerr,av =381

0.55 compared to 0.38 for the RQ-3D model of case 5) because of overfitting.382

One might think that the Q-3D model would do better than the RQ-3D model within383

the spacecraft tetrahedron if there were less smoothing, because the Q-3D model, sim-384

ilar to the method of Torbert et al. (2020), almost exactly fits the model to the space-385
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Figure 6. Comparison of reconstruction and simulation magnetic field in the L-N plane for

simulation reconstruction case 2. (a) Magnetic field averaged over the four virtual spacecraft as

in Figure 5. (b–i) In each pair of vertically arranged panels, reconstructed (top, with time label)

and simulation (bottom, labeled “simulation”) magnetic streamlines in the L-N plane (black)

and magnetic field into the plane of the page, BM (color scale).

–16–



manuscript submitted to JGR: Space Physics

craft observations at the spacecraft locations (Denton et al., 2020). Using tsmooth = 0.4386

and tinput = 0.2, the Q-3D model does yield a small value of dBerr,av = 0.092 inside387

the tetrahedron at R = 0.35dsc (case not listed in Table 2). But the RQ-3D model yields388

almost the same value, 0.099 (case 1 in Table 2). And the Q-3D model with tsmooth =389

0.4 and tinput = 0.2 yields values of dBerr,av that are significantly larger than those of390

the RQ-3D model at both R = 1dsc and 2dsc, 0.21, and 0.95, respectively, compared391

to 0.14 and 0.61 for case 1.392

3.5 Results for different models using multiple observation times for in-393

put394

Cases 7–10 show results for the multiple-time input method but using different mod-395

els. Note that case 8 is the same as case 2, but repeated in Table 2 for easier compar-396

ison to cases 7, 9, and 10. The errors are slightly smallest for case 8 (= case 2) for the397

RQ-3D model, though there is not a great difference in results as the model is varied.398

Figure 7 is like Figure 6, except for case 10 for the complete quadratic CQ-3D model.399

See also movie S5 for case 10 in the supplementary information. Figure 7 shows that it400

is possible to use a complete expansion by making use of the greater number of obser-401

vations from a finite time interval.402

In some respects, the reconstructions in the L-N plane shown in Figure 7 for the403

CQ-3D model are more realistic than those in Figure 6 for the RQ-3D model. For in-404

stance, note that the reconstructed fields like the simulation fields in Figure 7c (top and405

bottom panels, respectively) do not include an O point and that the X line is to the left406

of the field-of-view for both reconstructed and simulation fields in Figure 7h. The CQ-407

3D model also has the advantage that no rotations are required.408

The errors for case 10 as indicated by dBerr,av are somewhat greater than those for409

the RQ-3D model (case 8), but not much greater. As noted above, this is in contrast to410

the results using a single time of observation as input to the model, for which the errors411

at R = 2dsc for the Q-3D model, omitting only the ∂2Bi/∂m
2 terms, were significantly412

greater than those of the RQ-3D model (comparing cases 5 and 6 in Table 2). Simply413

put, a model with more parameters requires more input data.414

To get a better understanding of the errors from the model, we show in Figure 8415

2D cuts through 3D space of BL, BM , and BN at t = −0.3, corresponding to Figure 6d.416

The reconstruction model fields are shown in Figures 8a, 8d, and 8g, the simulation fields417

are shown in Figures 8b, 8e, and 8h, and the model fields minus the simulation fields are418

shown in Figures 8c, 8f, and 8i. Figures 8j show the error parameter dBerr. The color419

scale in each panel can be interpreted using the color bars at the bottom of the plot. Note420

that the values of BL are much larger than those of BM and BN , as indicated by the421

scales on the color bars.422

Consider first the L-N cuts in Figure 8B. Figures 8Ba–8Bc show that the model423

preserves the simulation gradient of BL with respect to N , but the model gradient is broader.424

The simulation gradient of BN with respect to L is not so large (Figure 8Bh), and at425

N = 0, the model BN (Figure 8Bh) agrees with the simulation BN (Figure 8Bg). But426

BN varies too much with respect to N(Figure 8Bg). This may be related to the slight427

variation of the larger BL with respect to L, so that BN varies with N so as to make ∇·428

B equal to zero. The fact that BL = BN = 0 (white color in Figure 8) occurs at the429

same values of N and L, respectively, for both model and simulation (Figures 8Ba, 8Bb,430

8Bg, and 8Bh), indicates that the model correctly predicts the position of the X line, as431

was already shown in Figure 6d.432

Figures 8Bd and 8Be show a big difference between the model and simulation BM433

in the L-N plane. The model does not correctly represent the quadrupolar structure.434

This is understandable considering that the virtual spacecraft passed under the X line435
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Figure 7. Comparison of reconstruction and simulation magnetic field in the L-N plane for

simulation reconstruction case 10. This plot is like Figure 6, except for case 10.
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Figure 8. Two dimensional cuts of the model and simulation magnetic field for reconstruction

case 2 in Table 2. In rows A–C, 2D cuts in the (A) L-M (at N = 0), (B) L-N (at M = 0), and

(C) M -N (at L = 0) planes of various quantities. In columns a–c, the L component of the mag-

netic field of (a) the reconstruction model, (b) the simulation field, and (c) the model field minus

the simulation field, dBL. Columns d–f and g–i are like a–c, except that the components plot-

ted are (d–f) the M components and (h–i) the N components. In column j, the error parameter

dBerr defined in the text is plotted.
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and did not sample the upper left quadrant of Figure 8Be. Because of this, the model436

has a large N dependence in the M -N plane (Figure 8Cd), whereas the simulation in437

that plane has BM approximately equal to zero (Figure 8Ce).438

The model also has significantly greater M dependence than the simulation. And439

the error parameter dBerr (Figures 8j) is nonzero even close to the centroid of the space-440

craft positions (origin of panels in Figure 8j). These results suggest that reconstruction441

results should be interpreted cautiously, understanding that there may be significant er-442

rors, particularly involving dependence that is not well sampled by the spacecraft.443

Figures S2–S5 in the Supplementary Information compare reconstruction and sim-444

ulation fields for cases 7–10, respectively, using the format of Figure 6. Similarly, movies S2–445

S5 show the time variation of the reconstruction magnetic field for cases 7–10. Despite446

the differences in the error parameter dBerr,av shown in Table 2, all of the models yield447

reasonable reconstruction results in the L-N plane.448

3.6 Velocity from the reconstruction449

As previously mentioned, the exact structure velocity (relative to the spacecraft)450

used to create the virtual spacecraft data was (vstr,L,vstr,M ,vstr,N ) = (-3,-2,-1). For each451

case in Table 2 using the multiple-time input method (all cases other than 4–6), the method452

yields an estimate of the structure velocity (last 3 columns of Table 2).453

Figure 9 shows the inferred velocity from the reconstruction (solid curves) versus454

time for case 2. We also show the velocity from the Spatio-Temporal Difference (STD)455

method Shi et al. (2006) (dotted curves). Clearly the velocities from the reconstruction456

and from STD are very similar.457

For STD, we only calculated components of the velocity in the local l and m di-458

rections. For cases 1–3 and 7–10, we also assumed that the structure velocity only had459

l and n (or L and N for the CQ-3D model) components. Therefore the value of vstr,m460

in Figure 9b is zero (dotted and solid curves). But the velocity components in the M461

direction are nonzero because el sometimes has a significant M component, as shown462

in Figure 3c. Nevertheless, the vstr,M component cannot be accurate since it does not463

include a contribution from vstr,m, and eM is closer to em than to el or en.464

Because of the large time variation of the calculated velocity, we chose to list me-465

dian velocity values over the entire time interval -1.75 to 1.75 in Table 2. For the rea-466

son mentioned in the last paragraph, the values of vstr,M in the second to the last col-467

umn of Table 2 are either inaccurate or not applicable for cases 1–3 and 7–10. The ex-468

act value of vstr,L is -3, but all the estimates for cases 1–3 and 7–10 yield values between469

-2 and -2.3. Looking at Figure 9d, the most inaccurate values of vstr,L occur around t =470

0.6, where eL has a significant m component (Figure 3b), whereas more accurate val-471

ues of vstr,L (especially those from STD) occur at t = −0.4, 0, and 1.7, where the m472

component of eL is nearly zero.473

Another possible cause of inaccuracy might be related to large nonlinearity of the474

fields. The most inaccurate values of vstr,L in Figure 9d occur at t = ±0.5, where the475

variation in J measured by the MMS spacecraft is greatest (Figure 4d–4f).476

The estimates for vstr,N are more accurate. The exact value should be -1, and the477

estimates range between -0.85 and -0.98. It is not surprising that the most accurate com-478

ponent calculated is vstr,N , because the gradient in the N direction is the best measured479

(Denton et al., 2021).480

Cases 11–14 in Table 2 are like cases 7–10, except that the reconstruction method481

allows the structure velocity to have components in all three directions (as indicated by482

“Yes” in the sixth column of Table 2 labeled “vstr,m/M”). The resulting velocities are483
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Figure 9. Inferred structure velocity for simulation reconstruction case 2. Velocity compo-

nents in (a–c) the local MDD l-m-n coordinate system and (d–f) the global L-M -N coordinate

system. The dotted curves show the velocity from the Spatio-Temporal Difference (STD) method

(Shi et al., 2006) and the solid curves show the velocity that optimized the fit of reconstruc-

tion model and simulation values at the spacecraft locations. The exact values, vstr,L = −3,

vstr,M = −2, and vstr,N = −1, are shown as the blue, green, and red horizontal solid lines in

panels d, e, and f, respectively. For case 2, we did not calculate the m component of velocity for

reconstruction or for STD, so vstr,M is inaccurate.
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totally inaccurate for the low order methods, LB-3D and RQ-3D (cases 11 and 12), as484

indicated by the huge error bars (standard deviation) for the velocity in the last three485

columns of Table 2. The higher order methods, Q-3D and CQ-3D (cases 13–14) have im-486

proved values for vstr,L, but the values for vstr,M are not at all accurate (they should be487

-2).488

3.7 Other variations of method489

In cases 15–18, we calculate all the polynomial expansions in the L-M -N coordi-490

nate system rather than l-m-n. That is, in expansions such as equations (2–4), we sub-491

stitute L, M , and N for l, m, and n. This choice is indicated by “No” in the column of492

Table 2 labeled “l-m-n?”. In some cases, the results are very slightly improved (compar-493

ing, for instance, the errors at R = 2dsc for cases 16, with dBerr = 0.32, and case 8,494

with dBerr = 0.33. The negative aspect of this approach is that one needs to be con-495

fident that the L-M -N coordinate system is appropriate. Knowing the best coordinate496

system is easy for this simulation, but difficult for reconnection events in space (Denton497

et al., 2018).498

Cases 19-21 and 22–24 show results for 2D versions of the models, with cases 19–499

21 evaluated in the l-m-n coordinate system, and cases 22-24 evaluated in the L-M -N500

coordinate system. Using the l-m-n coordinate system (cases 19-21), the errors are not501

reduced compared to those using the 3D models (comparing cases 19–21 to cases 7–9).502

Cases 22–24, 2D models evaluated in the L-M -N coordinate system, have errors503

that are among the lowest in Table 2. But again, use of these models would require con-504

fidence about the appropriate L-M -N coordinate system.505

Taking account that larger times for smoothing result in larger errors inside the506

tetrahedron, because of the broadening of the gradients, we also tried doing reconstruc-507

tions with small values of tsmooth and large values of tinput. These calculations do have508

reduced errors within the spacecraft tetrahedron, but at the expense of larger errors at509

2dsc and less consistency in the reconstructed fields with respect to time.510

4 Reconstruction of MMS events511

4.1 Reconstruction of 27 August, 2018, MMS event512

Now that we have tested our reconstructions by comparing to three-dimensional513

simulation data, we use the multiple-time input method to reconstruct the magnetic struc-514

ture for the magnetotail reconnection event of 27 August, 2018, described by Li et al.515

(2021). This event occurred at 11:41 UT at (X,Y,Z) = (-21.1, 11.0, 7.5) Earth radii (RE)516

in Geocentric Solar Ecliptic (GSE) coordinates, and the spacecraft were in a tetrahedron517

formation with 34 km average separation between the spacecraft (1.4 de, where de ≡518

c/ωpe =
√

me

nee2µ0
is the electron inertial length). We used Li et al.’s coordinate sys-519

tem, (L; M; N) = (0.97, -0.17, -0.17; 0.20, 0.96, 0.19; 0.14, -0.22, 0.97) in GSE. Special520

processing was required to get the current density from the FPI instrument. Because of521

low-energy photoelectron contamination to the electron data, we computed electron par-522

tial moments by integrating energies over 50 eV (Gershman et al., 2017). Our purpose523

here is not to describe this event in detail, but rather just to demonstrate our reconstruc-524

tion technique. For details about this event, see the description of Li et al. (2021).525

We now reconstruct the fields around the MMS spacecraft with parameters sim-526

ilar to that of simulation reconstruction case 2. We chose tsmooth = 0.5 s, and tinput =527

0.24 s (25 data points at 0.01 s resolution). We used the RQ-3D model and allowed the528

magnetic structure to have only l and n velocity components. The reconstructions in the529

L-N plane are shown in Figure 10. Li et al.’s (2021) interpretation of the data for this530
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Figure 10. Reconstruction of the magnetic field for the magnetotail reconnection event ob-

served by MMS and described by Li et al. (2021). This plot has the same format as Figure 5.

The time is measured in s after 11:41 UT on 27 August, 2018.
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event was that the MMS spacecraft passed mostly in the L direction right through the531

X line (see their Figure 1k) with closest approach by MMS1. This is exactly what we532

see in Figure 10. Note that in Figure 10k, MMS1 is very close to the X line. See movie S6533

in the Supplementary Information for more detailed time dependence.534

The inferred velocity for this event is shown in Figure 11. There are oscillations535

in the L and N components, but these are most often negative with average values of536

vL = −107 km/s and vN = −6.5 km/s. At some times, especially between t = 24.6537

and 25.4 and between t = 25.8 and 26.3, em was almost exactly equal to eM (not shown).538

At other times em had contributions from both eM and eL. Therefore vM cannot be de-539

termined, and vL will not be exactly accurate (see subsection 3.6). The multi-time in-540

put method using the complete velocity (including vm) could not be used in this case541

because the solution of the equations was numerically ill determined.542

We saw in section 3.3 that the amount of smoothing could make a big difference543

in reconstruction results. Figure 12 shows that the raw magnetic field data for the MMS544

event exhibited larger fluctuations than the virtual spacecraft data for the simulation545

(Figure 2). Smoothing of the MMS data with tsmooth = 0.5 s smoothed out those mag-546

netic fluctuations, but the smoothing of the current density (Figure 12D as compared547

to Figure 12C) seems to be less than the smoothing that we recommended for the sim-548

ulation data (Figure 2G as compared to Figure 2E).549

The 27 August 2018 event was observed after the failure of two of the four FPI in-550

strument sensors on MMS4, which occurred on 7 June 2018 at 12:43 UT. Because of that551

failure, the current density cannot be reliably calculated for MMS4, reducing the amount552

of input data. But because we used multiple observation times for input, and also be-553

cause we used the RQ-3D model that has a reduced number of parameters, we were able554

to do the reconstruction without the current density from MMS4 (as would not be pos-555

sible for the Q-3D or Torbert et al. (2020) models using the fields for a single observa-556

tion time as input).557

4.2 Reconstruction of 7 December, 2016, MMS event558

Now we use the multiple-time input method to reconstruct the magnetic field for559

the 7 December 2016 magnetopause crossing described by Fuselier et al. (2019). This560

event occurred at 05:19 UT at (X,Y,Z) = (9.6, 0.7, -0.5) Earth radii (RE) in Geocentric561

Solar Ecliptic (GSE) coordinates, and the spacecraft were in a tetrahedron formation with562

6.8 km average separation between the spacecraft, equal to 0.14 di using the magnetosheath563

density (Haaland et al., 2019). We used the coordinate system (L; M; N) = ( 0.29 -0.37564

0.88 ; -0.08 -0.93 -0.36 ; 0.95 0.03 -0.30 ), determined using the method of Denton et al.565

(2018).566

We again use tsmooth = 0.5 s, and tinput = 0.24 s (9 data points at 0.03 s resolu-567

tion), allowing the magnetic structure to have only l and n velocity components. The568

reconstructions in the L-N plane are shown in Figure 13. Note that here the color scale569

shows BL rather than BM , because that helps identify the current sheet crossing and570

because BM was fairly constant (Figure 13a, green curve). Fuselier et al.’s interpreta-571

tion was that the MMS spacecraft were far (many RE) from the X line, and the purpose572

of this example is to show that we do not always see X or O points in our reconstruc-573

tions. Instead, the plot shows that the magnetic structure moves downward in Figures 13b–574

13g, so that relative to that structure, the MMS spacecraft pass from the magnetosphere575

(red color in Figures 13b–13e indicating positive BL, where eL is approximately in the576

GSE Z direction) through the current sheet (Figures 13i–13k) and into the magnetosheath577

(blue color in Figures 13n–13q indicating negative BL). See movie S7 in the Supplemen-578

tary Information for more detailed time dependence.579
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Figure 11. Inferred structure velocity for the MMS reconnection event observed on 27 Au-

gust, 2018, using the same format as Figure 9.
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Figure 12. Input data to the reconstruction of data for MMS event on 27 August, 2018,

showing the effects of the tsmooth = 0.5 s smoothing used for the reconstruction. The (a) L, (b)

M , and (c) N components of (A–B) the magnetic field B, and (C–D) µ0J in units of nT/dsc. (A

and C) show the fields for the raw data without any smoothing, (B and D) show the fields with a

boxcar smoothing time of tsmooth = 0.5 s.
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Figure 13. Reconstruction of the magnetic field for the magnetopause crossing event observed

by MMS and described by Fuselier et al. (2019). This plot has the same format as Figure 5, ex-

cept that the color shows BL rather than BM . The time is measured in s after 15:19 UT on 7

December, 2016.
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The reconstruction yields average values of vL = −32 km/s and vN = −19 km/s.580

But although the direction of the neglected velocity component, em, is usually closer to581

eM than to eL or eN , em always has a significant L component, which may lead to sig-582

nificant error in vL.583

There are some features in Figure 13 that are probably unrealistic, such as the down-584

ward curvature of the magnetic field in the L-N plane near the bottom of Figure 13g and585

the bumpiness of the magnetic field at the bottom edge of Figure 13m. But overall, Fig-586

ures 13b–13q show consistent motion through a rotational discontinuity, as expected from587

the analysis of Fuselier et al. (2019).588

5 Discussion589

5.1 Test using simulation fields590

We tested our reconstruction model using data from a simulation of magnetic re-591

connection (Liu et al., 2019). A key feature of our simulation data was that it was gen-592

uinely three-dimensional, as shown in Figure 1. Tests of reconstruction results using two-593

dimensional simulations benefit from the severe constraint of that assumption and may594

have much smaller errors.595

We introduced a new variation of our polynomial reconstruction model that allows596

us to use multiple observation times as input. With the increased amount of data, we597

were able to use a complete quadratic expansion (CQ-3D model of equations( 1)) and598

also get an estimate of the magnetic structure velocity (Figure 9), yielding values sim-599

ilar to those from the Spatio-Temporal Difference (STD) method (Shi et al., 2006, 2019).600

But we also tested other variations of the reconstruction model with reduced sets601

of expansion terms (section 2 with Table 1). With a reduced number of expansion co-602

efficients, we were able to test the single-time input method of Denton et al. (2020) and603

compare those results to those using multiple input times. In order to compare the re-604

sults from different methods, we introduced a measure of the average vector difference605

between the simulation and reconstructed field, dB
¯err,av (equation (6)), and listed val-606

ues for this quantity in Table 2 at three different radii R from the centroid of the vir-607

tual spacecraft used to create input data for the reconstruction.608

5.2 Effects of smoothing609

Using the multiple-time input method, we first examined the effect of smoothing610

the input data (Figure 2). With a minimal amount of boxcar smoothing (tsmooth = 0.4,611

case 1 in Table 2), the errors were small (dB
¯err,av ∼ 0.1) close to the centroid of the space-612

craft at R = 0.35dsc and 1 dsc, but very large (dB
¯err,av ∼ 0.6) farther away from the613

spacecraft at R = 2dsc. In this case, many of the reconstructed magnetic field patterns614

were inconsistent with the simulation fields (Figure 5 and movie S1). With a moderate615

amount of smoothing (tsmooth = 0.8, case 2 in Table 2), a substantial decrease in the616

errors at R = 2dsc was achieved (dB
¯err,av ∼ 0.33 instead of 0.6) at the expense of a617

small increase in the errors at smaller R (dB
¯err,av = 0.165). And with tsmooth = 0.8,618

the reconstructed fields were much more consistent with the simulation (Figure 4 and619

movie S3).620

One can well question how one would know that reconstructed fields are reason-621

able for events observed in space. In that case, we are looking for several characteristics.622

First of all, the reconstructed fields should roughly match the observed fields at the space-623

craft location, and the reconstructed field at the centroid of the spacecraft locations should624

be similar (though not necessarily exactly the same) to the field values averaged over the625

spacecraft (Figure 4). But this is a necessary, but not sufficient condition for validity of626

the reconstructions. The second thing we look for is for consistency of the reconstruc-627
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tions from one time to the next (like comparing the reconstructed magnetic field in the628

panels of Figure 5, Figure 6, or movies S1 and S3). Of course there may be some time629

variation in the magnetic structure (Denton et al., 2020), but we do not expect sudden630

changes in the large-scale structure of the magnetic field on very small timescales. Fur-631

thermore, we can see if the observed dynamics are reasonable. We don’t normally ex-632

pect, for instance, elongated islands to reconnect along their axis of elongation, because633

that would not be energetically favorable (would be working against the field line bend-634

ing).635

Using these considerations, we would probably consider the reconstructions with636

tsmooth = 0.8 to be more realistic than those with tsmooth = 0.4, even if we didn’t know637

in advance what the reconstructed field should look like. But we must keep in mind that638

with smoothing of tsmooth = 0.8 we will not be resolving changes in magnetic structure639

at smaller time scales.640

5.3 Results for multiple input times versus single input times641

Use of multiple input times over a time span tinput = 0.4 resulted in somewhat642

smaller errors than the single-time input method (tinput = 0), comparing dB
¯err,av at R =643

2dsc for case 2 to that of case 5 in Table 2 (0.33 compared to 0.38 respectively). Errors644

for the single-time input Q-3D model (case 6 in Table 2) were much larger at R = 2dsc645

(dB
¯err,av = 0.55), due to the problem of overfitting mentioned in section 2. Using the646

single-time input method, the smallest errors at R = 2dsc were for the linear model LB-647

3D (case 4 in Table 2) (with dB
¯err,av = 0.36 compared to 0.38 for the RQ-3D model).648

This shows that the linear model is not a bad choice for determining, for instance, the649

position of an X line (Fu et al., 2015, 2016).650

5.4 Results for different models651

Based on the errors in Table 2, we are inclined to recommend the method of case 2652

(same as case 8), which used the multiple-time input method with tinput = tsmooth/2,653

employed the RQ-3D model, and calculated a velocity with only components in the l and654

n directions. But in most of the cases, the variations in the errors were small. The only655

cases with very large errors were the ones already mentioned, small tsmooth and use of656

the Q-3D model with data from only a single observation time (tinput = 0). The Q-3D657

model could yield reasonably good results using data from a span of time. The Q-3D model658

had slightly smaller dB
¯err,av than the CQ-3D model (dB

¯err,av = 0.15 and 0.36 at R =659

1dsc and R = 2dsc for case 9 in Table 2, compared to 0.16 and 0.4 for case 10, respec-660

tively), almost certainly because the ∂2Bi/∂m
2 terms really should be small, as suggested661

by results shown by Denton et al. (2020). But even the CQ-3D model yielded fairly ac-662

curate reconstructions using multiple input times (Figure 7).663

5.5 Velocity calculation664

When we solved for all three components of structure velocity, vstr, including the665

m or M component (cases 11-14 in Table 2), the m component was sometimes wildly666

inaccurate for the lower order LB-3D and RQ-3D methods (cases 11 and 12 respectively),667

as indicated by enormous error bars for all three velocity components in Table 2. Us-668

ing the higher order Q-3D and CQ-3D methods (cases 13 and 14 respectively), it was669

possible to solve for all three components of the structure velocity. And in that case, the670

calculated L component of the velocity (vstr,L in Table 2) was slightly closer to the cor-671

rect value of -3 than if the m or M component was not calculated (comparing vstr,L =672

−2.6 for case 13 versus -2.3 for case 9).673

However, the M component of the calculated structure velocity was never close to674

the correct value of -2, no matter how we calculated it (vstr,M in Table 2). This is yet675
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another indication that the minimum gradient dependence cannot be accurately calcu-676

lated when the minimum gradient is small (see results by Denton et al., 2021).677

This suggests that one possible way to get a more accurate L component of vstr,L678

would be to calculate a three-dimensional velocity, but then zero out the M component.679

The downside to that approach would be that the errors dBerr,av are somewhat larger680

for the high order Q-3D and CQ-3D methods than for the RQ-3D method (comparing681

cases 13 and 14 to case 8 in Table 2).682

Using the median velocity components over the time modeled, all of the calcula-683

tions of vstr,N were reasonably close to the correct value of -1 (last column in Table 2).684

That again shows that the structure and inferred velocity are more accurate in the di-685

rection of the largest gradient.686

5.6 Other variations of method687

In the case of the simulation data, the M dependence was small (Figures 8b and 8h).688

A slight reduction in errors of the reconstructed fields was achieved by calculating the689

models in the L-M -N coordinates rather than the l-m-n coordinates (cases 15–18 and 22-690

24) and/or by dropping the m or M variation to get a 2D model (cases 19–24). But in691

order to make these simplifications, one would need to be very confident that the L-M -692

N coordinate system was optimal and that the structure really was approximately 2D.693

Although we are inclined to recommend the RQ-3D model, the errors in Table 2694

were only slightly worse for the linear LB-3D model (similar to the FOTE method of Fu695

et al. (2015, 2016)). The use of quadratic terms can sometimes lead to large first deriva-696

tives, whereas use of the linear equations severely constrains the solution. With linear697

equations, it would not be possible to reconstruct an X point and O point in the same698

field of view, as was found by Denton et al. (2020). And it’s possible that there could699

be situations with large second derivatives. But if the third derivatives are large, none700

of these methods will be adequate.701

5.7 Results for smoothed simulation data702

Reconstruction cases 1–24 all compare the fields from the reconstruction using vir-703

tual spacecraft data that has been temporally smoothed to the unsmoothed simulation704

fields. This is useful for judging to what extent the reconstructed fields match the real705

fields around the spacecraft at one particular time. But perhaps the reconstruction would706

better describe simulation fields that have been smoothed in a similar way to the vir-707

tual spacecraft data. One could rotate the fields to orient them along the path of the space-708

craft, and smooth in that direction. Here we approximate smoothing along that path by709

smoothing the simulation data with a boxcar average over 0.8 (di) in the N direction,710

1.6 in the M direction, and 2.4 in the L direction. That is roughly consistent with our711

smoothing of the virtual spacecraft data with tsmooth = 0.8 (equivalent to distance in712

the N direction) and our virtual spacecraft velocity of (vsc,L,vsc,M ,vsc,N ) = (3,2,1).713

With this smoothing of the simulation data before calculating the error parame-714

ters, we find the results listed for cases 25–28 in Table 2, which are otherwise like cases 7–715

10. Calculated in this way, dBerr,av is much smaller, especially for the RQ-3D and Q-716

3D models. For case 26 (RQ-3D), dBerr,av = 0.062, 0.075, and 0.31 at R = 0.35dsc,717

1dsc, and 2dsc, respectively. That is, the RQ-3D model does an excellent job modeling718

the smoothed simulation magnetic field within the spacecraft centroid and at a distance719

of 1dsc. The agreement is not as good at 2dsc, but appears to be about the best that we720

can get using our current polynomial reconstruction method.721
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5.8 Results for MMS events722

In sections 4.1 and 4.2 we show reconstructions using our multiple-time input method723

with the RQ-3D model for two events observed by the MMS spacecraft. In the first case,724

our method reconstructs an X line very close to MMS1 (Figure 10), as was inferred from725

the spacecraft observations (Li et al., 2021). This event occurred on 27 August 2018 event,726

after the partial failure of the FPI instrument on MMS4, which occurred 7 June 2018.727

Our new version of the reconstruction code includes the capability of analyzing such events728

(see the acknowledgments section for a link to the code).729

In order to show that we do not always see an X line in our reconstructions, we also730

showed a magnetopause crossing on 7 December 2016 for which there was a rotational731

discontinuity (Fuselier et al., 2019)732

5.9 Conclusions and future directions733

The models that we considered are based on a polynomial or Taylor expansion of734

the magnetic field, and are summarized in Table 1. Polynomial expansion is one tool for735

determining the structure of the magnetic field and its velocity relative to the spacecraft,736

but readers should keep in mind that Grad-Shafranov-type reconstruction (Hasegawa737

et al., 2019, and references therein) can be a complementary technique. Polynomial ex-738

pansion has fewer assumptions and provides time-dependent variation, but Grad-Shafranov-739

type reconstruction has a larger set of data contributing to the calculation, which can740

be helpful for constraining the results.741

We must do some smoothing of the input data in order to get physically reason-742

able results for the magnetic structure and its motion (section 3.3). With such smooth-743

ing, we are effectively modeling spatially smoothed fields, as can be seen by comparing744

dBerr,av for cases 25–28 (calculated using spatially smoothed fields) to those of cases 7-745

10 (calculated using the raw fields) in Table 2. So it should be kept in mind that the re-746

constructions using temporally smoothed input do not model the exact field at any one747

time, even within the spacecraft tetrahedron.748

We have shown that our new method using multiple-time input results in some re-749

duction in the error of the reconstructed fields, especially at large distances from the cen-750

troid of the spacecraft. This reduction is small for the LB-3D and RQ-3D models (com-751

paring cases 7–8 to cases 4–5 in Table 2), but is quite large for the more complete Q-3D752

expansion (comparing case 9, with dBerr,av = 0.36 at R = 2dsc to case 6, with dBerr,av =753

0.55 at R = 2dsc). This makes sense because for single-time input, the Q-3D model had754

only one less parameter than the number of input quantities, so that overfitting was a755

big problem for that model.756

One might think that with multiple-time input, we could use a cubic model. But757

the problem is that the spacecraft are moving approximately in a single direction dur-758

ing the time span of the input. So there’s not enough information for a cubic model in759

the directions orthogonal to the spacecraft motion. One possible extension of this method760

is to expand in coordinates aligned with the spacecraft motion. Then a cubic or even more761

complex expansion could be used in that direction, and a quadratic expansion in the di-762

rections orthogonal to the spacecraft motion. As currently implemented, our estimate763

of the structure velocity from the reconstruction was not significantly better than that764

from the STD method Shi et al. (2006) (Figure 9). But we might be able to improve the765

velocity calculation using a higher order expansion along the spacecraft path, because766

that would allow us to use a significantly larger time span for input.767

Currently our reconstruction code solves at all times for either just two components768

of the structure velocity (omitting the m or M component) or for all three components769

of the structure velocity. Another option would be to solve for all three components when770
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Figure 14. Two dimensional cuts of the model and simulation magnetic field, like in Figure 8,

except for reconstruction case 3 in Table 2.

the minimum gradient eigenvalue is above a certain threshold. Another possible varia-771

tion would be to assume that the velocity of the magnetic structure is more constant than772

we find using our new method or STD (Shi et al., 2006, 2019), and use a fixed velocity773

based on averaging STD or the reconstruction velocity over an interval of time.774

While our reconstruction technique can yield useful visualizations of the magnetic775

structure, our comparison to simulation data shows that there can be substantial dif-776

ferences between the simulation and model fields (Figure 8). This means that one should777

be very careful when interpreting and using detailed features of reconstructed fields, like778

to trace particles. Some unrealistic features can be improved with more smoothing. Fig-779

ure 14 is like Figure 8, except now for case 3 in Table 2 with tsmooth = 1.6. Note that780

Figure 14Bh is much closer to Figure 14Bg than is Figure 8Bh to Figure 8Bg. The down-781

sides to more smoothing are that effectively more spatially smoothed fields are being rep-782

resented (subsection 5.7) and more time dependent behavior is excluded.783

A model with fewer parameters is less likely to produce wild unphysical oscillations784

in the reconstructed fields. If one is inclined to use a more complete quadratic expan-785

sion, our results indicate that results are improved by dropping the ∂2Bi/∂m
2 terms,786

that is, by using the Q-3D model rather than the CQ-3D model (comparing dBerr,av val-787

ues for case 9 or 27 to those of case 10 or 28 in Table 2). A further reduction in the er-788

rors is achieved by using the RQ-3D model (comparing dBerr,av values for case 8 or 26789

to those of case 9 or 27 in Table 2). For instance, at R = 2dsc outside the spacecraft790

tetrahedron, the reconstructed fields from the RQ-3D model had dBerr,av calculated us-791

ing the spatially smoothed fields equal to dBerr,av = 0.31 whereas dBerr,av for the Q-792

3D model was 0.35. The linear LB-3D model is even less likely to produce wild oscilla-793

tions, since it can only represent linear gradients, and could be useful for some purposes.794

But the RQ-3D model had smaller errors than the linear LB-3D model, suggesting per-795

haps that the RQ-3D model is often optimal.796
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6 Open Research Data Availability797

The new version of our Matlab reconstruction code, IDL programs for download-798

ing the MMS data, and instructions for running them are available in a Zenodo repos-799

itory at doi:10.5281/zenodo.6395045, along with data from the particle in cell simula-800

tion and a draft of the paper and Supplementary Information. The Supplementary In-801

formation includes plots like Figure 6 and movies showing the reconstructions in the L-802

N and M -N planes for simulation reconstruction cases 1 and 7–10. Movies are also in-803

cluded for the two MMS events. All MMS data are available on-line at https://lasp.colorado.edu/mms/sdc/public/links/.804

Appendix A Model equations for µ0J and ∇ · B805

Taking the curl of equations (1), the equations for µ0J for the CQ-3D model are806

µ0JL =
∂BN

∂M
+

∂2BN

∂L∂M
L+

∂2BN

∂M2
M +

∂2BN

∂M∂N
N

−
(
∂BM

∂N
+

∂2BM

∂L∂N
L+

∂2BM

∂M∂N
M +

∂2BM

∂N2
N

)
, (A1)

µ0JM =
∂BL

∂N
+

∂2BL

∂L∂N
L+

∂2BL

∂M∂N
M +

∂2BL

∂N2
N

−
(
∂BN

∂L
+

∂2BN

∂L2
L+

∂2BN

∂L∂M
M +

∂2BN

∂L∂N
N

)
, (A2)

µ0JN =
∂BM

∂L
+

∂2BM

∂L2
L+

∂2BM

∂L∂M
M +

∂2BM

∂L∂N
N

−
(
∂BL

∂M
+

∂2BL

∂L∂M
L+

∂2BL

∂M2
M +

∂2BL

∂M∂N
N

)
. (A3)

The reduced models are usually expressed in terms of l, m, and n rather than L, M , and807

N , and derivatives neglected in the reduced models (Table 1) would not be included in808

the calculation of µ0J. For instance, the Q-3D model does not include terms with ∂2/∂m2.809

Taking the divergence of equations (1), we get the following four equations.810

0 =
∂BL

∂L
+

∂BM

∂M
+

∂BN

∂N
, (A4)

0 =
∂2BL

∂L2
+

∂2BM

∂L∂M
+

∂2BN

∂L∂N
, (A5)

0 =
∂2BL

∂L∂M
+

∂2BM

∂M2
+

∂2BN

∂M∂N
, (A6)

0 =
∂2BL

∂L∂N
+

∂2BM

∂M∂N
+

∂2BN

∂N2
, (A7)

where equations (A5), (A6), and (A7) have been divided respectively by L, M , and N .811

Only (A4) is useful for the LB-3D and RQ-3D models, since all the terms in the other812

equations are neglected.813
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