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Scientific Significance Statement: The North Atlantic spring bloom helps fuel the marine food 9 
web, impacts fisheries recruitment, contributes to carbon export, and is predicted to change with 10 
climate warming. Understanding interannual bloom variability is thus of central oceanographic 11 
importance. This study provides a framework for quantifying interannual bloom variability via 12 
statistical extreme value theory. We characterize the spatial distribution of extreme value 13 
parameters using satellite chlorophyll observations and test whether the distribution of 14 
chlorophyll extremes has changed over time in relation to trends in background chlorophyll 15 
levels and sea surface temperature.  16 
 17 
Abstract 18 
 19 
The North Atlantic spring bloom depends on a confluence of environmental factors that drive 20 
transient periods of exponential phytoplankton growth and interannual variability in bloom 21 
magnitude. We analyze interannual bloom variability in the North Atlantic via extreme value 22 
theory where the Generalized Extreme Value Distribution (GEVD) is fitted spatially to annual 23 
maxima of satellite-measured surface chlorophyll. We find excellent agreement between the 24 
observed distribution of interannual bloom maxima and those predicted from the GEVD. The 25 
spatial distribution of fitted GEVD parameters closely follows basin bathymetry where the 26 
largest extremes and heaviest distribution tails are found on the continental shelves and slopes. 27 
Trend analyses suggest weak evidence for changes in GEVD parameters, despite regional trends 28 
in mean chlorophyll levels and sea surface temperature. These results provide a framework to 29 
quantify interannual bloom variability and call for further work examining how extreme blooms 30 
propagate through food webs and contribute to carbon export. 31 
 32 
Introduction 33 
 34 
Phytoplankton form the base of the marine food web (Falkowski et al. 2003) and play a major 35 
role in the global carbon cycle (Falkowski et al. 1998; Ito and Follows 2005). At mid and high-36 
latitudes, the seasonality of phytoplankton is characterized by a late-winter or spring bloom 37 
where phytoplankton biomass concentrations reach an annual maximum (Behrenfeld and Boss 38 
2014). The spring bloom is important for sustaining higher trophic levels, including species 39 
whose annual migrations are timed to coincide with the bloom (Visser et al. 2011). Blooms also 40 
contribute to carbon export and are often associated with large export pulses to depth (Briggs et 41 
al. 2011). 42 
 43 
Several biophysical mechanisms are thought to control bloom development (Behrenfeld and 44 
Boss 2014, 2018). For example, the critical depth hypothesis predicts that bloom initiation begins 45 
with mixed layer shoaling and associated increases in mixed layer averaged light availability 46 
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(Behrenfeld and Boss 2014, 2018). The critical turbulence hypothesis (a variant of the critical 47 
depth hypothesis) focuses on light availability in the active mixing layer (Taylor and Ferrari 48 
2011; Ferrari et al. 2015), while the dilution-recovery hypothesis predicts that blooms develop 49 
due to changes in grazing via dilution from deepening mixed layers (Evans et al. 1985; 50 
Behrenfeld 2010). Across proposed mechanisms, the population-level phenomena of blooms 51 
arise due to transient positive imbalances between growth and loss rates such that the exponential 52 
growth rate is positive, i.e.  53 
 54 

𝑑𝑐
𝑑𝑡 =

(𝑔(𝑡) − 𝑙(𝑡))𝑐, 55 

 56 
with 𝑔(𝑡) − 𝑙(𝑡) > 0 prior to the bloom. Days to weeks post-bloom, losses increase to match 57 
and exceed growth, most often because of increased grazer abundance supported by the elevated 58 
phytoplankton biomass (Behrenfeld and Boss 2014, 2018). The magnitude and duration of the 59 
transient exponential growth period determines the magnitude of the spring bloom biomass 60 
maximum. 61 
 62 
The North Atlantic basin exhibits one of the largest and well-studied seasonal blooms across the 63 
global ocean. Deep winter mixing and rapid springtime re-stratification causes ideal conditions 64 
for exponential phytoplankton growth, with bloom timing following a northward progression as 65 
re-stratification occurs earliest at low latitude (Dutkiewicz et al. 2001; Siegel et al. 2002). 66 
Meteorological variability then modulates the precise timing and magnitude of the bloom 67 
according to the impacts on local mixing dynamics (Dutkiewicz et al. 2001; Follows and 68 
Dutkiewicz 2002). Importantly, variability in bloom timing and magnitude has been linked to the 69 
magnitude of carbon export (Briggs et al. 2011) and to fisheries productivity via the ‘match-70 
mismatch hypothesis’ (Platt et al. 2003). Climate change is expected to alter North Atlantic 71 
bloom dynamics via a range of factors, including changes in seasonal mixing depths, nutrient 72 
fluxes, and the metabolic impacts of warmer temperatures (Sommer and Lengfellner 2008). 73 
Quantifying the dynamics of the North Atlantic spring bloom is thus of central importance for 74 
understanding the relevant oceanographic and ecological processes and will aid in tracking the 75 
associated impacts of climate change.  76 
 77 
Viewing interannual blooms as extreme values in observed phytoplankton time series brings to 78 
bear the statistical theory of extreme values. Under the Fisher-Tippet-Gnedenko theorem, the 79 
maximum of a sequences of random variables converges in distribution to the Generalized 80 
Extreme Value Distribution (GEVD), itself a generalization of the Gumbel, Frechet, and Weibull 81 
distributions (Coles 2001). The theorem yields a three-parameter probability density function 82 
describing the limiting distribution of maximum values generated from samples of a stochastic 83 
process, analogous to the central limit theorem for a the mean of a distribution (Coles 2001; 84 
described below). While the GEVD is increasingly applied to geophysical and climate studies 85 
(Easterling et al. 2000; Katz 2010; Aghakouchak et al. 2020). there have been fewer applications 86 
to biological time series (Batt et al. 2017). Consistent with the exponential nature of biological 87 
growth, Batt et al. (2017) found that biological time series exhibited consistently heavier tails in 88 
their extreme value distributions relative to chemical and geophysical time series. These findings 89 
suggest the North Atlantic bloom as an ideal target of extreme value analysis, due to its annually 90 
repeating cycle of transient and variable exponential growth.  91 
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 92 
Here we analyzed the North Atlantic satellite chlorophyll record to quantify seasonal 93 
phytoplankton bloom variability via extreme value analysis. We estimated GEVD parameters at 94 
a ¼° latitude-longitude scale. We mapped the fitted parameters spatially and evaluated the 95 
GEVD goodness-of-fit to the chlorophyll time series. We correlated the fitted parameters to 96 
bathymetric properties of the North Atlantic basin. We further evaluated evidence for non-97 
stationarity (i.e., time-variability) in GEVD parameters in the context of satellite-observed 98 
chlorophyll and temperature trends across the basin. Results of this study will provide a 99 
statistical framework to describe interannual bloom variability and allow us to test an important 100 
hypothesis with respect to basin-scale environmental change. 101 
 102 
Methods 103 
 104 
Observations 105 
 106 
We analyzed two sets of basin-scale satellite chlorophyll observations. First, we used chlorophyll 107 
estimates from the Moderate-resolution Imaging Spectroradiometer-Aqua (MODIS-Aqua) 108 
sensor, spanning years 2002-2021, accessed from the Oregon State University Ocean 109 
Productivity database (https://sites.science.oregonstate.edu/ocean.productivity/). Associated 110 
inherent optical properties were estimated using the Garver-Siegel-Maritorena (GSM) algorithm 111 
(Maritorena and Siegel 2005). MODIS-Aqua based chlorophyll estimates were gap-filled for 112 
missing observations due to clouds according to the algorithm described at 113 
http://orca.science.oregonstate.edu/gap_fill.php. While gap-filling can alter the underlying 114 
chlorophyll distribution, it is not expected to affect the annually measured maximum value. 115 
Secondly, we used the Ocean Colour Climate Change Initiative (OC-CCI) chlorophyll product 116 
(Sathyendranath et al. 2019) covering the same time period as the MODIS-Aqua dataset. OC-117 
CCI chlorophyll is a synthetic product generated by combining information from multiple 118 
sensors, including SeaWiFS (Sea-viewing Wide-Field-of-view Sensor), MODIS-Aqua, MERIS 119 
(Medium spectral Resolution Imaging Spectrometer) and VIIRS (Visible and Infrared Imaging 120 
Radiometer Suite). OC-CCI was not gap-filled and therefore contained missing values due to 121 
clouds. We grided both sets of chlorophyll observations to ¼° latitude-longitude rectilinear 122 
resolution. Wintertime satellite chlorophyll observations were not available for higher latitudes 123 
due to light limitation and were replaced with a value of zero concentration which did not affect 124 
the extreme value analysis. Sea surface temperature data from the MODIS-Aqua sensor were 125 
taken from the Oregon State University Ocean Productivity Database site cited above.  126 
 127 
Extreme Value Analysis 128 
 129 
Given a time series of chlorophyll observations at an individual location, we estimated the 130 
parameters of the GEVD via the block maxima approach (Gilleland and Katz 2016), taking time 131 
series blocks as individual years. We define 𝑥 = max(𝑦!, 𝑦", … , 𝑦#) as the maximum chlorophyll 132 
measurement in a single year of 𝑛 measurements. Over 𝑚 years we have 𝑚 yearly maxima, thus 133 
defining the observed annual maxima time series 𝑥!, 𝑥", … , 𝑥$. For an annual maximum 𝑥, the 134 
GEVD has a probability density function given by 135 
 136 
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 140 
where 𝜇, 𝜎, and 𝜉 are the location, scale, and shape parameters, respectively. The location 141 
parameter shifts the GEVD along the 𝑥 axis, the scale parameter controls the spread, and the 142 
shape parameter controls the peaked-ness of the mode and heaviness of the distribution tail. 143 
Examples of how 𝜇, 𝜎, and 𝜉 modulate the GEVD are given in Figure 1. Formulas for the 144 
expected value, variance, and mode of the GEVD are given in Appendix A. 145 
 146 
In addition to the tree-parameter GEVD described above, we also apply a nonstationary 147 
extension where the parameters are described as simple linear functions of time (Gilleland and 148 
Katz 2016) of the form 149 
 150 

𝜃(𝑡) = 𝜃. + 𝜃!𝑡, 151 
 152 
where 𝜃 is one of the GEVD parameters, 𝜃. is the intercept of the linear relationship, and 𝜃! is 153 
the slope, i.e. the rate of change with respect to time.  154 
 155 
The log-likelihood for the GEVD parameters (Gilleland and Katz 2016) is given by 156 
 157 

𝑙(𝜇, 𝜎, 𝜉|𝑥!, 𝑥", … , 𝑥$) = −𝑚 ln𝜎 − ?1 + !
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$
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01! . 158 

 159 
We maximized the log-likelihood function with respect to the parameters to obtain empirical 160 
estimates. We maximized with respect to 𝜇, 𝜎, and 𝜉 in the case of stationary GEVDs, and with 161 
respect to the intercept and slope in the case of nonstationary GEVDs. We restricted the analysis 162 
to estimating one nonstationary parameter at a time due to data restrictions and weak 163 
identifiability when multiple parameters are allowed to vary with time. We only considered 164 
linear functions of time and suggest nonlinear functions for future work. We used numerical 165 
optimization routines implemented in the extRemes library within the R programming language 166 
(Gilleland and Katz 2016). We compared stationary and nonstationary fits according to the 167 
Bayesian Information Criterion (BIC), given by BIC = −2𝑙P𝜇̂, 𝜎R, 𝜉ST − 𝑘 log 𝑛, where 𝑙P𝜇̂, 𝜎R, 𝜉ST is 168 
the maximized likelihood at empirical estimates 𝜇̂, 𝜎R, and 𝜉S. 𝑘 is the number of parameters in the 169 
GEVD (three for stationary GEVDs, four for nonstationary GEVDs), and 𝑛 is the number of 170 
yearly maxima used in the fit. A GEVD was fit to chlorophyll time series in each ¼° pixel. The 171 
parameters were mapped spatially and correlated with basin bathymetry. Parameter uncertainty 172 
was derived by taking the square-root of the inverse Hessian matrix evaluated at the maximum 173 
likelihood estimates.   174 
 175 
Results 176 
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 177 
The distributions of annual chlorophyll showed excellent agreement with those predicted from 178 
the GEVD (Figure 2). Across the Atlantic basin, observed distribution quantiles correlated with 179 
those from the fitted GEVDs at 𝑟 = 0.97 on the arithmetic scale (Figure 2a) and 𝑟 = 0.98 on the 180 
log scale (Figure 2b). The spatial distribution of the quantile-quantile correlation was also 181 
consistent across the basin, with no apparent relationship with latitude or distance from the coast 182 
(Figure 2c). The region of largest disagreement occurred off the southwest coast of Europe, yet 183 
correlations were still above 𝑟 = 0.7 and remained so across the basin.  184 
 185 
When fitted GEVD parameters were mapped spatially we found that parameter magnitude 186 
closely followed basin bathymetry (Figures 3-4). Location and shape parameters were 187 
consistently elevated on the shelf (<700m depth; Figure 3c,d; Figure 4a,c) with magnitudes 2-3 188 
fold higher than in waters deeper than 700m. This result demonstrated that interannual bloom 189 
magnitude and the ‘heaviness’ of the underlying distribution tail were both elevated on the shelf. 190 
This occurred on the eastern and western sides of the basin. Deeper slope waters off the coast of 191 
Greenland also showed elevated location and shape parameters. The largest parameter 192 
magnitudes were found in the shallow Baltic Sea (Figure 3c,d; Figure 4a,c). The scale 193 
parameter showed a different pattern with bathymetry where parameter magnitude was only 194 
slightly elevated in shelf waters but showed a step-change decrease in the deepest waters 195 
(>4000m; Figure 3c; Figure 4b); however, we note the aerial distribution of shelf vs. deep water 196 
is markedly different, with deep waters limited to the southern half of the basin around the Mid-197 
Atlantic ridge while shelf seas are widely distributed (Figure 3a). Parameter uncertainty weakly 198 
correlated with parameter magnitude for location and shape parameters with no clear spatial 199 
pattern (Supplementary Figure 1). Scale parameter uncertainty was elevated in deeper water 200 
(Supplementary Figure 1). The area-weighted average of the parameter coefficients of variation 201 
(the standard deviation of the parameter uncertainty divided by the fitted mean parameter) was 202 
0.11, 0.38, 0.24 for location, scale, and shape parameters, meaning the 1𝜎 uncertainty was 11%, 203 
38%, and 24% of the mean, respectively (Supplementary Figure 1).    204 
 205 
We quantified the correlation between fitted GEVDs parameters using linear relationships 206 
(Figure 4d-f). Bivariate relationships between parameters were well described by a linear 207 
intercept and positive slope. The strongest relationship was found between fitted location and 208 
shape parameters, again reflecting that GEVD distributions increase in magnitude and heavy 209 
tailed-ness with decreasing bathymetric depth. We visually characterized how the GEVD 210 
changes from deep to shelf waters using the fitted linear relationships (Figure g-h), noting that 211 
this characterization represents the basin-averaged relationships so may not necessarily be 212 
representative of individual regions.    213 
 214 
Using a nonstationary GEVD analysis, we found weak evidence for temporal trends in GEVD 215 
parameters, despite significant trends in chlorophyll levels and sea surface temperature across the 216 
North Atlantic (Figure 5). Nonstationary parameters were favored in 34.3%, 29.9%, and 36.3% 217 
of basin area for location, scale, and shape parameters, respectively (Figures 5a-c). Importantly, 218 
the strength of evidence for nonstationary parameters did not clearly correlate with trends in 219 
chlorophyll (Figure 5d; except possibly on the east Greenland slope), nor sea surface 220 
temperature (Figure 5e). The weakest evidence for nonstationary parameters was found in the 221 
area with the strongest sea surface temperature trends, specifically the warming-cooling dipole 222 
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pattern on the western side of the basin caused in-part by a slowdown of the Atlantic overturning 223 
circulation and associated northward heat transport (i.e. the North Atlantic ‘warming hole’; Keil 224 
et al. 2020).   225 
 226 
We repeated the GEVD parameter estimation using the OC-CCI chlorophyll product and found 227 
consistent results to those based on MODIS observations presented above. Quantile-quantile 228 
correlations showed a similarly good fit between observed OC-CCI quantiles and those predicted 229 
from the fitted GEVDs with a correlation of 𝑟 = 0.98 in arithmetic space and 𝑟 = 0.98 in log 230 
space (Supplementary Figure 2). Spatial patterns in fitted GEVD parameters were consistent 231 
across parameter sets estimated using the two datasets, despite some evidence for slightly 232 
reduced scale parameter magnitudes using OC-CCI chlorophyll (Supplementary Figure 3), 233 
which may be due to reduced variance in the synthetic multi-sensor OC-CCI dataset.  234 
  235 
Discussion 236 
 237 
Our analysis demonstrates that annual chlorophyll maxima are well-described by the GEVD 238 
based on the statistical theory of extreme values. We achieved a high goodness-of-fit and 239 
interpretable spatial patterns across the North Atlantic basin. A clear pattern emerged in the 240 
correlation between GEVD parameters and bathymetric depth, with the magnitude and tailed-241 
ness of chlorophyll extremes increasing in shelf and slope environments. While the mechanism 242 
for this pattern will require further research, we hypothesize that nutrient and stratification 243 
dynamics may play a role. For example, elevated blooms are seen in other shelf and slope 244 
ecosystems related to nutrient delivery and water column stability controlled by the shelf-break 245 
circulation (Garcia et al. 2008). The heavy distribution tail on the shelf may also be related to 246 
variability in bloom timing which has been shown to impact interannual variability in shelf 247 
bloom magnitude (Friedland et al. 2015). We suggest further work examining the potential 248 
mechanisms that could explain different extreme value distributions under contrasting 249 
oceanographic environments. Classical models of phytoplankton blooms (e.g. Behrenfeld and 250 
Boss 2014) may be extended to include stochastic forcing and generate statistical distributions of 251 
bloom interannual magnitude. Targeted sensitivity of annual maxima distributions to different 252 
underlying forcing may uncover mechanisms for changes in distribution parameters across the 253 
shelf and open ocean.   254 
 255 
Results of the nonstationary analysis suggested surprisingly weak evidence for changes in GEVD 256 
parameters over time. The lack of correlation with observed trends in background chlorophyll 257 
and sea surface temperature suggests that climate-related drivers are playing a limited role in 258 
modulating interannual bloom magnitude, despite the North Atlantic showing significant climate 259 
change (Keil et al. 2020). We note, however, that the current nonstationary analysis is limited by 260 
time series length. Continued studies will be required to monitor changes in bloom magnitude 261 
over time. An extended satellite record will provide greater statistical power to detect climate-262 
driven trends. An extended record will also constrain more complicated functions describing the 263 
variation of parameters with time and their statistical association with environmental factors.  264 
 265 
Ecologically, interesting questions arise about how extreme blooms propagate through food 266 
webs, contribute to carbon export, and impact ecological processes more broadly. For example, 267 
annual fisheries recruitment is often characterized by heavy-tailed distributions where individual 268 
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years exhibit extremely large cohorts, often fueling the fishery for years (Saetre et al. 2002). 269 
Extreme bloom years may increase the probability of strong cohorts via the match-mismatch 270 
mechanism (Platt et al. 2003), perhaps with temporal lags between blooms and recruitment 271 
modulated by trophic transfer. With respect to carbon export, we expect extreme blooms to 272 
contribute disproportionately to interannual carbon fluxes due to the commonly-observed 273 
positive effect of phytoplankton productivity on carbon export efficiency (Britten and Primeau 274 
2016) and observed carbon fluxes associated with blooms in the North Atlantic (Briggs et al. 275 
2011). Databases of carbon flux observations may be used to test this hypothesis at the basin 276 
scale (Mouw et al. 2016). Beyond fisheries and carbon export, we envision extreme event 277 
distributions to be broadly useful in characterizing the response of ecological processes to 278 
environmental extremes. The increase in applications of extreme value theory to environmental 279 
processes (Aghakouchak et al. 2020) naturally leads to questions of how environmental extremes 280 
impact ecology. The GEVD is one extreme value analysis tool that utilizes the distribution of 281 
block maxima (which was particularly appropriate here to describe the maxima of a repeating 282 
annual cycle) however other statistical descriptions of ecological heavy tailed-ness can also be 283 
useful in this context (e.g. Anderson et al. 2017).  284 
 285 
In summary, the GEVD provided a useful statistical description of bloom variability and a 286 
general framework to quantify the spatiotemporal statistics of interannual bloom maxima. We 287 
hope this study spurns further analysis of marine ecosystem variability using extreme value 288 
theory to better understand how environmental conditions give rise to ecological extreme events, 289 
how extreme blooms contribute to fisheries productivity and carbon export, and how these 290 
processes may change with climate.  291 
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Figures  375 
 376 

 377 
 378 
Figure 1. Examples of the GEVD distribution for different values of the location (a), scale (b), 379 
and shape (c) parameters.   380 
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 381 

 382 
 383 
Figure 2. Observed quantiles of North Atlantic annual bloom extremes vs. those predicted from 384 
the fitted GEVDs. Panel a gives the relationship in arithmetic space; panel b gives the 385 
relationship in log (base ten) space. A random sample of 5000 quantiles were drawn in order to 386 
visualize the relationship in a and b. The correlations in a and b are 0.97 and 0.98, respectively. 387 
Panel c gives the spatial distribution of quantile-quantile correlations. Note the correlation color 388 
bar extends from 0.7 to 1.0.   389 
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 390 

 391 
Figure 3. Spatial distribution of fitted GEVD parameters and basin bathymetry. Panel a gives the 392 
bathymetric depth in the North Atlantic basin. Panels b, c, and d give the estimated location, 393 
scale, and shape parameters, respectively. Bathymetry contours are overlaid in b-d with a 394 
contour interval of 500 meters. 395 

396 
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  397 
 398 
Figure 4. Relationships between fitted GEVD parameter and bathymetric depth. Panels a-c give 399 
the basin-averaged relationship between the fitted parameters and bathymetric depth. Panels d-f 400 
give the inter-relationships among fitted parameters with the least squares regression line and 401 
equation. Panels g and h give the basin-averaged change of the GEVD with bathymetric depth. 402 
Panel h zooms in on the distribution tail in g (note horizontal axis limits).  403 
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 404 
Figure 5. Evidence for nonstationary GEVD parameters in the context of basin-scale trends in 405 
chlorophyll and sea surface temperature. Model selection results comparing stationary and 406 
nonstationary GEVDs using the Bayesian Information (BIC) are given in panel a (nonstationary 407 
location parameter), b (nonstationary scale), and c (nonstationary shape). The difference in BIC 408 
(ΔBIC) is given relative to the stationary model. Non-zero values indicate the nonstationary 409 
model is favoured and the magnitude indicates the relative strength of evidence. Panels d and e 410 
give the linear trend in surface chlorophyll and sea surface temperature, respectively, estimated 411 
from MODIS observations since 2002.   412 
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Appendix A 413 
 414 
The expected value of the GEVD is given by 415 
 416 

𝐄[𝑥] = ]
𝜇 + (𝑔(1) − 1)

𝜎
𝜉 			𝑖𝑓	𝜉 ≠ 0, 𝜉 < 1

𝜇 + 𝜎𝛾																							𝑖𝑓	𝜉 = 0												
∞																																𝑖𝑓	𝜉 > 1												

 417 

 418 
where 𝑔(𝑘) = Γ(1 − 𝑘𝜉), Γ(𝑟) is the gamma function, and 𝛾 is Euler’s constant (𝛾 ≅ 0.5772). 419 
The variance of the GEVD is 420 
 421 

𝐕𝐚𝐫[𝑥] = (𝑔(2) − 𝑔(1)")
𝜎"

𝜉" . 422 

 423 
The mode of the GEVD is  424 
 425 

𝐌𝐨𝐝𝐞[𝑥] = 𝜇 +
𝜎
𝜉
((1 + 𝜉)'% − 1). 426 

 427 
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Supplementary Figure 1. Uncertainty in fitted GEVD parameters expressed as the coefficient of 
variation (CV). The CV is calculated as the ratio of the uncertainty standard deviation divided by 
the mean of the fitted parameter.   



 
 
Supplementary Figure 2. As in Figure 2 of the main text but using OC-CCI chlorophyll estimates 



 
 
Supplementary Figure 3. As in Figure 3 of the main text but using OC-CCI chlorophyll 
estimates. 
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